
Hidden Progress in Deep Learning:
SGD Learns Parities Near the Computational Limit

Boaz Barak
Harvard University

Benjamin L. Edelman
Harvard University

Surbhi Goel
Microsoft Research &

University of Pennsylvania

Sham Kakade
Harvard University

Eran Malach
Hebrew University of Jerusalem

Cyril Zhang
Microsoft Research

b@boazbarak.org, bedelman@g.harvard.edu, surbhig@cis.upenn.edu
sham@seas.harvard.edu, eran.malach@mail.huji.ac.il, cyrilzhang@microsoft.com

Abstract

There is mounting evidence of emergent phenomena in the capabilities of deep
learning methods as we scale up datasets, model sizes, and training times. While
there are some accounts of how these resources modulate statistical capacity, far
less is known about their effect on the computational problem of model training.
This work conducts such an exploration through the lens of learning a k-sparse
parity of n bits, a canonical discrete search problem which is statistically easy
but computationally hard. Empirically, we find that a variety of neural networks
successfully learn sparse parities, with discontinuous phase transitions in the
training curves. On small instances, learning abruptly occurs at approximately
nO(k) iterations; this nearly matches SQ lower bounds, despite the apparent lack
of a sparse prior. Our theoretical analysis shows that these observations are not
explained by a Langevin-like mechanism, whereby SGD “stumbles in the dark”
until it finds the hidden set of features (a natural algorithm which also runs in nO(k)

time). Instead, we show that SGD gradually amplifies the sparse solution via a
Fourier gap in the population gradient, making continual progress that is invisible
to loss and error metrics.

1 Introduction

In deep learning, performance improvements are frequently observed upon simply scaling up re-
sources (such as data, model size, and training time). While these improvements are often continuous
in terms of these resources, some of the most surprising recent advances in the field have been emer-
gent capabilities: at a certain threshold, behavior changes qualitatively and discontinuously. Through
a statistical lens, it is well-understood that larger models, trained with more data, can fit more complex
and expressive functions. However, far less is known about the analogous computational question:
how does the scaling of these resources influence the success of gradient-based optimization?

These phase transitions cannot be explained via statistical capacity alone: they can appear even when
the amount of data remains fixed, with only model size or training time increasing. A timely example
is the emergence of reasoning and few-shot learning capabilities when scaling up language models
(Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Hoffmann et al., 2022); Srivastava
et al. (2022) identify various tasks which language models are only able to solve if they are larger
than a critical scale. Power et al. (2022) give examples of discontinuous improvements in population
accuracy (“grokking”) when running time increases, while dataset and model sizes remain fixed.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: Main empirical findings at a glance. A variety of neural networks, with standard training
and initialization, can solve the (n, k)-parity learning problem, with a number of iterations scaling as
nO(k). Left: Training curves under various algorithmic choices (architecture, batch size, learning
rate) on the (n = 50, k = 3)-parity problem. Right: Median convergence times for small (n, k).

In this work, we analyze the computational aspects of scaling in deep learning, in an elementary
synthetic setting which already exhibits discontinuous improvements. Specifically, we consider the
supervised learning problem of learning a sparse parity: the label is the parity (XOR) of k ⌧ n
bits in a random length-n binary string. This problem is computationally difficult for a range of
algorithms, including gradient-based (Kearns, 1998) and streaming (Kol et al., 2017) algorithms. We
focus on analyzing the resource measure of training time, and demonstrate that the loss curves for
sparse parities display a phase transition across a variety of architectures and hyperparameters (see
Figure 1, left). Strikingly, we observe that SGD finds the sparse subset (and hence, reaches 0 error)
with a variety of activation functions and initialization schemes, even with no over-parameterization.

A natural hypothesis to explain SGD’s success in learning parities, with no visible progress in error
and loss for most of training, would be that it simply “stumbles in the dark”, performing random
search for the unknown target (e.g. via stochastic gradient Langevin dynamics). If that were the
case, we might expect to observe a convergence time of 2⌦(n), like a naive search over parameters or
subsets of indices. However, Figure 1 (right), already provides some evidence against this “random
search” hypothesis: the convergence time adapts to the sparsity parameter k, with a scaling of nO(k)

on small instances. Notably, such a convergence rate implies that SGD is closer to achieving the
optimal computation time among a natural class of algorithms (namely, statistical query algorithms).

Through an extensive empirical analysis of the scaling behavior of a variety of models, as well as
theoretical analysis, we give strong evidence against the “stumbling in the dark” viewpoint. Instead,
there is a hidden progress measure under which SGD is steadily improving. Furthermore, and perhaps
surprisingly, we show that SGD achieves a computational runtime much closer to the optimal SQ
lower bound than simply doing (non-sparse) parameter search. More generally, our investigations
reveal a number of notable phenomena regarding the dependence of SGD’s performance on resources:
we identify phase transitions when varying data, model size, and training time.

1.1 Our contributions

SGD learns sparse parities. It is known from SQ lower bounds that with a constant noise level,
gradient descent on any architecture requires at least n⌦(k) computational steps to learn k-sparse
n-dimensional parities (for background, see Appendix A). We first show a wide variety of positive
empirical results, in which neural networks successfully solve the parity problem in a number of
iterations which scales near this computational limit:
Empirical Finding 1. For all small instances (n 30, k 4) of the sparse parity problem,
architectures A 2 {2-layer MLPs, Transformers1, sinusoidal/oscillating neurons, PolyNets2}, initial-
izations in {uniform, Gaussian, Bernoulli}, and batch sizes 1 B 1024, SGD on A solves the
(n, k)-sparse parity problem (w.p. � 0.2) within at most c · n↵k steps, for small constants c,↵.

1With a smaller range of hyperparameters.
2A non-standard architecture introduced in this work; see Section 3 for the definition.

2

Theoretical analyses of sparse feature emergence. Our empirical results suggest that, in a number
of computational steps matching the SQ limit, SGD is able to solve the parity problem and identify
the influential coordinates, without an explicit sparse prior. We give a theoretical analysis which
validates this claim.
Informal Theorem 2. On 2-layer MLPs of width 2⇥(k), and with batch size nO(k), SGD converges
with high probability to a solution with at most ✏ error on the (n, k)-parity problem in at most
2O(k) · poly(1/✏) iterations.

We also present a stronger analysis for an idealized architecture (which we call the disjoint-PolyNet),
which allows for any batch size, and captures the phase transitions observed in the error curves.
Informal Theorem 3. On disjoint-PolyNets, SGD (with any batch size B � 1) converges with high
probability to a solution with at most ✏ error on the (n, k)-parity problem in at most nO(k) · log(1/✏)
iterations. Continuous-time gradient flow exhibits a phase transition: it spends a 1� o(1) fraction of
its time before convergence with error � 49%.

Our theoretical and empirical results hold in non-overparameterized regimes (including with a width-1
sinusoidal neuron), in which no fixed kernel, including the neural tangent kernel (NTK) (Jacot et al.,
2018), is sufficiently expressive to fit all sparse parities with a large margin. Thus, our findings
comprise an elementary example of combinatorial feature learning: SGD can only successfully
converge by learning a low-width sparse representation.

Further empirical explorations. Building upon our core positive results, we provide a wide variety
of preliminary experiments, showing sparse parity learning to be a versatile testbed for understanding
the challenges and surprises in solving combinatorial problems with neural networks. These include
quantities which reveal the continual hidden progress behind uninformative training curves (as
predicted by the theory), experiments at small sample sizes which exhibit grokking (Power et al.,
2022), as well as an example where greedy layer-wise learning is impossible but end-to-end SGD can
learn the layers jointly.

1.2 Related work

We present the most directly related work on feature learning, and learning parities with neural nets.
A broader discussion can be found in Appendix A.3.

SGD and feature learning. Theoretical analysis of gradient descent on neural networks is no-
toriously hard, due to the non-convex nature of the optimization problem. That said, it has been
established that in some settings, the dynamics of GD keep the weights close to their initialization,
thus behaving like convex optimization over the Neural Tangent Kernel (see, for example, (Jacot et al.,
2018; Allen-Zhu et al., 2019; Du et al., 2018)). In contrast, it has been shown that in various tasks,
moving away from the fixed features of the NTK is essential for the success of neural networks trained
with GD (for example (Yehudai and Shamir, 2019; Allen-Zhu and Li, 2019; Wei et al., 2019) and
the review in (Malach et al., 2021)). These results demonstrate that feature learning is an important
part of the GD optimization process. Our work also focuses on a setting where feature learning is
essential for the target task. In our theoretical analysis, we show that the initial population gradient
encodes the relevant features for the problem. The importance of the first gradient step for feature
learning has been recently studied in (Ba et al., 2022).

Learning parities with neural networks. The problem of learning parities using neural networks
has been investigated in prior works from various perspectives. It has been demonstrated that parities
are hard for gradient-based algorithms, using similar arguments as in the SQ analysis (Shalev-Shwartz
et al., 2017; Abbe and Sandon, 2020). One possible approach for overcoming the computational
hardness is to make favorable assumptions on the input distribution. Indeed, recent works show that
under various assumptions on the input distribution, neural networks can be efficiently trained to
learn parities (XORs) (Daniely and Malach, 2020; Shi et al., 2021; Frei et al., 2022; Malach et al.,
2021). In contrast to these results, this work takes the approach of intentionally focusing on a hard
benchmark task, without assuming that the distribution has some favorable (namely, non-uniform)
structure. This setting allows us to probe the performance of deep learning at a known computational
limit. Notably, the work of Andoni et al. (2014) provides analysis for learning polynomials (and in

3

particular, parities) under the uniform distribution. However, their main results require a network
of size nO(k) (i.e., extremely overparameterized network), and provides only partial theoretical and
empirical evidence for the success of smaller networks. Studying a related subject, some works have
shown that neural networks display a spectral bias, learning to fit low-frequency coefficients before
high-frequency ones (Rahaman et al., 2019; Cao et al., 2019).

2 Preliminaries

We provide an expanded discussion of background and related work in Appendix A.

Sparse parities. For integer n � 1 and non-empty set S ✓ [n], the (n, S)-parity function �S :
{±1}n ! {±1} is defined as �S(x) =

Q
i2S xi. We define the (n, S)-parity distribution DS as the

joint distribution over (x, y)3 where x is drawn from Unif({±1}n), the uniform distribution over
random length-n sign vectors, and y := �S(x) is the product of the inputs at the indices given by
the “relevant features” S (thus, ±1, depending on whether the number of relevant �1 inputs is even
or odd). We define the (n, k)-parity learning problem as the task of recovering the S using samples
from DS , where S is chosen at random from

�[n]
k

�
.

A key fact about parities is that they are orthogonal under the correlation inner product: for S0 ✓ [n],

E
x⇠Unif({±1}n)

[�S(x)�S0(x)] = E
(x,y)⇠DS

[�S0(x) y] =

⇢
1 S0 = S
0 otherwise

.

That is, a learner who guesses indices S0 cannot use correlations (equivalently, the accuracy of the
hypothesis �S0) as feedback to reveal which indices in S0 are correct, unless S0 is exactly the correct
subset. This notion of indistinguishability leads to a computational lower bound in the statistical
query (SQ) model (Kearns, 1998): ⌦(nk) constant-noise queries are necessary, which is far greater
than the statistical limit of ⇥(log

�n
k

�
) ⇡ k log n samples. The hardness of parity has been used

to derive computational hardness results for other settings, like agnostically learning halfspaces
(Klivans and Kothari, 2014) and MLPs (Goel et al., 2019). Beyond the restricted computational
model of statistical queries, noiseless parities can be learned in poly(n) time via Gaussian elimination.
However, learning sparse noisy parities, even at a very small noise level (i.e., o(1) or n��), is believed
to inherently require n⌦(k) computational steps.4 In all, learning sparse parities is a well-studied
combinatorial problem which exemplifies the computational difficulty of learning a joint dependence
on multiple relevant features.

Notation for neural networks and training. Our main results are presented in the online learning
setting, with a stream of i.i.d. batches of examples. At each iteration t = 1, . . . , T , a learning
algorithm A receives a batch of B examples {(xt,i, yt,i)}Bi=1 drawn i.i.d. from DS , then outputs a
classifier byt : {±1}n ! {±1}. We say that A solves the parity task in t steps (with error ✏) if

Pr
(x,y)⇠DS

[byt(x) = y] � 1� ✏.

We will focus on the case that byt = sign(f(x; ✓t)) for some parameters ✓t in a continuous domain ⇥
and for a continuous function f : {±1}n ⇥ ⇥ ! R5, updated with the ubiquitous online learning
algorithm of gradient descent (GD), whose update rule is given by

✓t+1 (1� �t)✓t � ⌘t ·r✓

1

B

BX

i=1

`(yt,i, f(xt,i; ✓t))

!
, (1)

for a loss function ` : {±1}⇥ R! R, learning rate schedule {⌘t}Tt=1, and weight decay schedule
{�t}Tt=1

6. The initialization ✓0 is drawn randomly from a chosen distribution.
3Our theoretical analyses and experiments can tolerate noisy parities, that is, random flipping of the label;

see Appendix C.6. For ease of presentation, we state the noiseless setting in the main paper.
4This was first explicitly conjectured by Alekhnovich (2003), and has been the basis for several cryptographic

schemes (e.g., (Ishai et al., 2008; Applebaum et al., 2009, 2010; Bogdanov et al., 2019)).
5When f(x; ✓) = 0 in practice (e.g. with sign initialization), we break the tie arbitrarily. We ensure in the

theoretical analysis that this does not happen.
6We allow different layers to have different learning rate and weight decay schedules.

4

Figure 2: Black-box observations on the training dynamics. Left: Histograms of convergence times
over 106 random trials, with heavy upper tails but no observed successes near t = 0 (unlike random
search). Center: Loss curves (and thus, convergence time) depend heavily on initialization, not the
randomness of SGD; B = 128, ⌘ = 0.01 are shown here. Right: The power-law exponent (↵ such
that tc / n↵) eventually worsens on larger problem instances.

3 Empirical findings

3.1 SGD on neural networks learns sparse parities

The central phenomenon of study in this work is the empirical observation that neural networks, with
standard initialization and training, can solve the (n, k)-parity problem in a number of iterations
scaling as nO(k) on small instances. We observed robust positive results for randomly-initialized
SGD on the following architectures, indexed by Roman numerals:

• 2-layer MLPs: ReLU (�(z) = (z)+) or polynomial (�(z) = zk) activation, in a wide variety
of width regimes r � k. Settings (i), (ii), (iii) (resp. (iv), (v), (vi)) use r = {10, 100, 1000}
ReLU (resp. polynomial) activations. We also consider r = k (exceptional settings (*i), (*ii)),
the minimum width for representing a k-wise parity for both activations.

• 1-neuron networks: Next, we consider non-standard activation functions � which allow a
one-neuron architecture f(x;w) = �(w>x) to realize k-wise parities. The constructions stem
from letting w⇤ =

P
i2S ei, and constructing �(·) to interpolate (the appropriate scaling of)

k�w⇤>x
2 mod 2 with a piecewise linear k-zigzag activation (vii), or a degree-k polynomial (viii).

Going a step further, a single1-zigzag (ix) or sinusoidal (x) neuron can represent all k-wise
parities. In settings (xi), (xii), (xiii), (xiv), we remove the second trainable layer (setting u = 1).
We find that wider architectures with these activations also train successfully.

• Transformers: There is growing interest in using parity as a benchmark for combinatorial
function learning, long-range dependency learning, and length generalization in Transformers
(Lu et al., 2021; Edelman et al., 2021; Hahn, 2020; Anil et al., 2022; Liu et al., 2022). Motivated
by these recent theoretical and empirical works, we consider a simplified specialization of the
Transformer architecture to this sequence classification problem. This is the less-robust setting
(*iii); the architecture and optimizer are described in Appendix D.1.3.

• PolyNets: Our final setting (xv) is the PolyNet, a slightly modified version of the parity machine
architecture. Parity machines have been studied extensively in the statistical mechanics of ML
literature (see the related work section) as well as in a line of work on ‘neural cryptography’
(Rosen-Zvi et al., 2002). A parity machine outputs the sign of the product of k linear functions of
the input. A PolyNet simply outputs the product itself. Both architectures can clearly realize k-
sparse parities. The PolyNet architecture was originally motivated by the search for an idealized
setting where an end-to-end optimization trajectory analysis is tractable (see Section 4.1); we
found in these experiments that this architecture trains very stably and sample-efficiently.

Robust space of positive results. All of the networks listed above were observed to successfully
learn sparse parities in a variety of settings. We summarize our findings as follows: for all com-
binations of n 2 {10, 20, 30}, k 2 {2, 3, 4}, batch sizes B 2 {1, 2, 4, . . . , 1024}, initializations
{uniform, Gaussian, Bernoulli}, loss functions {hinge, square, cross entropy}, and architecture
configurations {(i), (ii), . . . , (xv)}, SGD solved the parity problem (with 100% accuracy, validated

5

on a batch of 213 samples) in at least 20% of 25 random trials, for at least one choice of learn-
ing rate ⌘ 2 {0.001, 0.01, 0.1, 1}. The models converged in tc c · n↵k 105 steps, for small
architecture-dependent constants c,↵ (see Appendix C). Figure 1 (left) shows some representative
training curves.

Less robust configurations. Settings (*i) and (*ii), where the MLP just barely represents a k-sparse
parity, and the Transformer setting (*iii), are less robust to small batch sizes. In these settings, the
same positive results as above only held for sufficiently large batch sizes: B � 16. Also, setting (*iii)
used the Adam optimizer (which is standard for Transformers); see Appendix D.1.3 for details.

Phase transitions in training curves. For almost all of the architectures, we find that that the
training curves exhibit phase transitions in terms of running time (and thus, in the online learning
setting, dataset size as well): long durations of seemingly no progress, followed by periods of rapid
decrease in the validation error. Strikingly, for architectures (v) and (vi), this plateau is absent: the
error in the initial phase appears to decrease with a linear slope. See Appendix C.8 for more plots.

3.2 Random search or hidden progress?

The remainder of this paper seeks to answer the question: “By what mechanism does deep learning
solve these emblematic computationally-hard optimization problems?”

A natural hypothesis would be that SGD somehow implicitly performs Monte Carlo random search,
“bouncing around” the loss landscape in the absence of a useful gradient signal. Upon closer inspection,
several empirical observations clash with this hypothesis:

• Scaling of convergence times: Without an explicit sparsity prior in the architecture or initializa-
tion, it is unclear how to account for the runtimes observed in experiments, which adapt to the
sparsity k. The initializations, which certainly do not prefer sparse functions7, are close to the
correct solutions with probability 2�⌦(n) ⌧ n�k.

• No early convergence: Over a large number of random trials, no copies of this randomized
algorithm get “lucky” (i.e. solve the problem in significantly fewer than the median number
of iterations); see Figure 2 (left). The success times of random exhaustive search would
be distributed as Geom(1/

�n
k

�
), whose probability mass is highest at t = 0 and decreases

monotonically with t.
• Sensitivity to initialization, not SGD samples: Running these training setups over multiple

stochastic batches from a common initialization, we find that loss curves and convergence times
are highly correlated with the architecture’s random initialization, and are quite concentrated
conditioned on initialization; see Figure 2 (center).

• Elbows in the scaling curves: For larger n, the power-law scaling ceases to hold: the exponent
worsens (see Figure 2 (right), as well as the discussion in Appendix C.2). This would not be
true for random exhaustive search.

Even these observations, which do not probe the internal state of the algorithm, suggest that exhaustive
search is an insufficient picture of the training dynamics, and a different mechanism is at play.

4 Theoretical analyses

4.1 Provable emergence of the parity indices in high-precision gradients

We now provide a theoretical account for the success of SGD in solving the (n, k)-parity problem.
Our main theoretical observation is that, in many cases, the population gradient of the weights at
initialization contains enough “information” for solving the parity problem. That is, given an accurate
enough estimate of the initial gradient (by e.g. computing the gradient over a large enough batch
size), the relevant subset S can be found.

7Indeed, under all standard architectures and initialization, the probability that a random network is ⌦(1)-
correlated with a sparse parity would be 2�⌦(n), since with that probability 1� o(1) of the total influence would
be accounted by the n� k irrelevant features.

6

Figure 3: Hidden progress when learning parities with neural networks. Left, center: Black-box
losses and accuracies exhibit a long plateau and sharp phase transition (top), hiding gradual progress
in the SGD iterates (bottom). Right: A hidden progress measure which distinguishes gradual feature
amplification (top) from training on noise (bottom).

As a warm-up example, consider training a single ReLU neuron by(x;w) = (w>x)+ with the
correlation loss `(y, by) = �yby over DS , from an all-ones initialization w = [1 . . . 1] 2 Rn. While
a single neuron cannot express the parity, we observe that the correct subset can be extracted from the
population gradient at initialization:

E
(x,y)⇠DS

[rwi`(y, by(x;w))] = E
(x,y)⇠DS

⇥
�yrwi(w

>x)+
⇤
= E

(x,y)⇠DS

"
��Sxi

"
X

i

xi � 0

##
.

The key insight is that each coordinate in the above expression is a correlation between a parity
and the function x 7! � [

P
i xi � 0], and thus a Fourier coefficient of this Boolean function. At

each relevant coordinate (i 2 S), the population gradient is the order-(k � 1) Fourier coefficient
S \ {i}; for the irrelevant features (i 62 S), it is instead the order-(k + 1) coefficient S [{i}. All we
require is a detectable gap between these quantities. Formally, letting f(x;w) = �(w>x), letting
bf(S) := E [f(x)�S(x)] denote the Fourier coefficient of f at S, we isolate the desired property:
Definition 1 (Fourier gap). For a function f : {±1}n ! R and S ✓ [n] of size k, we say that f
has a �-Fourier gap at S if, for every (k � 1)-element subset S� ⇢ S and (k + 1)-element superset
S+ � S, it holds that | bf(S�)| � | bf(S+)|+ �.

For the all-ones initialization, observe [
P

i xi � 0] =
1+sign(

P
i xi)

2 is just an affine transformation
of the majority function of x, for which a Fourier gap can be established, with � = ⇥(n�(k�1)/2).
This arises from closed-form formulas for the Fourier spectrum of majority (see Lemma 2 in
Appendix B.1), a landmark result from the harmonic analysis of Boolean functions (Titsworth, 1962;
O’Donnell, 2014). Thus, the coordinates in S can be recovered from eO(1/�2) = eO(nk�1) samples;
see Proposition 9 in Appendix B.2 for a formal argument.

Carefully extending this insight, we obtain an end-to-end convergence result for ReLU-activation
MLP networks with a particular symmetric choice of ±1 initialization, trained with the hinge loss:
Theorem 4 (SGD on MLPs learns sparse parities). Let ✏ 2 (0, 1). Let k � 2 an even integer, and let
n = ⌦(k4 log(nk/✏)) be an odd integer. Then, there exist a random initialization scheme, ⌘t, and
�t such that for every S ✓ [n] of size k, SGD on a ReLU MLP of width r = ⌦(2kk log(k/✏)), with
batch size B = ⌦(nk log(n/✏)) on DS with the hinge loss, outputs a network f(x; ✓t) with expected8

loss E [`(f(x; ✓t), y)] ✏ in at most O(k3r2n/✏2) iterations.

This does not capture the full range of settings in which we empirically observe successful conver-
gence. First, it requires a sign vector initialization, while we observe convergence with other random
initialization schemes (namely, uniform and Gaussian). Second, it requires the batch size to scale with

8The expectation is over the randomness of initialization, training and sampling (x, y) ⇠ DS .

7

n⌦(k)9, while we also obtain positive results when B is small (even B = 1). Analogous statements
for these cases (as well as other activations and losses) would require Fourier gaps for population
gradient functions other than majority; lower bounds on the degree-(k � 1) coefficients (“Fourier
anti-concentration”) are particularly elusive in the literature, and we leave it as an open challenge to
establish them in more general settings. We provide preliminary empirics in Appendix C.1, suggesting
that the Fourier gaps in our empirical settings are sufficiently large.10

Low width necessitates feature learning. We note that in the low-width (non-overparameterized)
regimes considered in this work, no fixed kernel (including the neural tangent kernel (Jacot et al.,
2018), whose dimensionality is the network’s parameter count) can solve the sparse parity problem.
The following is a consequence of results in (Kamath et al., 2020; Malach and Shalev-Shwartz, 2022):
Theorem 5 (Low-width NTK cannot fit all parities). Let : {±1}n ! RD be any D-dimensional
embedding with supx k (x)k2 1. Let R, ✏ > 0, and let ` denote the 0-1 loss or hinge loss. If
DR2 < ✏2 ·

�n
k

�
, then there exists some S ✓ [n] of size k such that

inf
kwkR

E
(x,y)⇠DS

⇥
`((x)>w, y)

⇤
> 1� ✏.

Thus, our low-width results lie outside the NTK regime, which requires far larger models (size n⌦(k))
to express parities. However, we note that better sample complexity bounds are possible in the NTK
regime, with an algorithm more similar to standard SGD (see (Telgarsky, 2022) and Appendix A.3).

4.2 Disjoint-PolyNet: exact trajectory analysis for an idealized architecture

In this section, we present an architecture (a version of PolyNets (xv)) which empirically exhibits
similar behavior to MLPs and bypasses the difficulty of analyzing Fourier gaps. The disjoint-
PolyNet takes a product over k linear functions of an equal-sized11 partition P1, . . . , Pk of the input
coordinates: f(x;w1:k) :=

Qk
i=1hwi, xPii. As noted in the Section 1.2, this is equivalent to a tree

parity machine, with real-valued (instead of ±1) outputs.

This architecture also requires us to assume that the set S of size k in the (n, k)-parity problem
is selected such that exactly one index belongs to each disjoint partition, that is, for all i 2 [k],
S \ Pi = 1. We refer to this problem as the (n, k)-disjoint parity problem. Note that there are still
(n0)k = (n/k)k different possibilities for set S under this restriction. For fixed k, these represent a
constant fraction of the

�n
k

�
⇡ (ne/k)k (by Stirling’s approximation) possibilities for S in the general

non-disjoint case.

Consider training a disjoint-PolyNet w.r.t. the correlation loss. Without loss of generality, assume
that each relevant coordinate in S is the first element Pi. Then, the population gradient is non-zero
only at indices i 2 S:

gi(w1:k) = E [rwi`(f(x;w1:k), y)] = �E

2

4y

0

@
Y

j 6=i

hwj , xPj i

1

AxPi

3

5 = �

0

@
Y

j 6=i

wj,1

1

A e1.

This allows us to analyze the gradient flow dynamics of the disjoint-PolyNet, without needing to
establish Fourier gaps. For each i 2 [k], in this section we treat wi as a function from R�0 ! Rn0

which satisfies the following differential equation: ẇi = �gi(w1:k(t)). For clarity of exposition,
assume all-ones initialization.12 Then, all of the relevant weights {wi,1 : i 2 [k]} follow the
same trajectory. By analyzing the resulting differential equations, we can formally exhibit “phase
transition”-like behavior in the fully deterministic gradient flow setting.
Theorem 6 (Loss plateau for gradient flow on disjoint-PolyNets). Suppose k � 3. Let T (✏) denote
the smallest time at which the error is at most ✏. Then,

T (0.49)

T (0)
� 1�O

⇣
(n0)1�k/2

⌘
.

9In fact, at this batch size, the correct parity indices emerge in a single SGD step.
10Interestingly, we observe that the Fourier gap tends to increase over the course of training. This is not

captured by our current theoretical analysis.
11We assume for simplicity that n is divisible by k.
12Results for Bernoulli and Gaussian initializations are similar, and can be found in the appendix.

8

Figure 4: Parity as a sandbox for understanding the effects of model size and dataset size. Left:
Success times vs. network width r on a fixed (40, 3)-parity task: in accordance with the theory,
parallelization experiences diminishing returns (unlike expected success times for random search,
shown in green). Underparameterized models (r = 1, 2) were considered successful upon reaching
55% accuracy. Right: Training curves where only the sample size m is varied. The two center panels
display “grokking”: a large gap between the time to zero train error vs. zero test error.

Informally, the network takes much longer to reach slightly-better-than-trivial accuracy than it takes
to go from slightly better than trivial to perfect accuracy. Returning to discrete time, we also analyze
the trajectory of disjoint-PolyNets trained with online SGD at any batch size, confirming that a neural
network can learn k-sparse disjoint parities within nO(k) iterations.
Theorem 7 (SGD on disjoint-PolyNets learns disjoint parities). Suppose we train a disjoint-PolyNet,
initialized as above, with online SGD. Then there exists an adaptive learning rate schedule such that
for any ✏ > 0, with probability 0.99, the error falls below ✏ within Õ

�
(n0)(2k�1) log(1/✏)

�
steps.

Extended versions of these theorems, along with proofs, can be found in Appendix B.3.

5 Hidden progress: discussion and additional experiments

So far, we have shown that sparse parity learning provides an idealized setting in which neural
networks successfully learn sparse combinatorial features, with a mechanism of continual progress
hiding behind discontinuous training curves. In this section, we outline preliminary explorations
on a broader range of interesting phenomena which arise in this setting. Details are provided in
Appendix C, while more systematic investigations are deferred to future work.

Hidden progress measures for learning parities. The theoretical and (black-box) empirical results
suggest that SGD does not learn parities via the memoryless process of random exhaustive search.
This suggests the existence of progress measures: scalar quantities which are functions of the training
algorithm’s state (i.e. the model weights wt) and are predictive of the time to successful convergence.
We provide some white-box investigations which further support the hypothesis of hidden progress,
by examining the gradual improvement in quantities other than the training loss. In Appendix C.1, we
directly plot the Fourier gaps of the population gradient, as a function of t, finding that they are large
(within a small constant factor of those of majority) in practice. In Figure 3 and Appendix C.3, we
examine the weight movement norm ⇢(w0:t) := kwt � w0k1 to reveal hidden progress, motivated
by the fact that wt � w0 is a linearized estimate for the initial population gradient.

Roles of overparameterization vs. oversampling. An interesting consequence of our analysis
is that it illuminates scaling behaviors with respect to a third fundamental resource parameter: model
size, which we study in terms of network width r. If SGD operated by a “random search” mechanism,
one would expect width to provide a parallel speedup. Instead, we find that SGD sequentially
amplifies progress. The sharp lower tails in Figure 2 (left) imply that running r identical copies of
SGD does not give (1/r)⇥ speedups; more directly, in Appendix C.4 (previewed in Figure 4 (left)),
we find that convergence times for sparse parities empirically plateau at large model sizes.

Emergence of grokking in the finite-sample (multi-pass) setting. Our main results are presented
in the online learning setting (fresh minibatches from DS at each iteration). While this mitigates the
confounding factor of overfitting, it couples the resources of training time and independent samples
in a suboptimal way, due to the computational-statistical gap for parity learning. In Appendix C.5,

9

we find empirically that minibatch SGD (with weight decay) can learn sparse parities, even with
smaller sample sizes m⌧ nk. We reliably observe the grokking phenomenon (Power et al., 2022):
an initial overfitting phase, then a delayed phase transition in the generalization error; see the two
center panels of Figure 4 (right). These results complement and corroborate the findings of Nanda
and Lieberum (2022), who analyze the hidden progress of Transformers trained on arithmetic tasks
(a setting which also exhibits grokking).

Deeper networks. It is a significant challenge (and generally outside the scope of this work)
to understand the interactions between network depth and computational/statistical efficiency. In
Appendix C.7, we show that learning parities with deeper polynomial-activation MLPs comprises
a simple counterexample to the “deep only works if shallow is good” principle of Malach and
Shalev-Shwartz (2019): a deep network can get near-perfect accuracy, even when greedy layer-wise
training (e.g. (Belilovsky et al., 2019)) cannot beat trivial performance. By providing positive theory
and empirics which elude these simplified explanations of SGD, we hope to point the way to a more
complete understanding of learning dynamics in the challenging cases where no apparent progress is
made for extended periods of time.

6 Conclusion

This work puts forward sparse parity learning as an elementary test case to explore the puzzling
features of the role of computational (as opposed to statistical) resources in deep learning. In particular,
we have shown that a variety of neural architectures solve this combinatorial search problem, with a
number of computational steps nearly matching the sparsity-dependent SQ lower bound. Furthermore,
we have shown that despite abrupt phase transitions in the loss and accuracy curves, SGD works by
gradually amplifying the sparse features “under the hood”.

Even in this simple setting, there are several open experimental and theoretical questions. This work
largely focuses on the online learning case, which couples training iterations with fresh i.i.d. samples.
We believe it would be instructive to investigate parity learning when the three resources of samples,
time, and model size are scaled separately. Some very preliminary findings along these lines are
presented in Section 3. It is an open problem to extend our theoretical results to the small-batch
setting, as well as to the full range of architectures and losses in our experiments. Resolving these
questions would require a better understanding of the anti-concentration behavior of Boolean Fourier
coefficients, which is much less studied than the analogous concentration phenomena.

Another important follow-up direction is understanding the extent to which these insights extend from
parity learning to more complex (including real-world) combinatorial problem settings, as well as
the extent to which non-synthetic tasks (in, e.g., natural language processing and program synthesis)
embed within them parity-like subtasks of exhaustive combinatorial search. We hope that our results
will lead to further progress towards understanding and improving the optimization dynamics behind
the recent slew of dramatic empirical successes of deep learning in these types of domains.

Broader impact. This work seeks to contribute to the foundational understanding of computational
scaling behaviors in deep learning. Our theoretical and empirical analyses are in a heavily-idealized
synthetic problem setting. Hence, we see no direct societal impacts of the results in this study.

Acknowledgements. We would like to thank Lenka Zdeborová for providing us with references to
the statistical physics literature on phase transitions in the learning curves of neural networks, and
Matus Telgarsky for bringing to our attention the better sample complexity guarantees of 2-sparse
parity learning in the NTK regime. Sham Kakade acknowledges funding from the Office of Naval
Research under award N00014-22-1-2377.

10

References
Emmanuel Abbe and Colin Sandon. Poly-time universality and limitations of deep learning. arXiv

preprint arXiv:2001.02992, 2020.
Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon, and Nathan Srebro. On the power of

differentiable learning versus PAC and SQ learning. Advances in Neural Information Processing
Systems, 34, 2021.

Emmanuel Abbe, Elisabetta Cornacchia, Jan Hązła, and Christopher Marquis. An initial align-
ment between neural network and target is needed for gradient descent to learn. arXiv preprint
arXiv:2202.12846, 2022.

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive
gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.

Michael Alekhnovich. More on average case vs approximation complexity. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings., pages 298–307. IEEE, 2003.

Zeyuan Allen-Zhu and Yuanzhi Li. What can ResNet learn efficiently, going beyond kernels?
Advances in Neural Information Processing Systems, 32, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,
2019.

Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials with neural
networks. In International Conference on Machine Learning, pages 1908–1916. PMLR, 2014.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. arXiv preprint arXiv:2207.04901, 2022.

Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In Annual International Cryptology
Conference, pages 595–618. Springer, 2009.

Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different
assumptions. In Proceedings of the forty-second ACM symposium on Theory of computing, pages
171–180, 2010.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. J. Mach. Learn. Res., 22:106–1, 2021.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
arXiv preprint arXiv:2205.01445, 2022.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pages 583–593. PMLR, 2019.

Andrew C Berry. The accuracy of the gaussian approximation to the sum of independent variates.
Transactions of the American Mathematical Society, 49(1):122–136, 1941.

Andrej Bogdanov, Manuel Sabin, and Prashant Nalini Vasudevan. Xor codes and sparse learning
parity with noise. Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 986–1004, 2019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pages 5413–5452. PMLR, 2022.

11

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33:20356–20365, 2020.

Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi Soltanolkotabi.
Approximation schemes for relu regression. In Conference on Learning Theory, pages 1452–1485.
PMLR, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. arXiv preprint arXiv:2110.10090, 2021.

Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cambridge
University Press, 2001.

Carl-Gustav Esseen. On the Liapunov limit error in the theory of probability. Ark. Mat. Astr. Fys., 28:
1–19, 1942.

Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of a single neuron with gradient
descent. Advances in Neural Information Processing Systems, 33:5417–5428, 2020.

Spencer Frei, Niladri S Chatterji, and Peter L Bartlett. Random feature amplification: Feature learning
and generalization in neural networks. arXiv preprint arXiv:2202.07626, 2022.

Elizabeth Gardner and Bernard Derrida. Three unfinished works on the optimal storage capacity of
networks. Journal of Physics A: Mathematical and General, 22(12):1983, 1989.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

Surbhi Goel, Sushrut Karmalkar, and Adam Klivans. Time/accuracy tradeoffs for learning a ReLU
with respect to Gaussian marginals. Advances in Neural Information Processing Systems, 32, 2019.

Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In Proceedings
of the twenty-first annual ACM symposium on Theory of computing, pages 25–32, 1989.

Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dynamics
of stochastic gradient descent for two-layer neural networks in the teacher-student setup. Advances
in neural information processing systems, 32, 2019.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

D Hansel, G Mato, and C Meunier. Memorization without generalization in a multilayered neural
network. EPL (Europhysics Letters), 20(5):471, 1992.

Godfrey Harold Hardy, John Edensor Littlewood, George Pólya, György Pólya, et al. Inequalities.
Cambridge University Press, 1952.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In Proceedings of the 40th Annual ACM Symposium on the Theory of
Computing, pages 433–442, 2008.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

Y Kabashima. Perfect loss of generalization due to noise in k= 2 parity machines. Journal of Physics
A: Mathematical and General, 27(6):1917, 1994.

12

Pritish Kamath, Omar Montasser, and Nathan Srebro. Approximate is good enough: Probabilistic
variants of dimensional and margin complexity. In Conference on Learning Theory, pages 2236–
2262. PMLR, 2020.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983–1006, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Adam Klivans and Pravesh Kothari. Embedding hard learning problems into gaussian space. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersections and thresholds of
halfspaces. Journal of Computer and System Sciences, 68(4):808–840, 2004.

Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1067–1080, 2017.

Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum. SIAM
Journal on Computing, 22(6):1331–1348, 1993.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of Statistics, pages 1302–1338, 2000.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Pretrained transformers as universal
computation engines. arXiv preprint arXiv:2103.05247, 2021.

Eran Malach and Shai Shalev-Shwartz. Is deeper better only when shallow is good? Advances in
Neural Information Processing Systems, 32, 2019.

Eran Malach and Shai Shalev-Shwartz. When hardness of approximation meets hardness of learning.
Journal of Machine Learning Research, 23(91):1–24, 2022.

Eran Malach, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. Quantifying the benefit of using
differentiable learning over tangent kernels. In International Conference on Machine Learning,
pages 7379–7389. PMLR, 2021.

GJ Mitchison and RM Durbin. Bounds on the learning capacity of some multi-layer networks.
Biological Cybernetics, 60(5):345–365, 1989.

Neel Nanda and Tom Lieberum. A mechanistic interpretability analysis of grokking. Align-
ment Forum, 2022. URL https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/
a-mechanistic-interpretability-analysis-of-grokking.

Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

Manfred Opper. Learning and generalization in a two-layer neural network: The role of the vapnik-
chervonvenkis dimension. Physical review letters, 72(13):2113, 1994.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

13

https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference
on Machine Learning, pages 5301–5310. PMLR, 2019.

Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborová. Classifying high-
dimensional gaussian mixtures: Where kernel methods fail and neural networks succeed. In
International Conference on Machine Learning, pages 8936–8947. PMLR, 2021.

Michal Rosen-Zvi, Einat Klein, Ido Kanter, and Wolfgang Kinzel. Mutual learning in a tree parity
machine and its application to cryptography. Physical Review E, 66(6):066135, 2002.

David Saad and Sara Solla. Dynamics of on-line gradient descent learning for multilayer neural
networks. Advances in neural information processing systems, 8, 1995a.

David Saad and Sara A Solla. On-line learning in soft committee machines. Physical Review E, 52
(4):4225, 1995b.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
In International Conference on Machine Learning, pages 3067–3075. PMLR, 2017.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021.

Roberta Simonetti and Nestor Caticha. On-line learning in parity machines. Journal of Physics A:
Mathematical and General, 29(16):4859, 1996.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Matus Telgarsky. Feature selection with gradient descent on two-layer networks in low-rotation
regimes. arXiv preprint arXiv:2208.02789, 2022.

Robert C Titsworth. Correlation properties of cyclic sequences. PhD thesis, California Institute of
Technology, 1962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

Timothy LH Watkin, Albrecht Rau, and Michael Biehl. The statistical mechanics of learning a rule.
Reviews of Modern Physics, 65(2):499, 1993.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Gilad Yehudai and Shamir Ohad. Learning a single neuron with gradient methods. In Conference on
Learning Theory, pages 3756–3786. PMLR, 2020.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. Advances in Neural Information Processing Systems, 32, 2019.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

14

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

	Introduction
	Our contributions
	Related work

	Preliminaries
	Empirical findings
	SGD on neural networks learns sparse parities
	Random search or hidden progress?

	Theoretical analyses
	Provable emergence of the parity indices in high-precision gradients
	Disjoint-PolyNet: exact trajectory analysis for an idealized architecture

	Hidden progress: discussion and additional experiments
	Conclusion
	Appendix
	 Appendix
	Additional background, preliminaries, and related work
	Parities: orthogonality and computational hardness
	Neural networks and standard training
	Additional related work

	Proofs
	Global convergence for SGD on MLPs
	Recoverability of the parity indices from Fourier gaps
	Global convergence for disjoint-PolyNets
	Gradient flow analysis

	Global convergence and phase transition for gradient flow on disjoint-PolyNets

	Additional figures, experiments, and discussion
	Fourier gaps at initialization and SGD iterates
	Counterintuitive roles of the building blocks of deep learning
	Hidden progress measures
	Convergence time vs. width
	Learning and grokking in the finite-sample case
	Learning noisy parities
	Counterexample for layer-by-layer learning
	Lack of plateaus for wide polynomial-activation MLPs

	Details for all experiments
	Deep learning configurations
	2-layer MLPs
	Single neurons
	Parity Transformer
	PolyNet
	Details for Figure 1 (left)
	Details for Figure 6
	Details for Figure 10

	Training curves and convergence time plots
	Implementation, hardware, and compute time

