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Abstract

There is mounting evidence of emergent phenomena in the capabilities of deep
learning methods as we scale up datasets, model sizes, and training times. While
there are some accounts of how these resources modulate statistical capacity, far
less is known about their effect on the computational problem of model training.
This work conducts such an exploration through the lens of learning a k-sparse
parity of n bits, a canonical discrete search problem which is statistically easy
but computationally hard. Empirically, we find that a variety of neural networks
successfully learn sparse parities, with discontinuous phase transitions in the
training curves. On small instances, learning abruptly occurs at approximately
nO(k) iterations; this nearly matches SQ lower bounds, despite the apparent lack
of a sparse prior. Our theoretical analysis shows that these observations are not
explained by a Langevin-like mechanism, whereby SGD “stumbles in the dark”
until it finds the hidden set of features (a natural algorithm which also runs in nO(k)

time). Instead, we show that SGD gradually amplifies the sparse solution via a
Fourier gap in the population gradient, making continual progress that is invisible
to loss and error metrics.

1 Introduction

In deep learning, performance improvements are frequently observed upon simply scaling up re-
sources (such as data, model size, and training time). While these improvements are often continuous
in terms of these resources, some of the most surprising recent advances in the field have been emer-
gent capabilities: at a certain threshold, behavior changes qualitatively and discontinuously. Through
a statistical lens, it is well-understood that larger models, trained with more data, can fit more complex
and expressive functions. However, far less is known about the analogous computational question:
how does the scaling of these resources influence the success of gradient-based optimization?

These phase transitions cannot be explained via statistical capacity alone: they can appear even when
the amount of data remains fixed, with only model size or training time increasing. A timely example
is the emergence of reasoning and few-shot learning capabilities when scaling up language models
(Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Hoffmann et al., 2022); Srivastava
et al. (2022) identify various tasks which language models are only able to solve if they are larger
than a critical scale. Power et al. (2022) give examples of discontinuous improvements in population
accuracy (“grokking”) when running time increases, while dataset and model sizes remain fixed.
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Figure 1: Main empirical findings at a glance. A variety of neural networks, with standard training
and initialization, can solve the (n, k)-parity learning problem, with a number of iterations scaling as
nO(k). Left: Training curves under various algorithmic choices (architecture, batch size, learning
rate) on the (n = 50, k = 3)-parity problem. Right: Median convergence times for small (n, k).

In this work, we analyze the computational aspects of scaling in deep learning, in an elementary
synthetic setting which already exhibits discontinuous improvements. Specifically, we consider the
supervised learning problem of learning a sparse parity: the label is the parity (XOR) of k ⌧ n
bits in a random length-n binary string. This problem is computationally difficult for a range of
algorithms, including gradient-based (Kearns, 1998) and streaming (Kol et al., 2017) algorithms. We
focus on analyzing the resource measure of training time, and demonstrate that the loss curves for
sparse parities display a phase transition across a variety of architectures and hyperparameters (see
Figure 1, left). Strikingly, we observe that SGD finds the sparse subset (and hence, reaches 0 error)
with a variety of activation functions and initialization schemes, even with no over-parameterization.

A natural hypothesis to explain SGD’s success in learning parities, with no visible progress in error
and loss for most of training, would be that it simply “stumbles in the dark”, performing random
search for the unknown target (e.g. via stochastic gradient Langevin dynamics). If that were the
case, we might expect to observe a convergence time of 2⌦(n), like a naive search over parameters or
subsets of indices. However, Figure 1 (right), already provides some evidence against this “random
search” hypothesis: the convergence time adapts to the sparsity parameter k, with a scaling of nO(k)

on small instances. Notably, such a convergence rate implies that SGD is closer to achieving the
optimal computation time among a natural class of algorithms (namely, statistical query algorithms).

Through an extensive empirical analysis of the scaling behavior of a variety of models, as well as
theoretical analysis, we give strong evidence against the “stumbling in the dark” viewpoint. Instead,
there is a hidden progress measure under which SGD is steadily improving. Furthermore, and perhaps
surprisingly, we show that SGD achieves a computational runtime much closer to the optimal SQ
lower bound than simply doing (non-sparse) parameter search. More generally, our investigations
reveal a number of notable phenomena regarding the dependence of SGD’s performance on resources:
we identify phase transitions when varying data, model size, and training time.

1.1 Our contributions

SGD learns sparse parities. It is known from SQ lower bounds that with a constant noise level,
gradient descent on any architecture requires at least n⌦(k) computational steps to learn k-sparse
n-dimensional parities (for background, see Appendix A). We first show a wide variety of positive
empirical results, in which neural networks successfully solve the parity problem in a number of
iterations which scales near this computational limit:
Empirical Finding 1. For all small instances (n  30, k  4) of the sparse parity problem,
architectures A 2 {2-layer MLPs, Transformers1, sinusoidal/oscillating neurons, PolyNets2}, initial-
izations in {uniform, Gaussian, Bernoulli}, and batch sizes 1  B  1024, SGD on A solves the
(n, k)-sparse parity problem (w.p. � 0.2) within at most c · n↵k steps, for small constants c,↵.

1With a smaller range of hyperparameters.
2A non-standard architecture introduced in this work; see Section 3 for the definition.
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Theoretical analyses of sparse feature emergence. Our empirical results suggest that, in a number
of computational steps matching the SQ limit, SGD is able to solve the parity problem and identify
the influential coordinates, without an explicit sparse prior. We give a theoretical analysis which
validates this claim.
Informal Theorem 2. On 2-layer MLPs of width 2⇥(k), and with batch size nO(k), SGD converges
with high probability to a solution with at most ✏ error on the (n, k)-parity problem in at most
2O(k) · poly(1/✏) iterations.

We also present a stronger analysis for an idealized architecture (which we call the disjoint-PolyNet),
which allows for any batch size, and captures the phase transitions observed in the error curves.
Informal Theorem 3. On disjoint-PolyNets, SGD (with any batch size B � 1) converges with high
probability to a solution with at most ✏ error on the (n, k)-parity problem in at most nO(k) · log(1/✏)
iterations. Continuous-time gradient flow exhibits a phase transition: it spends a 1� o(1) fraction of
its time before convergence with error � 49%.

Our theoretical and empirical results hold in non-overparameterized regimes (including with a width-1
sinusoidal neuron), in which no fixed kernel, including the neural tangent kernel (NTK) (Jacot et al.,
2018), is sufficiently expressive to fit all sparse parities with a large margin. Thus, our findings
comprise an elementary example of combinatorial feature learning: SGD can only successfully
converge by learning a low-width sparse representation.

Further empirical explorations. Building upon our core positive results, we provide a wide variety
of preliminary experiments, showing sparse parity learning to be a versatile testbed for understanding
the challenges and surprises in solving combinatorial problems with neural networks. These include
quantities which reveal the continual hidden progress behind uninformative training curves (as
predicted by the theory), experiments at small sample sizes which exhibit grokking (Power et al.,
2022), as well as an example where greedy layer-wise learning is impossible but end-to-end SGD can
learn the layers jointly.

1.2 Related work

We present the most directly related work on feature learning, and learning parities with neural nets.
A broader discussion can be found in Appendix A.3.

SGD and feature learning. Theoretical analysis of gradient descent on neural networks is no-
toriously hard, due to the non-convex nature of the optimization problem. That said, it has been
established that in some settings, the dynamics of GD keep the weights close to their initialization,
thus behaving like convex optimization over the Neural Tangent Kernel (see, for example, (Jacot et al.,
2018; Allen-Zhu et al., 2019; Du et al., 2018)). In contrast, it has been shown that in various tasks,
moving away from the fixed features of the NTK is essential for the success of neural networks trained
with GD (for example (Yehudai and Shamir, 2019; Allen-Zhu and Li, 2019; Wei et al., 2019) and
the review in (Malach et al., 2021)). These results demonstrate that feature learning is an important
part of the GD optimization process. Our work also focuses on a setting where feature learning is
essential for the target task. In our theoretical analysis, we show that the initial population gradient
encodes the relevant features for the problem. The importance of the first gradient step for feature
learning has been recently studied in (Ba et al., 2022).

Learning parities with neural networks. The problem of learning parities using neural networks
has been investigated in prior works from various perspectives. It has been demonstrated that parities
are hard for gradient-based algorithms, using similar arguments as in the SQ analysis (Shalev-Shwartz
et al., 2017; Abbe and Sandon, 2020). One possible approach for overcoming the computational
hardness is to make favorable assumptions on the input distribution. Indeed, recent works show that
under various assumptions on the input distribution, neural networks can be efficiently trained to
learn parities (XORs) (Daniely and Malach, 2020; Shi et al., 2021; Frei et al., 2022; Malach et al.,
2021). In contrast to these results, this work takes the approach of intentionally focusing on a hard
benchmark task, without assuming that the distribution has some favorable (namely, non-uniform)
structure. This setting allows us to probe the performance of deep learning at a known computational
limit. Notably, the work of Andoni et al. (2014) provides analysis for learning polynomials (and in
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particular, parities) under the uniform distribution. However, their main results require a network
of size nO(k) (i.e., extremely overparameterized network), and provides only partial theoretical and
empirical evidence for the success of smaller networks. Studying a related subject, some works have
shown that neural networks display a spectral bias, learning to fit low-frequency coefficients before
high-frequency ones (Rahaman et al., 2019; Cao et al., 2019).

2 Preliminaries

We provide an expanded discussion of background and related work in Appendix A.

Sparse parities. For integer n � 1 and non-empty set S ✓ [n], the (n, S)-parity function �S :
{±1}n ! {±1} is defined as �S(x) =

Q
i2S xi. We define the (n, S)-parity distribution DS as the

joint distribution over (x, y)3 where x is drawn from Unif({±1}n), the uniform distribution over
random length-n sign vectors, and y := �S(x) is the product of the inputs at the indices given by
the “relevant features” S (thus, ±1, depending on whether the number of relevant �1 inputs is even
or odd). We define the (n, k)-parity learning problem as the task of recovering the S using samples
from DS , where S is chosen at random from

�[n]
k

�
.

A key fact about parities is that they are orthogonal under the correlation inner product: for S0 ✓ [n],

E
x⇠Unif({±1}n)

[�S(x)�S0(x)] = E
(x,y)⇠DS

[�S0(x) y] =

⇢
1 S0 = S
0 otherwise

.

That is, a learner who guesses indices S0 cannot use correlations (equivalently, the accuracy of the
hypothesis �S0 ) as feedback to reveal which indices in S0 are correct, unless S0 is exactly the correct
subset. This notion of indistinguishability leads to a computational lower bound in the statistical
query (SQ) model (Kearns, 1998): ⌦(nk) constant-noise queries are necessary, which is far greater
than the statistical limit of ⇥(log

�n
k

�
) ⇡ k log n samples. The hardness of parity has been used

to derive computational hardness results for other settings, like agnostically learning halfspaces
(Klivans and Kothari, 2014) and MLPs (Goel et al., 2019). Beyond the restricted computational
model of statistical queries, noiseless parities can be learned in poly(n) time via Gaussian elimination.
However, learning sparse noisy parities, even at a very small noise level (i.e., o(1) or n��), is believed
to inherently require n⌦(k) computational steps.4 In all, learning sparse parities is a well-studied
combinatorial problem which exemplifies the computational difficulty of learning a joint dependence
on multiple relevant features.

Notation for neural networks and training. Our main results are presented in the online learning
setting, with a stream of i.i.d. batches of examples. At each iteration t = 1, . . . , T , a learning
algorithm A receives a batch of B examples {(xt,i, yt,i)}Bi=1 drawn i.i.d. from DS , then outputs a
classifier byt : {±1}n ! {±1}. We say that A solves the parity task in t steps (with error ✏) if

Pr
(x,y)⇠DS

[byt(x) = y] � 1� ✏.

We will focus on the case that byt = sign(f(x; ✓t)) for some parameters ✓t in a continuous domain ⇥
and for a continuous function f : {±1}n ⇥ ⇥ ! R5, updated with the ubiquitous online learning
algorithm of gradient descent (GD), whose update rule is given by

✓t+1  (1� �t)✓t � ⌘t ·r✓

 
1

B

BX

i=1

`(yt,i, f(xt,i; ✓t))

!
, (1)

for a loss function ` : {±1}⇥ R! R, learning rate schedule {⌘t}Tt=1, and weight decay schedule
{�t}Tt=1

6. The initialization ✓0 is drawn randomly from a chosen distribution.
3Our theoretical analyses and experiments can tolerate noisy parities, that is, random flipping of the label;

see Appendix C.6. For ease of presentation, we state the noiseless setting in the main paper.
4This was first explicitly conjectured by Alekhnovich (2003), and has been the basis for several cryptographic

schemes (e.g., (Ishai et al., 2008; Applebaum et al., 2009, 2010; Bogdanov et al., 2019)).
5When f(x; ✓) = 0 in practice (e.g. with sign initialization), we break the tie arbitrarily. We ensure in the

theoretical analysis that this does not happen.
6We allow different layers to have different learning rate and weight decay schedules.
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Figure 2: Black-box observations on the training dynamics. Left: Histograms of convergence times
over 106 random trials, with heavy upper tails but no observed successes near t = 0 (unlike random
search). Center: Loss curves (and thus, convergence time) depend heavily on initialization, not the
randomness of SGD; B = 128, ⌘ = 0.01 are shown here. Right: The power-law exponent (↵ such
that tc / n↵) eventually worsens on larger problem instances.

3 Empirical findings

3.1 SGD on neural networks learns sparse parities

The central phenomenon of study in this work is the empirical observation that neural networks, with
standard initialization and training, can solve the (n, k)-parity problem in a number of iterations
scaling as nO(k) on small instances. We observed robust positive results for randomly-initialized
SGD on the following architectures, indexed by Roman numerals:

• 2-layer MLPs: ReLU (�(z) = (z)+) or polynomial (�(z) = zk) activation, in a wide variety
of width regimes r � k. Settings (i), (ii), (iii) (resp. (iv), (v), (vi)) use r = {10, 100, 1000}
ReLU (resp. polynomial) activations. We also consider r = k (exceptional settings (*i), (*ii) ),
the minimum width for representing a k-wise parity for both activations.

• 1-neuron networks: Next, we consider non-standard activation functions � which allow a
one-neuron architecture f(x;w) = �(w>x) to realize k-wise parities. The constructions stem
from letting w⇤ =

P
i2S ei, and constructing �(·) to interpolate (the appropriate scaling of)

k�w⇤>x
2 mod 2 with a piecewise linear k-zigzag activation (vii), or a degree-k polynomial (viii).

Going a step further, a single1-zigzag (ix) or sinusoidal (x) neuron can represent all k-wise
parities. In settings (xi), (xii), (xiii), (xiv), we remove the second trainable layer (setting u = 1).
We find that wider architectures with these activations also train successfully.

• Transformers: There is growing interest in using parity as a benchmark for combinatorial
function learning, long-range dependency learning, and length generalization in Transformers
(Lu et al., 2021; Edelman et al., 2021; Hahn, 2020; Anil et al., 2022; Liu et al., 2022). Motivated
by these recent theoretical and empirical works, we consider a simplified specialization of the
Transformer architecture to this sequence classification problem. This is the less-robust setting
(*iii); the architecture and optimizer are described in Appendix D.1.3.

• PolyNets: Our final setting (xv) is the PolyNet, a slightly modified version of the parity machine
architecture. Parity machines have been studied extensively in the statistical mechanics of ML
literature (see the related work section) as well as in a line of work on ‘neural cryptography’
(Rosen-Zvi et al., 2002). A parity machine outputs the sign of the product of k linear functions of
the input. A PolyNet simply outputs the product itself. Both architectures can clearly realize k-
sparse parities. The PolyNet architecture was originally motivated by the search for an idealized
setting where an end-to-end optimization trajectory analysis is tractable (see Section 4.1); we
found in these experiments that this architecture trains very stably and sample-efficiently.

Robust space of positive results. All of the networks listed above were observed to successfully
learn sparse parities in a variety of settings. We summarize our findings as follows: for all com-
binations of n 2 {10, 20, 30}, k 2 {2, 3, 4}, batch sizes B 2 {1, 2, 4, . . . , 1024}, initializations
{uniform, Gaussian, Bernoulli}, loss functions {hinge, square, cross entropy}, and architecture
configurations {(i), (ii), . . . , (xv)}, SGD solved the parity problem (with 100% accuracy, validated
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on a batch of 213 samples) in at least 20% of 25 random trials, for at least one choice of learn-
ing rate ⌘ 2 {0.001, 0.01, 0.1, 1}. The models converged in tc  c · n↵k  105 steps, for small
architecture-dependent constants c,↵ (see Appendix C). Figure 1 (left) shows some representative
training curves.

Less robust configurations. Settings (*i) and (*ii), where the MLP just barely represents a k-sparse
parity, and the Transformer setting (*iii), are less robust to small batch sizes. In these settings, the
same positive results as above only held for sufficiently large batch sizes: B � 16. Also, setting (*iii)
used the Adam optimizer (which is standard for Transformers); see Appendix D.1.3 for details.

Phase transitions in training curves. For almost all of the architectures, we find that that the
training curves exhibit phase transitions in terms of running time (and thus, in the online learning
setting, dataset size as well): long durations of seemingly no progress, followed by periods of rapid
decrease in the validation error. Strikingly, for architectures (v) and (vi), this plateau is absent: the
error in the initial phase appears to decrease with a linear slope. See Appendix C.8 for more plots.

3.2 Random search or hidden progress?

The remainder of this paper seeks to answer the question: “By what mechanism does deep learning
solve these emblematic computationally-hard optimization problems?”

A natural hypothesis would be that SGD somehow implicitly performs Monte Carlo random search,
“bouncing around” the loss landscape in the absence of a useful gradient signal. Upon closer inspection,
several empirical observations clash with this hypothesis:

• Scaling of convergence times: Without an explicit sparsity prior in the architecture or initializa-
tion, it is unclear how to account for the runtimes observed in experiments, which adapt to the
sparsity k. The initializations, which certainly do not prefer sparse functions7, are close to the
correct solutions with probability 2�⌦(n) ⌧ n�k.

• No early convergence: Over a large number of random trials, no copies of this randomized
algorithm get “lucky” (i.e. solve the problem in significantly fewer than the median number
of iterations); see Figure 2 (left). The success times of random exhaustive search would
be distributed as Geom(1/

�n
k

�
), whose probability mass is highest at t = 0 and decreases

monotonically with t.
• Sensitivity to initialization, not SGD samples: Running these training setups over multiple

stochastic batches from a common initialization, we find that loss curves and convergence times
are highly correlated with the architecture’s random initialization, and are quite concentrated
conditioned on initialization; see Figure 2 (center).

• Elbows in the scaling curves: For larger n, the power-law scaling ceases to hold: the exponent
worsens (see Figure 2 (right), as well as the discussion in Appendix C.2). This would not be
true for random exhaustive search.

Even these observations, which do not probe the internal state of the algorithm, suggest that exhaustive
search is an insufficient picture of the training dynamics, and a different mechanism is at play.

4 Theoretical analyses

4.1 Provable emergence of the parity indices in high-precision gradients

We now provide a theoretical account for the success of SGD in solving the (n, k)-parity problem.
Our main theoretical observation is that, in many cases, the population gradient of the weights at
initialization contains enough “information” for solving the parity problem. That is, given an accurate
enough estimate of the initial gradient (by e.g. computing the gradient over a large enough batch
size), the relevant subset S can be found.

7Indeed, under all standard architectures and initialization, the probability that a random network is ⌦(1)-
correlated with a sparse parity would be 2�⌦(n), since with that probability 1� o(1) of the total influence would
be accounted by the n� k irrelevant features.
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Figure 3: Hidden progress when learning parities with neural networks. Left, center: Black-box
losses and accuracies exhibit a long plateau and sharp phase transition (top), hiding gradual progress
in the SGD iterates (bottom). Right: A hidden progress measure which distinguishes gradual feature
amplification (top) from training on noise (bottom).

As a warm-up example, consider training a single ReLU neuron by(x;w) = (w>x)+ with the
correlation loss `(y, by) = �yby over DS , from an all-ones initialization w = [1 . . . 1] 2 Rn. While
a single neuron cannot express the parity, we observe that the correct subset can be extracted from the
population gradient at initialization:

E
(x,y)⇠DS

[rwi`(y, by(x;w))] = E
(x,y)⇠DS

⇥
�yrwi(w

>x)+
⇤
= E

(x,y)⇠DS

"
��Sxi

"
X

i

xi � 0

##
.

The key insight is that each coordinate in the above expression is a correlation between a parity
and the function x 7! � [

P
i xi � 0], and thus a Fourier coefficient of this Boolean function. At

each relevant coordinate (i 2 S), the population gradient is the order-(k � 1) Fourier coefficient
S \ {i}; for the irrelevant features (i 62 S), it is instead the order-(k + 1) coefficient S [ {i}. All we
require is a detectable gap between these quantities. Formally, letting f(x;w) = �(w>x), letting
bf(S) := E [f(x)�S(x)] denote the Fourier coefficient of f at S, we isolate the desired property:
Definition 1 (Fourier gap). For a function f : {±1}n ! R and S ✓ [n] of size k, we say that f
has a �-Fourier gap at S if, for every (k � 1)-element subset S� ⇢ S and (k + 1)-element superset
S+ � S, it holds that | bf(S�)| � | bf(S+)|+ �.

For the all-ones initialization, observe [
P

i xi � 0] =
1+sign(

P
i xi)

2 is just an affine transformation
of the majority function of x, for which a Fourier gap can be established, with � = ⇥(n�(k�1)/2).
This arises from closed-form formulas for the Fourier spectrum of majority (see Lemma 2 in
Appendix B.1), a landmark result from the harmonic analysis of Boolean functions (Titsworth, 1962;
O’Donnell, 2014). Thus, the coordinates in S can be recovered from eO(1/�2) = eO(nk�1) samples;
see Proposition 9 in Appendix B.2 for a formal argument.

Carefully extending this insight, we obtain an end-to-end convergence result for ReLU-activation
MLP networks with a particular symmetric choice of ±1 initialization, trained with the hinge loss:
Theorem 4 (SGD on MLPs learns sparse parities). Let ✏ 2 (0, 1). Let k � 2 an even integer, and let
n = ⌦(k4 log(nk/✏)) be an odd integer. Then, there exist a random initialization scheme, ⌘t, and
�t such that for every S ✓ [n] of size k, SGD on a ReLU MLP of width r = ⌦(2kk log(k/✏)), with
batch size B = ⌦(nk log(n/✏)) on DS with the hinge loss, outputs a network f(x; ✓t) with expected8

loss E [`(f(x; ✓t), y)]  ✏ in at most O(k3r2n/✏2) iterations.

This does not capture the full range of settings in which we empirically observe successful conver-
gence. First, it requires a sign vector initialization, while we observe convergence with other random
initialization schemes (namely, uniform and Gaussian). Second, it requires the batch size to scale with

8The expectation is over the randomness of initialization, training and sampling (x, y) ⇠ DS .
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n⌦(k)9, while we also obtain positive results when B is small (even B = 1). Analogous statements
for these cases (as well as other activations and losses) would require Fourier gaps for population
gradient functions other than majority; lower bounds on the degree-(k � 1) coefficients (“Fourier
anti-concentration”) are particularly elusive in the literature, and we leave it as an open challenge to
establish them in more general settings. We provide preliminary empirics in Appendix C.1, suggesting
that the Fourier gaps in our empirical settings are sufficiently large.10

Low width necessitates feature learning. We note that in the low-width (non-overparameterized)
regimes considered in this work, no fixed kernel (including the neural tangent kernel (Jacot et al.,
2018), whose dimensionality is the network’s parameter count) can solve the sparse parity problem.
The following is a consequence of results in (Kamath et al., 2020; Malach and Shalev-Shwartz, 2022):
Theorem 5 (Low-width NTK cannot fit all parities). Let  : {±1}n ! RD be any D-dimensional
embedding with supx k (x)k2  1. Let R, ✏ > 0, and let ` denote the 0-1 loss or hinge loss. If
DR2 < ✏2 ·

�n
k

�
, then there exists some S ✓ [n] of size k such that

inf
kwkR

E
(x,y)⇠DS

⇥
`( (x)>w, y)

⇤
> 1� ✏.

Thus, our low-width results lie outside the NTK regime, which requires far larger models (size n⌦(k))
to express parities. However, we note that better sample complexity bounds are possible in the NTK
regime, with an algorithm more similar to standard SGD (see (Telgarsky, 2022) and Appendix A.3).

4.2 Disjoint-PolyNet: exact trajectory analysis for an idealized architecture

In this section, we present an architecture (a version of PolyNets (xv)) which empirically exhibits
similar behavior to MLPs and bypasses the difficulty of analyzing Fourier gaps. The disjoint-
PolyNet takes a product over k linear functions of an equal-sized11 partition P1, . . . , Pk of the input
coordinates: f(x;w1:k) :=

Qk
i=1hwi, xPii. As noted in the Section 1.2, this is equivalent to a tree

parity machine, with real-valued (instead of ±1) outputs.

This architecture also requires us to assume that the set S of size k in the (n, k)-parity problem
is selected such that exactly one index belongs to each disjoint partition, that is, for all i 2 [k],
S \ Pi = 1. We refer to this problem as the (n, k)-disjoint parity problem. Note that there are still
(n0)k = (n/k)k different possibilities for set S under this restriction. For fixed k, these represent a
constant fraction of the

�n
k

�
⇡ (ne/k)k (by Stirling’s approximation) possibilities for S in the general

non-disjoint case.

Consider training a disjoint-PolyNet w.r.t. the correlation loss. Without loss of generality, assume
that each relevant coordinate in S is the first element Pi. Then, the population gradient is non-zero
only at indices i 2 S:

gi(w1:k) = E [rwi`(f(x;w1:k), y)] = �E

2

4y

0

@
Y

j 6=i

hwj , xPj i

1

AxPi

3

5 = �

0

@
Y

j 6=i

wj,1

1

A e1.

This allows us to analyze the gradient flow dynamics of the disjoint-PolyNet, without needing to
establish Fourier gaps. For each i 2 [k], in this section we treat wi as a function from R�0 ! Rn0

which satisfies the following differential equation: ẇi = �gi(w1:k(t)). For clarity of exposition,
assume all-ones initialization.12 Then, all of the relevant weights {wi,1 : i 2 [k]} follow the
same trajectory. By analyzing the resulting differential equations, we can formally exhibit “phase
transition”-like behavior in the fully deterministic gradient flow setting.
Theorem 6 (Loss plateau for gradient flow on disjoint-PolyNets). Suppose k � 3. Let T (✏) denote
the smallest time at which the error is at most ✏. Then,

T (0.49)

T (0)
� 1�O

⇣
(n0)1�k/2

⌘
.

9In fact, at this batch size, the correct parity indices emerge in a single SGD step.
10Interestingly, we observe that the Fourier gap tends to increase over the course of training. This is not

captured by our current theoretical analysis.
11We assume for simplicity that n is divisible by k.
12Results for Bernoulli and Gaussian initializations are similar, and can be found in the appendix.
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Figure 4: Parity as a sandbox for understanding the effects of model size and dataset size. Left:
Success times vs. network width r on a fixed (40, 3)-parity task: in accordance with the theory,
parallelization experiences diminishing returns (unlike expected success times for random search,
shown in green). Underparameterized models (r = 1, 2) were considered successful upon reaching
55% accuracy. Right: Training curves where only the sample size m is varied. The two center panels
display “grokking”: a large gap between the time to zero train error vs. zero test error.

Informally, the network takes much longer to reach slightly-better-than-trivial accuracy than it takes
to go from slightly better than trivial to perfect accuracy. Returning to discrete time, we also analyze
the trajectory of disjoint-PolyNets trained with online SGD at any batch size, confirming that a neural
network can learn k-sparse disjoint parities within nO(k) iterations.
Theorem 7 (SGD on disjoint-PolyNets learns disjoint parities). Suppose we train a disjoint-PolyNet,
initialized as above, with online SGD. Then there exists an adaptive learning rate schedule such that
for any ✏ > 0, with probability 0.99, the error falls below ✏ within Õ

�
(n0)(2k�1) log(1/✏)

�
steps.

Extended versions of these theorems, along with proofs, can be found in Appendix B.3.

5 Hidden progress: discussion and additional experiments

So far, we have shown that sparse parity learning provides an idealized setting in which neural
networks successfully learn sparse combinatorial features, with a mechanism of continual progress
hiding behind discontinuous training curves. In this section, we outline preliminary explorations
on a broader range of interesting phenomena which arise in this setting. Details are provided in
Appendix C, while more systematic investigations are deferred to future work.

Hidden progress measures for learning parities. The theoretical and (black-box) empirical results
suggest that SGD does not learn parities via the memoryless process of random exhaustive search.
This suggests the existence of progress measures: scalar quantities which are functions of the training
algorithm’s state (i.e. the model weights wt) and are predictive of the time to successful convergence.
We provide some white-box investigations which further support the hypothesis of hidden progress,
by examining the gradual improvement in quantities other than the training loss. In Appendix C.1, we
directly plot the Fourier gaps of the population gradient, as a function of t, finding that they are large
(within a small constant factor of those of majority) in practice. In Figure 3 and Appendix C.3, we
examine the weight movement norm ⇢(w0:t) := kwt � w0k1 to reveal hidden progress, motivated
by the fact that wt � w0 is a linearized estimate for the initial population gradient.

Roles of overparameterization vs. oversampling. An interesting consequence of our analysis
is that it illuminates scaling behaviors with respect to a third fundamental resource parameter: model
size, which we study in terms of network width r. If SGD operated by a “random search” mechanism,
one would expect width to provide a parallel speedup. Instead, we find that SGD sequentially
amplifies progress. The sharp lower tails in Figure 2 (left) imply that running r identical copies of
SGD does not give (1/r)⇥ speedups; more directly, in Appendix C.4 (previewed in Figure 4 (left)),
we find that convergence times for sparse parities empirically plateau at large model sizes.

Emergence of grokking in the finite-sample (multi-pass) setting. Our main results are presented
in the online learning setting (fresh minibatches from DS at each iteration). While this mitigates the
confounding factor of overfitting, it couples the resources of training time and independent samples
in a suboptimal way, due to the computational-statistical gap for parity learning. In Appendix C.5,
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we find empirically that minibatch SGD (with weight decay) can learn sparse parities, even with
smaller sample sizes m⌧ nk. We reliably observe the grokking phenomenon (Power et al., 2022):
an initial overfitting phase, then a delayed phase transition in the generalization error; see the two
center panels of Figure 4 (right). These results complement and corroborate the findings of Nanda
and Lieberum (2022), who analyze the hidden progress of Transformers trained on arithmetic tasks
(a setting which also exhibits grokking).

Deeper networks. It is a significant challenge (and generally outside the scope of this work)
to understand the interactions between network depth and computational/statistical efficiency. In
Appendix C.7, we show that learning parities with deeper polynomial-activation MLPs comprises
a simple counterexample to the “deep only works if shallow is good” principle of Malach and
Shalev-Shwartz (2019): a deep network can get near-perfect accuracy, even when greedy layer-wise
training (e.g. (Belilovsky et al., 2019)) cannot beat trivial performance. By providing positive theory
and empirics which elude these simplified explanations of SGD, we hope to point the way to a more
complete understanding of learning dynamics in the challenging cases where no apparent progress is
made for extended periods of time.

6 Conclusion

This work puts forward sparse parity learning as an elementary test case to explore the puzzling
features of the role of computational (as opposed to statistical) resources in deep learning. In particular,
we have shown that a variety of neural architectures solve this combinatorial search problem, with a
number of computational steps nearly matching the sparsity-dependent SQ lower bound. Furthermore,
we have shown that despite abrupt phase transitions in the loss and accuracy curves, SGD works by
gradually amplifying the sparse features “under the hood”.

Even in this simple setting, there are several open experimental and theoretical questions. This work
largely focuses on the online learning case, which couples training iterations with fresh i.i.d. samples.
We believe it would be instructive to investigate parity learning when the three resources of samples,
time, and model size are scaled separately. Some very preliminary findings along these lines are
presented in Section 3. It is an open problem to extend our theoretical results to the small-batch
setting, as well as to the full range of architectures and losses in our experiments. Resolving these
questions would require a better understanding of the anti-concentration behavior of Boolean Fourier
coefficients, which is much less studied than the analogous concentration phenomena.

Another important follow-up direction is understanding the extent to which these insights extend from
parity learning to more complex (including real-world) combinatorial problem settings, as well as
the extent to which non-synthetic tasks (in, e.g., natural language processing and program synthesis)
embed within them parity-like subtasks of exhaustive combinatorial search. We hope that our results
will lead to further progress towards understanding and improving the optimization dynamics behind
the recent slew of dramatic empirical successes of deep learning in these types of domains.

Broader impact. This work seeks to contribute to the foundational understanding of computational
scaling behaviors in deep learning. Our theoretical and empirical analyses are in a heavily-idealized
synthetic problem setting. Hence, we see no direct societal impacts of the results in this study.

Acknowledgements. We would like to thank Lenka Zdeborová for providing us with references to
the statistical physics literature on phase transitions in the learning curves of neural networks, and
Matus Telgarsky for bringing to our attention the better sample complexity guarantees of 2-sparse
parity learning in the NTK regime. Sham Kakade acknowledges funding from the Office of Naval
Research under award N00014-22-1-2377.
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