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Abstract

While large pretrained foundation models (FMs) have shown remarkable zero-shot
classification robustness to dataset-level distribution shifts, their robustness to sub-
population or group shifts is relatively underexplored. We study this problem, and
find that foundation models such as CLIP may not be robust to various group shifts.
Across 9 robustness benchmarks, zero-shot classification with their embeddings re-
sults in gaps of up to 80.7 percentage points (pp) between average and worst-group
accuracy. Unfortunately, existing methods to improve robustness require retraining,
which can be prohibitively expensive on large foundation models. We also find
that efficient ways to improve model inference (e.g., via adapters, lightweight
networks that transform FM embeddings) do not consistently improve and can
sometimes hurt group robustness compared to zero-shot. We therefore develop an
adapter training strategy to effectively and efficiently improve FM group robustness.
Our motivating observation is that while poor robustness results from groups in
the same class being embedded far apart in the foundation model “embedding
space,” standard adapter training may not actually bring these points closer to-
gether. We thus propose contrastive adapting, which contrastively trains adapters
to bring sample embeddings close to both their ground-truth class embeddings and
same-class sample embeddings. Across the 9 robustness benchmarks, contrastive
adapting consistently improves group robustness, raising worst-group accuracy by
8.5 to 56.0 pp over zero-shot. Our approach is also efficient, doing so without any
FM finetuning and only a fixed set of FM embeddings. On popular benchmarks
such as Waterbirds and CelebA, this leads to worst-group accuracy comparable to
state-of-the-art methods, while only training 1% of the model parameters.

1 Introduction

Foundation models (FMs)—large pretrained models trained on massive datasets—offer an exciting
new paradigm for deep learning. Recent works have shown that without any finetuning, foundation
models can generalize well to various datasets [11, 36, 59, 69] and exhibit impressive robustness to
certain distribution shifts [42, 76]. Under this zero-shot paradigm, practitioners can avoid training
task-specific models, and instead use FM embeddings for efficient and effective inference.

However, an underexplored question is how robust this zero-shot inference is to “group shifts,”
distribution shifts between subpopulations or meaningful groups in data. Prior works have established
that group robustness—i.e. performing well on all groups—is a fundamental and real-world challenge
for modern deep learning [5, 12, 40, 51, 55, 66, 71]. Yet most prior foundation model evaluations
focus on overall or average performance [42, 59, 76]; few works consider FM accuracy across groups.

In this work, we thus study foundation model group robustness. We motivate this problem by first
showing that foundation models can have poor zero-shot group robustness. Evaluating 11 foundation
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Figure 1: (a) Adapter classification with FM embeddings. Adapters learn transformations to align sample
embeddings to ground-truth class embeddings. (b) Cross-entropy loss encourages alignment between class
embeddings [22]. (c) Contrastive adapting adds alignment between sample embeddings.

models across 9 robustness benchmarks, we find they achieve up to an 80.7 percentage point (pp) gap
between average and worst group accuracy, only classifying 6.0% of worst-group samples correctly.

We therefore aim to improve FM group robustness. This poses several challenges and open questions.
First, while improving group robustness in machine learning is well-studied, existing robustness
methods require retraining one (and often more than one) entire models [1, 16, 39, 47, 51, 65, 71, 72,
79]. This can be prohibitively expensive for foundation models due to their size and scale, raising
the question of whether we can make these models more robust without any retraining or finetuning.
Second, for zero-shot classification, many practitioners may also only access foundation model
outputs or embeddings (e.g., via APIs1). To improve robustness, ideal solutions should only require
pretrained FM embeddings. However, these same embeddings lead to poor zero-shot robustness,
raising the question of if they even encode the information needed to classify all groups correctly.

Motivated by these challenges and questions, we study effective and efficient solutions for better FM
group robustness. As a baseline, we first find that while efficient methods to improve FM inference—
such as training linear probes [42, 59] and adapters [22, 33] on top of FM embeddings—can improve
group robustness over zero-shot (reducing the gap by up to 50.2 pp on representative benchmarks),
they fail to do so consistently, and can hurt robustness. They reduce worst-group accuracy by up to
37.9 pp, and increase the accuracy gap by up to 74.9 pp. To reason about this inconsistency, we note
that poor zero-shot robustness results when FMs embed same-class samples in different groups “far
apart” in embedding space. While adapter training achieves higher robustness than linear probing,
we find settings where it still fails to close this distance, e.g., if training data is group-imbalanced.

To then handle these scenarios and consistently improve group robustness over zero-shot, we propose
contrastive adapting, a simple adapter training method that places greater emphasis on bringing
these initially “far apart” points together. For each task, we first use foundation models to compute
embeddings for each training sample and class. We then train adapters—small bottleneck MLPs—on
these embeddings. Like prior work [22], these adapters take sample embeddings as inputs, and
output transformed embeddings with greater cosine similarity to their ground-truth class embeddings.
However, the key difference is that contrastive adapting also applies a supervised contrastive loss
over other sample embeddings. Specifically, we provide a way to “pull together” far apart sample
embeddings in the same class, and “push apart” nearby sample embeddings in different classes.

In our experiments, we validate that contrastive adapting effectively and efficiently improves FM
group robustness. First, across all 9 robustness benchmarks, we find contrastive adapting consistently
improves worst-group accuracy over zero-shot (by 8.5 to 56.0 pp), using no training group labels and
only training MLPs with 0.1% to 0.3% of the original FM parameters. Then, on a representative set of
benchmarks with various group shifts and training data group sizes, we find contrastive adapting can
substantially outperform prior adapter training strategies, and outperforms other approaches that only
use fixed FM embeddings (achieving up to 12.4 pp higher worst-group accuracy than the next best
method on average). Finally, beyond just improving FM robustness, we find contrastive adapting also
achieves effective and efficient group robust classification in general. We achieve near state-of-the-art
(SoTA) or SoTA worst-group accuracy on popular robustness benchmarks with only 1.0% of the
trainable parameters (e.g., improving 0.2 pp over the prior SoTA [52] on CelebA [48]).

1https://beta.openai.com/docs/introduction., https://studio.ai21.com/docs/, https://docs.cohere.ai/
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In summary, we find that while FM zero-shot classification may not be group-robust, we can
significantly improve robustness without any finetuning. This suggests the information to classify
groups is frequently in their pretrained embeddings; we may just need proper methods to extract it.

2 Related Work

Our work builds on (i) methods to improve group robustness, and (ii) methods to improve foundation
model inference without accessing or finetuning their original weights. We briefly describe these
works here, and include an expanded discussion in Appendix D.

Improving group robustness. Many works aim to improve group robustness. If training group
labels are known, prior methods often balance group sizes during training, via sample balancing
[17, 28, 34, 39], importance weighting [13, 68], or robust optimization [2, 65]. We do not assume
training group labels. With these assumptions, a common approach first trains a model with empirical
risk minimization (ERM), before using this model’s predictions to infer groups. Methods then train a
second robust model with sample balancing [47, 51] or robust optimization [16, 52, 71] using inferred
group labels, or representation learning to learn similar representations for groups in the same class
[79]. While effective at improving group robustness, these solutions require training one (and often
more than one) models. This can make applying them to foundation models prohibitively expensive.

Improving foundation model inference efficiently. Other prior works improve foundation model
downstream performance, without having to finetune or update original model weights. Prompt tuning
optimizes the inputs of a FM while keeping the original model weights frozen. Optimizing either
text [43, 45, 83, 84] or image [3, 77] inputs can improve a frozen foundation model’s downstream
task accuracy. However, doing so can require multiple passes through the foundation model, which
may become expensive in certain situations (e.g., interacting with the model via a commercial
API). Another paradigm adds small trainable parameters to the original model, either within its
layers or on top of its embeddings. These include linear probes (linear classifiers) [59] and adapters
(small bottleneck MLPs) [33, 57, 58, 60]. Recently, Kumar et al. [42], Wortsman et al. [76] propose
methods with linear probes to improve robustness after finetuning to out-of-distribution (OOD)
shifts [30, 32, 62, 74]. Gao et al. [22] train adapters on pretrained embeddings to improve average
downstream accuracy. We focus on group shifts within a dataset. We also show standard adapter
training can hurt group robustness, and propose alternatives to consistently improve group robustness.

3 Problem

In Section 3.1, we first describe the group robustness problem setting. In Section 3.2, we illustrate this
problem with foundation models. We show that zero-shot classification with foundation models, and
existing baseline approaches to improve downstream inference, can result in poor group robustness.

3.1 Preliminaries: group robustness and task setup

We emphasize robustness to distribution shifts between groups in this work. For setup, we follow
prior works [40, 47, 65, 71] that alternatively describe the phenomenon as hidden stratification [71] or
subpopulation shift [40]. For some task, we have N samples {(xi, yi, gi)}Ni=1, with sample features
or inputs xi 2 X , class labels yi 2 Y , and group labels gi 2 G. Let C = |Y| be the number of
classes. We use gi to indicate the group that each sample belongs in, but do not observe group labels
during training. Distribution shifts may occur between samples in different groups but the same class.

Every sample (xi, yi, gi) is drawn from some unknown joint distribution P . Let Pg be the specific
distribution conditioned on g for any g 2 G. For classification loss ` : Y ⇥ Y 7! R and classifier
f✓ : X 7! Y , we want f✓ to be accurate, i.e. achieving low average error:

Lavg(f✓) := E(x,y,g)⇠P [`(f✓(x), y)] (1)
and group robust, i.e., achieving a small gap between its average error and its worst-group error:

Lwg(f✓) := max
g2G

E(x,y,g)⇠Pg
[`(f✓(x), y)] (2)

Different from domain generalization or OOD evaluation settings [31, 32, 44, 64, 82], we observe
each data group in training, validation, and test splits. However, standard training via empirical risk
minimization (ERM) can still lead to poor test set group robustness because training groups may be
imbalanced [65, 71, 79]. Here, foundation models are not trained on the training data, but we show
that zero-shot classification with foundation models can still result in poor group robustness.
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Figure 2: Samples of different group shifts for robust evaluation (2 classes, 2 groups per class shown).

3.2 Empirical findings of poor foundation model group robustness

To motivate the rest of this work, we now demonstrate the group robustness problem with foundation
models. We first describe different natural group shifts for evaluation. We next detail primary
baseline approaches. We finally summarize our findings after evaluating these baselines on 11
popular foundation models across 9 standard group robustness benchmarks used in prior work
[40, 49, 61, 65, 67]. We present four representative scenarios based on training data assumptions and
group robustness outcome. Critically, we find that zero-shot classification with foundation models
may result in poor group robustness. We also find that baseline methods to improve downstream
transfer do not consistently improve group robustness, and can make group robustness worse.
Dataset group shifts. We benchmark methods on the following sources of group shift (Figure 2):

• Spurious confounders. We evaluate across groups which may or may not carry spurious
confounders—input features predictive for some, but not all groups in a class. For example,
in Waterbirds [65, 75], a water background is a confounder for the waterbirds class.

• Subclass variance. We evaluate across groups which are different fine-grained subclasses. For
example, in BREEDS Living-17 [67], the ape class includes images of gibbons and gorillas.

• Data source variance. We evaluate across groups which are the same class but sourced from
different datasets. For example, we set up the CIFAR-10.02 dataset by combining CIFAR-10 [41]
and CIFAR-10.2 [49]. The airplanes class contains samples from both datasets.

Baseline methods. To evaluate foundation model group robustness, we consider the following
baseline methods. Following prior work [20, 36, 46, 50, 59], for all approaches we first compute
N sample embeddings and C class embeddings using a foundation model. With foundation model
embedding dimension D, let un 2 RD be a sample embedding and cn 2 RD be a class embedding.
• Zero-shot classification [59]: We classify each sample via the nearest class embedding to its

sample embedding un. Specifically, we compute the class-wise logits for each sample xn as

f✓(xn; ⌧) = Ŵ
>
ûn/⌧ (3)

where ûn = un/kunk is the (`-2) normalized sample embedding of xn, Ŵ 2 RD⇥C is a matrix
whose columns are the normalized class embeddings {v̂c}Cc=1, and ⌧ is a temperature parameter.
The highest class logit corresponds to the nearest neighbor and largest dot product. As standard,
for class embeddings we convert each class name to a natural language prompt, e.g., “photo of a
[class name]”, and feed the tokenized prompt to a foundation model’s text encoder. As in prior
work [59], we engineer class prompts by trying several templates. We defer details to Appendix A.2,
such as optimal templates (Table 11) and a list of all templates tried (Table 20).

• Linear Probe [59, 76]: We train a linear classifier on top of training data sample embeddings.
Specifically, with classifier f✓(u) = W

>
u, we update the weights W 2 RD⇥C with a cross-entropy

loss applied over training data sample embeddings {un}Nn=1 and labels {yn}Nn=1.
• Adapter [22, 60]: We train a single 2-layer bottleneck multilayer perception (MLP) to output

transformed sample embeddings, which we use instead of the original sample embeddings to
classify with in the zero-shot procedure above. Specifically, with adapter hidden-layer dimension H ,
ReLU activation function �, and adapter weights � = [W1,W2]—where W1 2 RD⇥H is a linear
down-projection and W2 2 RH⇥D a linear up-projection—we compute “adapted” embeddings

f�(u) = W
>
2 �

�
W

>
1 u

�
(4)

We classify samples with the zero-shot class matrix Ŵ , temperature ⌧ , and normalized adapted
embeddings f̂�(u) = f✓(u)/kf�(u)k. The final outputs are given by f✓(u; Ŵ , ⌧) = Ŵ

>
f̂�(u)/⌧ .

Like with linear probes, we update � with a cross-entropy loss using training data labels {yn}Nn=1
and a softmax over the dot product-computed logits as class-wise probabilities.

For evaluation, we train both linear probes and adapters with standard empirical risk minimization
(ERM), which aims to minimize the empirical risk: L̂(f✓) = 1

N

P
N

n=1 `(f✓(un), yn).
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Table 1: Baseline worst-group (WG) and average (Avg) accuracies with zero-shot classification, linear probes,
and adapters. Best metric in bold. While training linear probes and adapters can improve group robustness
(reducing the worst-group versus average accuracy gap by 57.4 pp on BREEDS Living-17), it can also result in
poorer robustness (in red), increasing the gap by 74.9 pp on CelebA.
Method Waterbirds CelebA BREEDS Living-17 CIFAR-10.02

Accuracy (%) WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

Zero-shot 36.6 92.2 55.6 74.0 81.9 7.9 6.0 86.7 80.7 39.1 69.9 30.8
Linear Probe 7.9 93.5 85.6 11.9 94.7 82.8 53.3 90.8 37.5 51.3 77.7 26.4
Adapter 60.8 96.0 35.2 36.1 94.2 58.1 70.7 94.0 23.3 68.8 86.0 17.2

Table 2: Representative outcomes for improving group robustness.
Class-wise Group Size Improved Group Robustness?

Example Dataset Group Shift Largest Smallest Balanced? Linear Probe Adapter

Waterbirds Confounder 1057 56 7 7 3
CelebA Confounder 22880 1387 7 7 7
BREEDS Living-17 Subclass 1076 1009 3 3 3
CIFAR-10.02 Data source 4039 431 7 3 3

Discussion and representative outcomes. In Table 1, we report worst-group and average accuracies
along with their corresponding gaps on four representative group robustness datasets, using zero-shot
classification, linear probes, and adapters on CLIP ResNet-50 embeddings. We select datasets to
report based on training data setup and group robustness outcome, where we find that (i) the relative
group size ratios, (ii) the type of group shift, and (iii) the choice of adapter or linear probe influences
group robustness improvements. We note descriptive characteristics and outcomes in Table 2, and
summarize three main takeaways below. Appendix A contains results for all datasets and models.
1 Foundation model zero-shot classification may not be group robust: Across datasets, we find

that zero-shot classification with CLIP ResNet-50 embeddings can achieve 7.9 to 80.7 pp gaps
between worst-group and average accuracy. Worryingly, poor group robustness is accompanied by
high average error (from 69.9% to 92.9%), the usual metric for evaluating zero-shot classification.
This further supports the importance of improving group robustness.

2 Efficient baselines do not consistently improve robustness: We find that while previously
proposed linear probes and adapters are efficient ways to improve accuracy on downstream tasks,
these benefits do not consistently carry over to improving group robustness.

• When training data is balanced, both linear probes and adapters can substantially improve
group robustness and worst-group accuracy (reducing the robustness gap by 43.2 and 54.7
pp respectively on BREEDS Living-17). However, when minority groups are rare, in some
instances, approaches can hurt group robustness. On CelebA, adapters and linear probes
increase the gap by 50.2 and 74.9 pp, and reduce worst-group accuracy by 37.9 and 62.1 pp.

3 We can improve group robustness with only foundation model embeddings: Our positive
results suggest that poor zero-shot classification may not be because sample embeddings lack the
information required to classify groups correctly. Rather, we may just require the right training
strategies to learn how to better classify by this information.

Altogether, takeaways 1 and 2 motivate the need for methods to effectively improve robustness in the
foundation model setting. Takeaway 3 suggests we can make progress on this problem.

4 Method

Having established the group robustness problem in Section 3, we now propose a simple contrastive
adapter training strategy to improve group robustness. In Section 4.1, we setup our approach by
identifying possible sources of limitation with standard adapter training. In Section 4.2, we then use
these insights to propose a simple yet effective approach that counteracts these limitations.

4.1 Understanding prior limitations via embedding metrics

To guide a first-step strategy for improving robustness, we first outline high-level reasoning for why
zero-shot and ERM-trained adapters fail to classify groups correctly. Recall that a key property
of group robust classification is that all sample embeddings belonging to the same class should
embed closer to their ground-truth class embedding than any other class embedding. If zero-shot
classification for a specific class is accurate on average but not group robust, then in the pretrained
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foundation model embedding space there exists groups that embed “close” to their ground-truth class
embedding, and groups in the same class that embed “far away” (measured via cosine similarity).
One way to interpret standard adapter training with FM embeddings via ERM is that it aims to bring
these initially far apart sample embeddings closer to their ground-truth class embedding. Restating
the standard sample cross-entropy loss with adapters makes this clear as an InfoNCE loss [14, 56]:

`(f✓(u), y) = � log
exp(f̂✓(u)>v̂/⌧)P

C

c=1 exp(f̂✓(u)
>v̂c/⌧)

(5)

with sample embedding u as an anchor, class embedding v of ground-truth y as a single positive, and
the other C � 1 class embeddings as negatives. Via ERM of the sample cross-entropy loss, adapters
thus bring zero-shot-incorrect anchors closer to their class embedding positives (minimizing Eq. 5).

However, in Section 3 we found this loss works in some scenarios but not others. Intuitively, Eq. 5
can fail to bring samples closer to their correct class embedding (e.g., on CelebA). To find additional
ways to bring points together, we hypothesize that poor robustness also accompanies poor similarity
between sample embeddings from different groups but the same class. We verify this in Figure 3 by
empirically measuring the average pairwise cosine similarity and group alignment loss Lalign [79]—
which measures the pairwise Euclidean distance—between sample embeddings in the same class but
different groups. We compare these metrics with embeddings computed with trained adapters and
the initial foundation model embeddings, and find that higher worst-group accuracy corresponds to
higher cosine similarity and lower alignment loss between groups in the same class.

Figure 3: Across CLIP model architectures, cosine similarity and alignment loss between groups of the same
class tracks worst-group error. Notably, training ERM adapters may fail to move these metrics in the desired
direction, which corresponds with poorer robustness (e.g., on CelebA).

4.2 Approach: Contrastive Adapting

To improve robustness, we therefore propose to more effectively bring far away samples together
by introducing greater training signal via other sample embeddings. Instead of limiting ourselves to
a single class embedding positive and a limited set of C � 1 negatives, we expand our positives by
including sample embeddings for points in the same class far away from the anchors among pretrained
embeddings (e.g., likely in different groups). We expand our negatives with sample embeddings
from different classes. Following prior work [23, 79] that finds sampling hard negatives beneficial
for robust contrastive learning, we also use the computed foundation model sample embeddings to
sample negatives from points nearest to the anchors but in different classes. As the number of training
data points N is often much larger than the number of classes C, these choices are further supported
by prior work suggesting more positives and negatives are beneficial for contrastive learning [38, 63].
In practice, contrastive adapting is simple to implement with three components:

• Foundation model embedding and prediction: We compute FM embeddings over labeled training
data. To guide sampling, we collect zero-shot predictions over this data.

• Contrastive sampling: For each class, we identify an “anchor” sample embedding u 2 U that
zero-shot predicts incorrectly, and P “positive” sample embeddings P(u) that zero-shot classifies
correctly. We do this as a heuristic for finding samples “far apart” in the FM embedding space, so
pushing them together improves robustness over zero-shot. We also identify M hard “negative”
sample embeddings M(u) by computing the nearest neighbors to the anchors in different classes,
using cosine similarity between the sample embeddings.
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• Training objective: We use a supervised contrastive loss [38] with the sample embeddings, i.e.

`
sup
con(f✓(u)) =

�1

P

X

p2P(u)

log
exp(f̂✓(u)>f̂✓(p)/⌧)

exp(f̂✓(u)>f̂✓(p)/⌧) +
P

m2M(u) exp(f̂✓(u)
>f̂✓(m)/⌧)

(6)

We also use a standard cross-entropy loss over minibatches of sample embeddings and their class
embeddings. This aims to keep adapted embeddings close to their ground-truth class embeddings.
To avoid undoing Eq. 6 and push “far away” points closer to their ground-truth class embeddings,
we upsample the number of zero-shot incorrect samples to equal the number of zero-shot correct
samples in each minibatch. We thus use contrastive supervision from class and sample embeddings.

Robust generalization with adapters. The contrastive loss in Equation 6 is also supported by recent
results suggesting that minimizing the class-wise alignment loss Lalign helps bound the worst-group
versus average error gap for that class (cf . Thm 3.1, Zhang et al. [79]). The bound however scales with
the Lipschitz constant of the neural network, and upper bounds for estimating this constant can grow
with the size of the network [19, 73]. However, as our adapters are small 2-layer MLPs, estimates of
this constant suggest we can obtain better generalization with fewer training samples [25, 37, 53, 78].
In Section 5.3, we later show this corresponds to better data efficiency.

5 Experiments

We now validate that contrastive adapting enables effective and efficient group robustness. First,
in Section 5.1, we evaluate the effectiveness of contrastive adapting against efficient methods to
improve FM inference. We study whether the approach consistently improves worst-group accuracy
and group robustness over zero-shot classification, how contrastive adapting compares against other
efficient methods that only require pretrained model embeddings, and whether contrastive adapting
scales to a variety of pretrained model architectures. Next, in Section 5.2, we shed further light on
contrastive adapting’s performance by studying the importance of its individual components, ablating
the contrastive objective and sampling strategy. Finally, in Section 5.3, we study the efficiency of
contrastive adapting against effective group robustness approaches. We find that the prior robustness
gains are not only relative to other efficient FM training methods; contrastive adapting also enables
state-of-the-art robustness on popular benchmarks, but with greater parameter and data efficiency.

5.1 Robustness comparison for efficient foundation model methods

To first judge the effectiveness of contrastive adapting, we evaluate the method across the same set of
initial robustness benchmarks and foundation model architectures discussed in Section 3. As in prior
group robustness evaluation, we do not assume training groups labels, but do assume group labels in
validation data for hyperparameter tuning and model selection [40]. We include experimental details
for all models and hyperparameters in Appendix C.

As baselines, we compare against zero-shot classification [59], ERM linear probing [42, 59], and
ERM adapter training [22]. We also compare against recent methods designed to improve downstream
transfer in related settings, while similarly only requiring pretrained model embeddings:

• Weight space ensembling (WiSE-FT) [76], which first trains a linear classifier with standard ERM,
and then ensembles the classifier outputs with the initial zero-shot predictions. While proposed for
both training linear classifiers and finetuning the original weights of a foundation model, we focus
on the linear classifier version for fair comparison in our setting.

• Deep feature reweighting (DFR) [39], which first trains a linear probe on embeddings computed
from a pretrained model over group-balanced data. As we do not assume training group labels, we
first infer groups using zero-shot classification with foundation model embeddings. As in prior
work [47, 79], we treat the incorrect and correctly classified samples as proxies for different groups.

Finally, if we have validation group labels, we plausibly know what groups are in the test data. We
thus also compare against group-informed prompting (Group Prompt ZS), which performs zero-shot
classification using prompts with group information (e.g., “a waterbird on a land background”).

Consistent robustness improvements over zero-shot. In Figure 4 we report contrastive adapting’s
relative gains in worst-group accuracy over zero-shot classification on all 9 robustness benchmarks.
Unlike prior adapter training approaches, contrastive adapting consistently improves group robustness
over zero-shot classification, achieving 8.5 to 56.0 pp higher worst-group accuracy.
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Table 3: Evaluation of methods for improving group robustness of CLIP models. Across representative
benchmarks and CLIP models, contrastive adapters consistently improve worst-group accuracy over zero-shot
classification (by 10.2 to 76.0 pp). 1st / 2nd best worst-group (WG) and robustness gaps bolded / underlined.

Waterbirds CelebA BREEDS Living-17 CIFAR-10.02

Method / Acc. (%) WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap
C

LI
P

R
es

N
et

-5
0

Zero-shot (ZS) 36.6 92.2 55.6 74.0 81.9 7.9 6.0 86.7 80.7 39.1 69.9 30.8
Group Prompt ZS 55.9 87.8 31.9 70.8 82.6 11.8 30.0 90.6 60.6 N/A N/A N/A
ERM Linear Probe 7.9 93.5 85.6 11.9 94.7 82.8 53.3 90.8 37.5 51.3 77.7 26.4
ERM Adapter 60.8 96.0 35.2 36.1 94.2 58.1 70.7 94.0 23.3 68.8 86.0 17.2

WiSE-FT 49.8 91.0 41.2 85.6 88.6 3.0 53.3 90.8 37.5 58.2 79.1 20.9
DFR (Subsample) 63.9 91.8 27.9 76.9 92.5 15.6 46.7 89.4 42.7 45.0 75.0 30.0
DFR (Upsample) 51.3 92.4 41.1 89.6 91.8 2.2 44.0 86.4 42.4 38.5 77.9 39.4
Contrastive Adapter 83.7 89.4 5.7 90.0 90.7 0.7 62.0 90.9 28.9 60.7 80.9 20.2

C
LI

P
V

iT
-L

/1
4

Zero-shot (ZS) 25.7 87.3 61.6 62.1 71.9 9.8 4.0 86.6 82.6 72.0 93.2 21.2
Group Prompt ZS 27.4 85.5 58.1 72.4 81.8 9.4 48.0 96.6 48.6 N/A N/A N/A
ERM Linear Probe 65.9 97.6 31.7 28.3 94.7 66.4 84.0 98.6 14.6 87.5 96.1 8.6

ERM Adapter 78.4 97.8 19.4 36.7 94.2 57.5 82.8 98.2 15.5 87.0 96.9 9.9
WiSE-FT 65.9 97.6 31.7 80.0 87.4 7.4 84.0 98.6 14.6 87.5 97.0 9.5
DFR (Subsample) 51.9 95.7 43.8 76.3 92.1 15.8 84.0 98.5 14.5 85.5 96.6 11.1
DFR (Upsample) 65.9 96.1 30.2 83.7 91.2 7.5 78.7 97.3 18.6 72.5 93.8 21.3
Contrastive Adapter 86.9 96.2 9.3 84.6 90.4 5.8 80.0 97.5 17.5 82.2 96.1 13.9

Table 4: On the Waterbirds dataset, contrastive adapters consistently improve group robustness across various
vision-language large pretrained models (CLIP [59], CLOOB [20]) and backbones (ResNets and ViTs).

CLOOB RN-50 CLOOB RN-50x4 CLIP RN-101 CLIP ViT-B/32 CLIP ViT-B/16

Accuracy (%) WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

Zero-shot 41.6 60.4 18.8 24.1 51.1 27 33.6 90.0 56.4 47.0 88.8 41.8 34.0 88.1 54.1
Contrastive Adapter 83.0 86.8 3.8 85.8 88.5 2.7 82.0 86.0 4.0 80.7 84.2 3.5 83.1 90.9 7.8

Figure 4: Across 9 group robustness benchmarks,
contrastive adapting consistently improves worst-
group acc. over pretrained zero-shot classification.

Representative dataset evaluation. In Table 3 we
compare contrastive adapting to other lightweight
methods for improving robustness. We evaluate with
group-imbalanced and balanced training data across
spurious confounder, subclass, and data source group
shifts, using CLIP ResNet-50 (RN-50) and CLIP ViT-
L/14 models. On average, contrastive adapters raise
worst-group accuracy by 12.4 and 4.1 pp over the next
best methods on CLIP RN-50 and ViT-L/14 models.
Transfer across architectures. We also study how
the prior contrastive adapting improvements transfer
to other pretrained models. Table 4 shows contrastive
adapters substantially improve group robustness for
models such as CLOOB [20]. The method also scales across model sizes, raising worst-group accuracy
by 33.7 to 61.7 pp via training adapters with only 0.52% to 1.03% of the model parameters [20, 59].
5.2 Ablation on sampling strategy and contrastive training objective

To next better understand how contrastive adapting’s individual components affect group robustness,
we ablate the proposed contrastive objective (Eq. 6) and “hard” sampling strategy, and report worst-
group and average accuracies on CLIP RN-50 adapters (Table 5). On three datasets, we find the
contrastive loss alone improves robustness more than hard sampling alone. However, on Waterbirds
and CelebA—where ERM adapters perform poorly—having both components substantially improves
robustness (+5.5 to 8.5 pp). Meanwhile, on BREEDS Living-17 and CIFAR-10.02—where ERM
adapters perform best across all methods—removing hard sampling improves contrastive adapting
performance. On these datasets, the random sampling in ERM may be beneficial (discussed further
in App. E.6). Contrastive adapting may thus also benefit from random sampling in these settings.

5.3 Measuring efficiency among effective group robustness solutions

While in Section 5.1, we found contrastive adapters could significantly improve group robustness
for foundation models, we now expand on contrastive adapting’s efficiency. We find that for group
robust classification in general, contrastive adapting can achieve state-of-the-art performance despite
only training 1% of the usual model parameters. The lightweight nature of contrastive adapting
also leads to better data efficiency than existing state-of-the-art approaches.
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Table 5: Contrastive adapter ablation over contrastive loss and sampling. When ERM obtains poor worst-group
(WG) accuracy, both contrastive loss and “hard” sampling lead to best robustness. When ERM improves WG
acc. over zero-shot (c.f. Table 3, i.e. random sampling helps), no hard sampling also helps contrastive adapters.

Adapter Ablation Contrastive Hard Waterbirds CelebA BREEDS Living-17 CIFAR-10.02
Loss Sampling WG Avg. WG Avg. WG Avg. WG Avg.

ERM 7 7 60.8 ± 0.9 96.0 ± 0.1 36.1 ± 1.4 94.2 ± 0.2 70.7 ± 0.9 94.0 ± 0.1 68.8 ± 0.5 86.0 ± 0.5
Hard sample only 7 3 56.3 ± 1.5 81.4 ± 0.5 84.5 ± 3.2 92.6 ± 0.4 58.7 ± 4.9 89.6 ± 0.8 58.5 ± 2.0 80.4 ± 0.7
Contrastive only 3 7 75.2 ± 1.0 94.0 ± 0.1 51.4 ± 5.9 93.2 ± 2.6 67.4 ± 0.9 91.8 ± 0.2 66.9 ± 1.2 82.9 ± 0.3
Default proposed 3 3 83.7 ± 0.7 89.4 ± 0.9 90.0 ± 0.4 90.7 ± 0.4 62.0 ± 1.6 90.9 ± 0.3 60.7 ± 1.7 80.9 ± 0.2

Table 6: On popular Waterbirds and CelebA benchmarks, contrastive adapters achieve near state-of-the-art
worst-group accuracy (WG Acc.) with 1% of the trainable parameters. �Acc. is percentage point gap with
prior SoTA. 1st / 2nd best metrics bolded / underlined. We report numbers from original works.

Waterbirds CelebA

Model # Trained Params % Params Method WG Acc. (%) �Acc. WG Acc. (%) �Acc.

ResNet-50 25557032 100

EIIL [16] 78.7 -10.3 83.3 -6.5
CIM [72] 83.6 -5.4 83.6 -6.2
JTT [47] 86.7 -2.3 81.1 -8.7

RWY [34] 86.1 -2.9 82.9 -6.9
CNC [79] 88.5 -0.5 88.8 -1.0
SSA [52] 89.0 0.0 89.8 0.0

Adapter + CLIP RN-50 263424 1.03 Ours 83.7 -5.3 90.0 0.2
Adapter + CLIP ViT-L/14 197632 0.77 Ours 86.9 -2.1 84.6 -5.2

Robustness comparison to state-of-the-art methods. In Table 6, we evaluate how contrastive
adapting with CLIP RN-50 and ViT-L/14 embeddings compares to current state-of-the-art robustness
techniques. We use the popular Waterbirds and CelebA datasets. Existing group robustness methods
train ImageNet-pretrained ResNet-50s. On both datasets, contrastive adapting achieves comparable
worst-group accuracy to these methods, despite only training 1% of their parameters. Notably,
contrastive adapting outperforms some methods by up to 5.0 and 10.1 pp for Waterbirds and CelebA,
and only falls short of the state-of-the-art Spread Spurious Attribute (SSA) method by 2.1 pp on
Waterbirds. These results suggest contrastive adapters not only effectively improve group robustness
for pretrained models, but also enable competitive robust classification in general at a fraction of
prior approaches’ trainable parameter counts.

Figure 5: With less data, contrastive adapters
maintain higher group robustness than zero-shot
and significantly outperform standard models
trained with the state-of-the-art SSA method.

Data efficiency evaluation. Beyond model parame-
ter count, we also study if the lightweight nature of
contrastive adapting transfers to better data efficiency.
We compare contrastive adapting to the best perform-
ing SSA on subsampled versions of Waterbirds. To
evaluate how well methods maintain group robust-
ness with less training data available, we keep group
ratios preserved (i.e., 1% of all training samples be-
longs to the smallest Waterbirds group [65]).

Figure 5 shows that contrastive adapting substantially
outperforms SSA in lower data regimes. With only
100 and 250 training samples, contrastive adapting outperforms SSA-trained ResNet-50s by 42.6 and
25.9 pp. With 100 training samples, contrastive adapting still achieves 20.8 pp higher worst-group
accuracy than zero-shot classification with only 1 training sample in the smallest Waterbirds group.
In contrast, SSA’s accuracy drops significantly, resulting in 17.6 pp lower worst-group accuracy
than zero-shot classification. To connect this fewer data result to our generalization discussion in
Section 4.2, with prior methods [19] we estimate the trained adapter Lipschitz constant. We estimate
the constant to be 29.3, much lower than that reported for larger networks (e.g., ResNet-50s) [19, 73].

6 Conclusion

We study the group robustness of popular foundation models. We find their zero-shot classification
may not be robust to various group shifts, establish that baseline linear probe and adapter strategies do
not reliably improve robustness, and propose a simple adapter strategy to significantly and consistently
improve FM robustness without finetuning. This suggests FM embeddings do contain group-relevant
information, and we show that we can use FM embeddings to efficiently achieve state-of-the-art robust
classification. We recognize the limitations of computational solutions to subgroup performance
disparities, and the need to understand FMs in broader socio-technical systems [9].
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