
Bridging Central and Local Differential Privacy in
Data Acquisition Mechanisms

Alireza Fallah
EECS Department

Massachusetts Institute of Technology
afallah@mit.edu

Ali Makhdoumi
Fuqua School of Business

Duke University
ali.makhdoumi@duke.edu

Azarakhsh Malekian
Rotman School of Management

University of Toronto
azarakhsh.malekian@rotman.utoronto.ca

Asuman Ozdaglar
EECS Department

Massachusetts Institute of Technology
asuman@mit.edu

Abstract

We study the design of optimal Bayesian data acquisition mechanisms for a plat-
form interested in estimating the mean of a distribution by collecting data from
privacy-conscious users. In our setting, users have heterogeneous sensitivities for
two types of privacy losses corresponding to local and central differential privacy
measures. The local privacy loss is due to the leakage of a user’s information when
she shares her data with the platform, and the central privacy loss is due to the re-
leased estimate by the platform to the public. The users share their data in exchange
for a payment (e.g., through monetary transfers or services) that compensates for
their privacy losses. The platform knows the distribution of privacy sensitivities
but not their realizations, and must design a mechanism to solicit their preferences
and then deliver both local and central privacy guarantees while minimizing the
estimation error plus the expected payment to users. We first establish minimax
lower bounds for the estimation error, given a vector of privacy guarantees, and
show that a linear estimator is (near) optimal. We then turn to our main goal:
designing an optimal data acquisition mechanism. We establish that the design of
such mechanisms in a Bayesian setting (where the platform knows the distribu-
tion of users’ sensitivities and not their realizations) can be cast as a nonconvex
optimization problem. Additionally, for the class of linear estimators, we prove
that finding the optimal mechanism admits a Polynomial Time Approximation
Scheme.

1 Introduction

Users’ personal data are currently being utilized for personalized advertising, medical trials, targeted
advertising, and recommendation systems, among others. The transaction of individual data is set to
grow exponentially in the coming years, with more widespread applications of artificial intelligence
(AI) and machine learning techniques. Even though it is widely accepted that users need to own their
data (see, e.g., Posner and Weyl [2019], Kushmaro [2021], and WILL.I.AM [2019]), the impact of
different market architectures on the design and operation of data markets are not clear: some users
prefer to protect their own raw data while others expect companies to protect their data proactively
(see, e.g., GDMA [2018]). In this paper, we consider the design of data acquisition mechanisms when
users have heterogeneous privacy concerns and ask the following question:
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What is the optimal data acquisition mechanism when users have heterogeneous
privacy concerns regarding access to their raw data and the outcome of the
platform’s processing?

We use differential privacy to measure the two types of privacy losses. Informally, an estimator is
called differentially private if its distribution over outputs is insensitive to the changes in a user’s data.

In particular, we consider a platform whose goal is to estimate an underlying parameter of interest
by collecting data from a set of users N = {1, . . . , n} who own a noisy version of the underlying
parameter. For instance, consider a medical trial in which a hospital wants to collect users’ data to
estimate the efficacy of a drug. Each user has two types of privacy concerns: (i) local privacy concern
that captures how much information their shared data reveal about their raw data, and (ii) central
privacy concern that captures how much information the platform’s output reveal about their raw
data. We adopt local and central Rényi differential privacy to measure these two types of privacy
losses. The reason for choosing Rényi differential privacy is twofold. First, our framework can cover
a wide range of information measures by varying the Rényi divergence parameter. Second, it can be
achieved by a Gaussian mechanism, which simplifies our analysis while capturing the main tradeoffs
in the design of two-part data acquisition mechanisms.

Before formulating the platform’s data acquisition problem, we derive optimal estimators for a given
vector of heterogeneous local privacy loss levels. In particular, we establish a minimax lower bound
for the estimation error and prove that first privatizing users’ data by adding a properly designed
Gaussian noise to them and then using a properly designed weighted average of these privatized data
points achieves this lower bound. This result motivates us to consider the design of the optimal data
acquisition mechanism for the class of linear estimators.

We then turn to our mechanism design problem. Each user has a heterogeneous preference regarding
the importance of the above two privacy concerns. For instance, if a user fully trusts the platform,
then the first type of concern lessens, and the main concern would be about the information revealed
from the platform’s estimate. On the other hand, if a user does not trust the platform at all, the first
type of concern would be more than the second one. We model such a setting by assuming each user
i has a privacy sensitivity ci ∈ [0, 1] that determines the relative weight she puts on the local privacy
concern (1 − ci is the weight she puts on the central privacy concern). The utility of user i is the
payment she receives from the platform (in exchange for sharing her data), minus ci times her local
privacy loss, and again, minus 1− ci times her central privacy loss. The platform does not know the
value of ci and (knowing its distribution) must design a (Bayesian) data acquisition mechanism to
elicit the true privacy sensitivities (that guide the optimal choice of local and central privacy losses
delivered to each user) and optimize its objective.

In particular, the platform designs a two-part data acquisition mechanism that comprises a payment
scheme, a local privacy guarantee, and a central privacy guarantee as a function of the reported
privacy sensitivity of users. The platform’s goal is to minimize the sum of the mean estimation error
and the expected total payment to users while satisfying the incentive compatibility and individual
rationality constraints. Incentive compatibility ensures that users have no incentive to misreport their
privacy sensitivity, and individual rationality ensures that the payment to users (and the delivered
privacy guarantees) are such that users are willing to share their data with the platform.

The platform’s problem is a functional optimization over three functions of the reported privacy
sensitivities: payments, local privacy guarantees, and central privacy guarantees. We first find
the payment function in terms of the local and central privacy guarantees by using the incentive
compatibility and individual rationality constraints. This reduces the space of the platform’s decision
variables. We then focus on the Gaussian mechanisms and linear estimators (motivated by our
minimax optimality result) and show that the platform’s problem can be cast as an optimization
problem that minimizes a non-convex objective (which depends on the virtual cost of users) for
any reported vector of privacy sensitivities. This reformulation significantly reduces the space of
decision variables that the platform needs to optimize. However, it still involves solving a non-convex
optimization problem. We further use the structural properties of this non-convex optimization and
use duality theory to develop a polynomial time algorithm to approximate the platform’s problem.
More precisely, we prove that the design of the optimal two-part data acquisition mechanism admits
a Polynomial Time Approximation Scheme (PTAS).
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The contribution of our work is threefold. First, we develop a minimax lower bound when users have
heterogeneous local privacy losses and establish that a linear estimator (approximately) achieves
this bound. Second, we develop a modeling framework for data acquisition mechanisms when users
have heterogeneous concerns for both local and central privacy losses. Third, for any estimator and
mechanism to deliver privacy guarantees, we characterize the design of the optimal two-part data
acquisition mechanism as the solution to a point-wise optimization problem. Additionally, for the
class of Gaussian mechanisms to deliver privacy guarantees and linear estimators, we develop an
algorithm to approximately find the optimal data acquisition mechanism (despite the fact that the
corresponding optimization is non-convex).

Related literature: Our paper relates to the literature on optimal data acquisition from privacy
concerned users. There is a large body of work that use differential privacy to measure the privacy loss
of users Ghosh and Roth [2011], Nissim et al. [2012], Nissim et al. [2014]. One of the earliest papers
in the literature is Ghosh and Roth [2011], which study the design of mechanisms for collecting users’
data when users incur some privacy cost from sharing their data. More specifically, Ghosh and Roth
[2011] consider binary data (bit) with the platform’s goal being to estimate the sum of user’s data by
using a differentially private and dominant strategy truthful mechanism. They study both the case
when the user data and privacy parameter are independent (similar to our paper) and when they are
correlated. In the independent case, they propose a mechanism that delivers a single privacy level to
all users (as opposed to our setting that delivers heterogeneous privacy levels). For the correlated case,
they prove an impossibility result for the existence of a truthful and individually rational mechanism.

Several works build on Ghosh and Roth [2011], extending it to take it or leave it offers Ligett and Roth
[2012], strengthening the impossibility results Nissim et al. [2014], and studying the open question
posed by Ghosh and Roth [2011] on whether a model with distributional assumption on users’ costs
and Bayesian mechanism design approach could be used to develop the optimal mechanism for
collecting data with privacy guarantees (see, e.g., Liao et al. [2021] and Fallah et al. [2022]). In
particular, Roth and Schoenebeck [2012], Chen et al. [2018], and Chen and Zheng [2019] tackle this
problem by developing a randomized mechanism in which user’s data is randomly included in the
final estimator where the inclusion probability depends on the reported privacy costs of the users
(as opposed to our setting in which the payments and privacy guarantees depend on the reported
privacy sensitivity of all users). These papers do not use differential privacy to model privacy costs
and instead use a menu of probability-price pairs to tune the privacy loss and the payment to each user
(see also Pai and Roth [2013] for a survey). Similar to the above paper, we consider a setting in which
the platform can verify the data of users. For instance, in the context of medical trials, this means that
the users decide whether to participate in the medical trial and cannot change the samples they share.
A different stream of the literature explores settings in which users can misreport their information
Perote and Perote-Pena [2003], Dekel et al. [2010], Meir et al. [2012], Ghosh et al. [2014], Cai et al.
[2015], Liu and Chen [2016, 2017].

Our paper differs from these works in three main ways. First, we assume prior information on
user privacy sensitivities and focus on characterizing the optimal Bayesian incentive compatible
mechanism. Second, we model a setting in which users have both local and central privacy concerns
and explore the different privacy guarantees of these two types delivered by an optimal mechanism.
Third, we assume that user data are drawn from the same underlying distribution that allows the
platform to put differing weights on the data of users depending on their privacy sensitivity, leading
to different privacy levels for participating users.

Finally, our paper relates to the literature on differential privacy. Pioneered by the seminal work of
Dwork et al. [2006a,b], differential privacy has emerged as a prevalent framework for characterizing
the privacy leakage of data oriented algorithms. More specifically, our paper is related to the private
mean estimation considered by Duchi et al. [2013], Barber and Duchi [2014], Karwa and Vadhan
[2017], Asoodeh et al. [2021], Kamath et al. [2019, 2020], Cummings et al. [2021], and Acharya
et al. [2021]. Additionally, our paper relates to the stream of differential privacy literature that studies
Rényi differential privacy (RDP) introduced by Bun and Steinke [2016] and Mironov [2017].

2 Problem Formulation

We consider a platform interested in estimating a parameter θ ∈ R by collecting data of n users,
indexed by N = {1, · · · , n}. For any i ∈ N , we denote user i’s data by Xi ∈ X and we assume Xi
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is given by Xi = θ + Zi where Z1, · · · , Zn are independent and identically distributed zero-mean
random variables with variance VAR. To simplify the exposition, we further assume |Zi| ≤ 1/2 for
any i ∈ N .1 Throughout, we use lower case letters to denote the realization of random variables. The
platform’s goal is to minimize the estimate’s error by collecting data from privacy-concerned users.
Therefore, the platform needs to incentivize them to share their data.

2.1 Local and central privacy losses

Before formalizing the utilities/objectives of the platform and the users, we define the notions of
privacy losses that we adopt in this paper. In particular, we consider two different types of privacy
losses that users suffer from. The first one is the privacy loss of a user when she shares her data (only)
with the platform, and the second one is the privacy loss through the released estimate (to the public)
by the platform. Depending on how different users trust the platform, they might care differently
about these two privacy losses. For instance, if a user fully trusts the platform, then her main privacy
concern would be the second one, while a user who does not trust the platform at all would be more
concerned with the first one as the public only observes the aggregated estimate, as opposed to the
platform which observes each user’s (shared) data separately.

We use the differential privacy framework to quantify these privacy losses. Since differential privacy
was introduced by Dwork et al., several variants of it have been also proposed. In particular, a popular
one in the machine learning literature is Rényi differential privacy (RDP), introduced by Mironov
[2017], which we also adopt in this paper. Let us first recall the definition of Rényi divergence.
Definition 1. Let P and Q be two distributions over R with densities p and q. For any α ∈ (1,∞],
the Rényi α-divergence between P and Q is denoted by Dα(P ||Q) and is given by

Dα(P ||Q) :=
1

α− 1
log

∫ (
p(x)

q(x)

)α
q(x)dx.

For two random variables X and Y , Dα(X||Y ) denotes the α-divergence between their distributions.

We next define two notions of differential privacy, known as central and local, to capture the two
aforementioned types of privacy losses. Local differential privacy corresponds to the privacy loss of a
user when she shares her data with the platform through a randomized mapping, known as a channel.
Definition 2. Let ε ≥ 0 and α ∈ (1,∞]. A randomized channel C : X → R is locally (ε, α)-Rényi
(differentially) private if for any x, x′ ∈ X ,

Dα(C(x)||C(x′)) ≤ ε.

Central differential privacy corresponds to the other privacy loss mentioned above. It bounds the
change in the distribution of the platform’s output, i.e., the released estimate, by changing one user’s
data. We next provide the formal definition.
Definition 3. Let ε = (εi)

n
i=1 ∈ Rn+ and α ∈ (1,∞]. A randomized algorithm A : Xn → R is

(ε, α)-Rényi (differentially) private if for any two datasets x1:n, x′1:n ∈ Xn that only differ in i-th
coordinate (data of user i),

Dα(A(x1:n)||A(x′1:n)) ≤ εi.

The customary approach to guarantee RDP is Gaussian mechanism in which a properly tuned zero-
mean Gaussian noise is added to fulfill the required condition. The following lemma, adapted from
Mironov [2017], allows us to characterize the Gaussian noise’s variance for a privacy loss level.
Lemma 1. For a function f : Xn → R, we define its sensitivity with respect to i-th coordinate as

Li(f) := sup {|f(x1:n)− f(x′1:n)| : for all x1:n and x′1:n differing only at i-th coordinate} .

For any α ∈ (1,∞], A(x1:n) = f(x1:n) +W with W ∼ N (0, σ2) is
(
(αLi(f)

2

2σ2 )ni=1, α
)

-RDP.

For a given vector of local privacy losses (ε(l)1 , . . . , ε
(l)
n ), a natural way to privately estimate the mean

is by using a linear estimator with Gaussian mechanism which is given by

θ̂(x1, . . . , xn) :=

n∑
i=1

wix̂i where
n∑
i=1

wi = 1 and x̂i = xi +N (0,
α

2ε
(l)
i

) for all i ∈ N . (1)
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Figure 1: The interaction between the users and the platform in the two-part private data acquisition.

Figure 1 depicts this estimator. In particular, using Lemma 1, the local privacy delivered to user
i ∈ N is ε(l)i and the central privacy delivered to user i ∈ N is ε(c)i = w2

i /
∑n
j=1 w

2
j/ε

(l)
j . In the next

section, we focus on linear estimators in designing the optimal private data acquisition mechanism.
We motivate such specification by showing that, for a given vector of local privacy losses (ε(l)i )ni=1,
a linear estimator is optimal with respect to mean square error. To formalize this statement, we
first need to define the minimax estimation error as the notion of optimality. Let P be a class of
distributions over X . For any P ∈ P , we denote its mean by θ(P ). A (ε

(l)
i )ni=1-locally RDP estimator

can be cast as θ̂((Ci(xi))ni=1), where Ci(.) is the randomized channel corresponding to user i. Let
Q((ε

(l)
i )ni=1) be the class of such (ε

(l)
i )ni=1-locally RDP estimators. The minimax estimation error is

L(P,Q, (ε(l)i )ni=1) := inf
θ̂,{Ci}n

i=1∈Q((ε
(l)
i )ni=1)

sup
P∈P

E(Xi∼P )ni=1,θ̂
[|θ̂((Ci(Xi))

n
i=1)− θ(P )|2], (2)

where the expectation is taken over both randomness of data and estimator (including private channels).
In other words, the optimal estimator is the one that has the lowest worst case error among all
estimators that satisfy the privacy requirements. We next state the optimality result.

Theorem 1. Assume α ≥ 2 and ε(l)i ≤ 1 for all i. Let P1 be the family of distributions over [− 1
2 ,

1
2 ]

and C1, · · · , Cn be independent channels. Then, there exists a universal constant c such that

L(P,Q, (ε(l)i )ni=1) ≥ cmin(
1∑n

i=1 ε
(l)
i

, 1).

Furthermore, there exists a linear estimator with Gaussian mechanism such that

E(Xi∼P )ni=1,θ̂
[|θ̂((Ci(Xi))

n
i=1)− θ(P )|2] ≤ O(1)

α∑n
i=1 ε

(l)
i

.

We prove the lower bound by using the Le Cam’s method Yu [1997] that reduces the problem of
finding lower bounds to a hypothesis testing problem and requires bounding the total variation
distance between the estimates when the input data points change. We then find it more convenient to
bound the total variation in terms of Hellinger distance and use a series of inequalities to bound it.

2.2 Data acquisition mechanism with two-part privacy guarantees

We next describe the utility functions of the users and the platform and then formulate the platform’s
optimal data acquisition mechanism. As we described earlier, each user suffers from two privacy
losses when sharing her data. The first one is a central privacy loss because of the leakage of her
information through the platform’s output. The second one is a local privacy loss because of the
leakage of her information through the raw data that she shares with the platform. Each user has a
heterogeneous privacy sensitivity for these two types of privacy losses. To model such heterogeneity,
for each i ∈ N , we let ci ∈ [0, 1] be her relative local privacy sensitivity, representing the relative
weight that user i assigns to the (per unit cost of) local privacy loss. We also let 1− ci be her relative
central privacy sensitivity, representing the relative weight that user i assigns to the (per unit cost of)
central privacy loss. Therefore, ci ≈ 1 implies that user i suffers a higher loss of privacy by sharing
her raw data with the platform (local privacy loss) compared to her loss from the platform’s output

1This assumption does not have any fundamental impact on the results and is made to simplify the notations.
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(central privacy loss). Differently, ci ≈ 0 implies that the user suffers a smaller loss of privacy by
sharing her raw data with the platform compared to her loss from the platform’s output. In what
follows, we use the term privacy sensitivity instead of relative local privacy sensitivity.

For each i ∈ N , the privacy sensitivity ci is independently drawn from a publicly known distribution
whose support is [0, 1] with cumulative distribution and probability density functions Fi(·) and fi(·).
We also let c = (c1, . . . , cn) be the vector of privacy sensitivities. The privacy sensitivity of each
user is her private information, i.e., the platform does not know it. This is because individuals have
different views regarding how trustworthy the platform is in protecting their raw data.

The platform’s objective is to design a mechanism to collect users’ data by paying them to compensate
for their privacy losses without knowing the privacy sensitivity of users. To introduce the platform’s
objective formally, we adopt the formalism of Bayesian mechanism design pioneered by Myerson
[1981]. More specifically, the platform designs and announces a payment function, a local privacy loss
function, and a central privacy loss function that are mappings from the reported privacy sensitivities
of users. The users then report their privacy sensitivities (which may or may not be truthful). Based
on the payment function, the platform compensates the users (the compensation could be monetary
or some free or discounted service provided to the user). Based on the local and central privacy
functions, the platform designs randomized channels and randomized estimation algorithms that
deliver the guaranteed local and central privacy losses while minimizing the sum of the mean squared
error and the total expected payments. Given this interaction, we next formally introduce a data
acquisition mechanism with two-part data privacy guarantees.

Definition 4 (two-part private data acquisition mechanism). We call the tuple (θ̂, ε(l), ε(c), t) a
two-part private data acquisition mechanism where

1. For all i ∈ N , ε(l)i : Rn+ → R+ is a function that maps the vector of privacy sensitivities c
to a local privacy loss for user i, ε(l)i (c), with ε(l)(·) = (ε

(l)
i (·))ni=1.

2. For all i ∈ N , ε(c)i : Rn+ → R+ is a function that maps the vector of privacy sensitivities c
to a central privacy loss for user i, ε(c)i (c), with ε(c)(.) = (ε

(c)
i (·))ni=1.

3. θ̂ : Xn × Rn+ × Rn+ → R is a (ε(c)(c), α)-Rényi differentially private estimator that maps
acquired locally (ε

(l)
i (c), α)-Rényi differentially private data of user i for i ∈ N to an

estimate θ̂(x, ε(l)(c), ε(c)(c)).

4. For all i ∈ N , ti : Rn+ → R+ is a function that maps the vector of privacy sensitivities c to
a payment for user i, ti(c), with t(.) = (ti(·))ni=1.

Notice that we have not specified the estimator and the mechanisms that delivers (local and central)
Rényi differential privacy. In the rest of this subsection, we introduce the utilities and the platform’s
problem for a general estimators and mechanisms to deliver differential privacy. Later, we focus on
linear estimator and Gaussian mechanisms and explicitly solve the platform’s problem.

Each user that participates in a two-part private data acquisition mechanism suffers from both the
local and central privacy losses and need to be compensated by the platform. In particular, the utility
of user i from participation when her privacy sensitivity is ci and she reports c′i is given by

ui(ε
(l)(c′i, c−i), ε

(c)(c′i, c−i), t, θ̂) = Ec−i [ti(c−i, c
′
i))− ciε

(l)
i (c−i, c

′
i)− (1− ci)ε

(c)
i (c−i, c

′
i)],

where the term ti(c−i, c
′
i)) is the payment from the platform, the term ciε

(l)
i (c−i, c

′
i) is the relative lo-

cal privacy sensitivity of the user multiplied by her local privacy loss, and the term (1−ci)ε(c)i (c−i, c
′
i)

is her relative central privacy sensitivity multiplied by her central privacy loss. A user i ∈ N that
does not participate in the mechanism neither compromises her privacy nor gets a compensation.
Therefore, the utility of a user who does not participate in the mechanism becomes 0.

The goal of the platform is to minimize the sum of the mean squared error and the overall payment to
users. We let γ ∈ R+ represents the relative weight of the mean estimation error and the payments in
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the platform’s objective.2 Therefore, the platform’s objective is

Ec[γMSE(ε(l)(c), ε(c)(c), θ̂) +
n∑
i=1

ti(c)],

where the first term is the mean square error of estimator θ̂ given reported vector of privacy sensitivity
and resulting local and central privacy losses ε(l) and ε(c), i.e.,

MSE(ε(l)(c), ε(c)(c), θ̂) = Ex[|θ̂(x̂, ε(l), ε(c))− θ|2].
Also, each summand of the second term is the compensation that the platform gives to a user to
incentivize her to participate and report her privacy sensitivity truthfully.

In Appendix we prove that, similar to the classical mechanism design setting, revelation principle
holds. This means that there is no loss of generality in focusing on the class of direct incentive
compatible mechanisms, meaning the platform’s optimization problem can be written as

min
ε(l)(·),ε(c)(·),t(·)

Ec[γMSE(ε(l)(c), ε(c)(c), θ̂) +
n∑
i=1

ti(c)] (3)

ui(ε
(l)(c), ε(c)(c), t, θ̂) ≥ ui(ε

(l)(c′i, c−i), ε
(c)(c′i, c−i), t, θ̂) (4)

ui(ε
(l)(c), ε(c)(c), t, θ̂) ≥ 0 for all i ∈ N , ci, (5)

where the constraints in (4) represent the incentive compatibility. These constraints guarantee that
that each user i has no incentive to misrepresent her privacy sensitivity when others report truthfully
(reporting truthfully is an equilibrium of the game among the users). Also, the constraints in (5)
represent individual rationality, which ensures that each user receives a non-negative utility from
participating in the platform’s mechanism and sharing her data.

3 From the mechanism design problem to an optimization problem

For a given estimator θ̂, the platform’s decision comprises the local and central privacy loss functions
ε(l)(·) and ε(c)(·) together with the payment functions t(·). We next show that this problem can be
equivalently formulated as an optimization problem over the vector of local privacy losses and central
privacy losses (as opposed to functions). In the rest of the paper, we impose the following assumption
which is well-known in the mechanism design literature and simplifies the analysis.3

Assumption 1. For any user i ∈ N , the virtual cost defined as ψi(c) = c+ Fi(c)
fi(c)

is increasing in c,
where fi(·) and Fi(·) are probability density and cumulative distribution functions of ci, respectively.

The above assumption holds for a wide class of distributions such as the ones with log-concave
density functions (e.g., uniform).

Theorem 2. Suppose Assumption 1 holds. For a given estimator θ̂ : X̂n × Rn+ × Rn+ → R, in the
optimal two-part data acquisition mechanism, for a given vector of reported privacy sensitivities c,
the local and central privacy losses are the solution of

min
{ε(l)}n

i=1,{ε(c)}n
i=1

γMSE(ε(l), ε(c), θ̂) +
n∑
i=1

ε
(l)
i ψi(ci) +

n∑
i=1

ε
(c)
i (1− ψi(ci)). (6)

Proof Sketch of Theorem 2: We introduce the following interim functions

ti(ci) =Ec−i
[t(ci, c−i)], ε

(l)
i (ci) = Ec−i

[ε
(l)
i (ci, c−i)], and ε(c)i (ci) = Ec−i

[ε
(c)
i (ci, c−i)].

We first establish a payment identity that determines the optimal payment in terms of the optimal
local and central privacy losses. In particular, by evaluating the first order condition corresponding to
the incentive compatibility constraint (4), we establish that this constraint holds if and only if

ti(ci) = ti(0) + ε
(c)
i (ci)− ε

(c)
i (0) + ci(ε

(l)
i (ci)− ε

(c)
i (ci))−

∫ ci

0

(ε
(l)
i (z)− ε

(c)
i (z))dz,

2Notice that changing the parameter γ enables us to study a wide range of platform’s objectives with differing
relative weights between the estimation error and the total payments.

3Without this assumption, extending the results requires ironing technique of Myerson [1981].
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and ε(l)i (z)− ε
(c)
i (z) is weakly decreasing in z. We then plug in this payment identity back to the

platform’s objective, use the individual rationality constraint, and rewrite the platform’s expected
utility in terms of the privacy loss functions and the virtual cost of users. This is still a functional
optimization problem in terms of ε(l)(·) and ε(c)(·). However, we establish that, under Assumption 1,
we can solve this functional optimization point-wise (i.e., for any given c). ■

Theorem 2 highlights the tradeoff in the platform’s problem: by decreasing the local privacy loss,
the second term of the objective decreases (this term corresponds to the payment to users) while
the first term (i.e., the mean squared error) increases. The role of the central privacy loss is more
nuanced, and there are two cases. If the coefficient 1 − ψi(ci) is non-negative, by decreasing the
central privacy loss, the third term of the objective decreases while the first term increases. If the
coefficient 1− ψi(ci) is negative, increasing the central privacy loss decreases both the third term
and the first term. However, we cannot increase the central privacy loss level without limits because
the central privacy loss level is always below the local privacy loss level. Therefore, the platform’s
optimal mechanism should find the “right” balance between these terms.

4 Optimal mechanism with two-part privacy guarantees for linear estimators

For the rest of the paper, we focus on linear estimators with Gaussian mechanism described in Section
2.1. The following is a direct corollary of Theorem 2.
Corollary 1. Suppose Assumption 1 holds. For any reported vector of privacy sensitivities c, the
optimal local privacy loss levels are ε(l)i (c) = y∗i and the optimal central privacy loss levels are

ε
(c)
i = w∗

i
2/

n∑
j=1

w∗
j
2

y∗j
where (w∗

1 , . . . , w
∗
n) and (y∗1 , . . . , y

∗
n) are the optimal solution of

min
w,y

VARγ

n∑
i=1

w2
i +

γα

2

n∑
i=1

w2
i

yi
+

n∑
i=1

(1− ψi(ci))
w2
i∑n

j=1

w2
j

yj

+

n∑
i=1

ψi(ci)yi (7)

s.t. wi, yi ≥ 0, for all i ∈ N and
n∑
i=1

wi = 1.

Let us highlight the difference between our characterization and that of classic mechanism design (e.g.,
Myerson [1981]). In classic mechanism design, the designer’s problem becomes linear optimization.
However, in our setting, the designer’s problem is a non-linear and non-convex optimization. This
makes the problem of finding the optimal two-part data acquisition mechanism challenging. Before
addressing this computational challenge, let us revisit the form of the Gaussian mechanism that we
have adopted: the platform adds Gaussian noise locally and then outputs a convex combination of
the privatized users’ data without adding any noise centrally. More specifically, one may guess that
the platform may benefit by having a central noise added to the final output in addition to the local
noises. In the following subsection, we establish that there is another Gaussian mechanism for any
Gaussian mechanism that only adds local noises and achieves a weakly lower cost.

4.1 Optimality of having only local noises in the Gaussian mechanism

The platform has the opportunity of adding Gaussian noise to both the raw data of each user and the
final estimator and ex-ante one may guess that it is optimal to use both of these instruments. However,
as we establish next, interestingly, in the optimal two-part data acquisition mechanism, it is always
optimal to only add noises locally.

For a given vector of local privacy losses (ε(l)1 , . . . , ε
(l)
n ) and central privacy losses (ε(c)1 , . . . , ε

(c)
n ), a

Gaussian mechanism with both local and central noises is of the form

θ̂(x1, . . . , xn) :=

n∑
i=1

wix̂i +N (0,
α

2ε
) where

n∑
i=1

wi = 1 and x̂i = xi +N (0,
α

2ε
(l)
i

)∀i ∈ N .

Proposition 1. In the optimal two-part data acquisition mechanism that adopts a Gaussian mecha-
nism with both local and central noises, we have ε = ∞.
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Algorithm 1: Computing the optimal two-part private data acquisition mechanism
Input: The vector of privacy sensitivities (c1, . . . , cn)
for S ∈ Grid

(
[S, S̄], δ

)
do

Let

νi =
1

γVAR + (1− ψi(ci))/S
, ζi =

νi∑
j νj

, ξi = ζi

 n∑
j=1

νj(
√
ψj(cj)−

√
ψi(ci))

 .

Let p =
( ∑n

i=1 ζi
√
ψi(ci)

S−
∑n

i=1

√
ψi(ci)ξi

)2

.

Let

wi(S) =
νi + νi

∑
j νj

√
ψj(cj)p∑

j νj
− νi

√
ψi(ci)p, yi(S) = wi(S)

√
p

ψi(ci)
,

and OBJ(S) be the objective of Problem (7) evaluated for this solution.
end
Output: {yi(S∗), wi(S

∗)}ni=1, where (S∗) = argmin(S) OBJ(S).

Proposition 1 has an important implication in terms of the design of data market architecture when
users have both central and local privacy costs: it is optimal to add noise locally! Adding a noise
centrally to the final estimator has an advantage because the weights in the final estimator give the
platform a lever to deliver heterogeneous central privacy guarantees to users. Despite this advantage,
we establish that adding noise centrally is never optimal. This is because the platform prefers to add
the noise locally to contribute to both central and local privacy guarantees delivered to users.

4.2 Computing the optimal privacy loss function

The implementation of the optimal two-part private data acquisition mechanism requires solving
Problem (7), which is a non-convex program. However, we use the structure of the problem to develop
a polynomial time algorithm to solve it approximately. To do so, we first replace

∑n
i=1 w

2
i /yi by an

auxiliary variable S. Next, we consider the corresponding lagrangian problem. Using Karush-Kuhn-
Tucker (KKT) conditions, we establish a number of relations between problems’ parameters, S, and
p, the lagrangian coefficient corresponding to S =

∑n
i=1 w

2
i /yi. Furthermore, we develop upper and

lower bounds for S. Finally, we do a grid search to find the approximate optimal solution.

Theorem 3. For any vector of reported privacy sensitivities and ϵ > 0, Algorithm 1 finds local privacy
loss levels and the differentially private linear estimator of the two-part data acquisition mechanism
whose cost (i.e., platform’s objective) is at most 1 + δ of the optimal cost in time poly(n, 1δ ).

Notice that the approximation factor in Theorem 3 depends on the underlying parameters. Therefore,
we have a Polynomial Time Approximation Scheme (PTAS) for finding the optimal two-part data
acquisition mechanism in the class of linear estimators.

In the Appendix, we provide a case study with two users to illustrate the performance of the optimal
two-part data acquisition mechanism in terms of the guaranteed privacy levels and payments as
functions of the reported privacy sensitivities.

5 Conclusion

In this paper we develop a unified framework to study the design of data acquisition mechanisms
when users have both local and central privacy concerns and are heterogeneous in how they value
these two privacy concerns. We use Rényi differential privacy to measure the privacy loss of users
and first establish a minimax lower bound that motivates us to focus on linear estimators. We then
establish a point-wise optimization problem whose solution fully characterizes the optimal data
acquisition mechanism that constitute a payment scheme to compensate users for their privacy losses,
a local privacy guarantee, and a central privacy guarantee all as a function of users’ preferences for

9



local and central privacy concerns. We then focus on linear estimators, motivated by our optimality
results, and establish that, even though the corresponding optimization problem is non-convex, the
platform’s problem admits a Polynomial Time Approximation Scheme. Finally, we focused on
data acquisition to estimate mean population. However, our framework is more general and allows
for considering other (potentially vector) estimates. In particular, our Theorem 2 converts the data
acquisition mechanism design problem into a (potentially) non-convex optimization problem.
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