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Abstract

This paper studies the fundamental problem of learning energy-based model (EBM)
in the latent space of the generator model. Learning such prior model typically
requires running costly Markov Chain Monte Carlo (MCMC). Instead, we propose
to use noise contrastive estimation (NCE) to discriminatively learn the EBM
through density ratio estimation between the latent prior density and latent posterior
density. However, the NCE typically fails to accurately estimate such density ratio
given large gap between two densities. To effectively tackle this issue and learn
more expressive prior models, we develop the adaptive multi-stage density ratio
estimation which breaks the estimation into multiple stages and learn different
stages of density ratio sequentially and adaptively. The latent prior model can be
gradually learned using ratio estimated in previous stage so that the final latent
space EBM prior can be naturally formed by product of ratios in different stages.
The proposed method enables informative and much sharper prior than existing
baselines, and can be trained efficiently. Our experiments demonstrate strong
performances in image generation and reconstruction as well as anomaly detection.

1 Introduction

Deep generative model provides a powerful framework for representing complex data distributions
and have seen many successful applications in image and video synthesis [21, 43, 51], representation
learning [34] as well as unsupervised or semi-supervised learning [19, 37]. Such model, referred to
as generator model, usually consists of low-dimensional latent variables that follow non-informative
prior distribution, and a top-down network that maps such latent vector to the observed example. The
informative prior model in the latent space [36, 1] can be learned to further improve the expressive
power of the whole model. Specifically, we consider learning energy-based model (EBM) in the
latent space as our informative prior for the generator model.

Learning latent space EBM can be challenging and requires iterative Markov Chain Monte Carlo
(MCMC) sampling step which is computationally expensive and sensitive to hyperparameters. In this
paper, we instead propose to use noise contrastive estimation (NCE) [12] for learning EBM prior
via density ratio estimation. The EBM is learned discriminatively by classifying the latent vector
sampled from the prior density and the latent sampled from posterior density. Instead of variational
learned inference [23, 41] which needs a separate inference network designed, we obtain the posterior
latent sample through short-run Langevin dynamics [33] to ensure more accurate inference. However,
the success of NCE depends on the closeness of prior density and posterior density [18]. Given large
gap between two densities, NCE typically fails to accurately estimate such density ratio which leads
to inaccurate EBM modeling.

To effectively tackle the inaccurate estimation issue and further learn more expressive prior model, we
develop the adaptive multi-stage density ratio estimation for latent space EBM training. The proposed
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model breaks the density estimation into multiple stages and learn different stages of density ratio
sequentially. Thanks to the low-dimensionality of the latent space and the short-run style posterior
inference, in each stage, the gap between prior and posterior density could be kept in check which
makes NCE easier. The density ratio estimated in previous stage can be further integrated into the
current prior model as a correction term to build more expressive prior density for later stage. With
such framework, the final latent space EBM prior can then be naturally formed by product of ratios in
different stages on top of the initial base prior.

Contributions: 1) we propose an EBM prior on generator model which is modelled through
estimation of density ratios in multiple stages. 2) We develop the adaptive multi-stage noise contrastive
estimation to learn different stages of ratios sequentially and adaptively. The ratio estimated in
previous stage can be integrated to form the more informative prior in the later stage. 3) we
demonstrate strong empirical results to illustrate the proposed method.

2 Background

2.1 Maximum likelihood learning of deep latent variable models

Let x ∈ RD be an observed example such as an image, and z ∈ Rd be the latent variables where
d < D. A latent variable generative model (a.k.a, generator model) factorize the joint distribution of
(x, z) as

pθ(x, z) = p(z)pθ(x|z), (1)

where p(z) is the prior distribution over latent variables z , pθ(x|z) is the top-down generation model
with parameters θ. Usually the prior distribution is chosen to be a simple one such as N (0, Id), but it
can also be more expressive with learnable parameters [36]. The generation model is the same as that
in VAE [23], i.e., x = gθ(z) + ϵ with gθ to be the decoder network and ϵ ∼ N

(
0, σ2ID

)
, so that

pθ(x|z) = N
(
gθ(z), σ

2ID
)
. As in VAE, σ2 takes a pre-specified value.

Given a set of N training samples {xi, i = 1, . . . , N} from the unknown data distribution
pdata(x), the model pθ can be trained by maximizing the log likelihood over training samples
L(θ) = 1

N

∑N
i=1 log pθ (xi). Maximizing the log likelihood L(θ) can be accomplished by gradient

ascent where the gradient can be obtained from

∇θ log pθ(x) =
1

pθ(x)
∇θpθ(x) =

∫
[∇θ log pθ(x, z)]

pθ(x, z)

pθ(x)
dz

= Epθ(z|x) [∇θ log pθ(x, z)] . (2)

∇θ log pθ(x, z) can be easily computed according to the form of log pθ(x, z), however, approximating
the expectation requires drawing samples from pθ(z|x), which can be difficult. Sampling from the
intractable posterior pθ(z|x) requires MCMC, and one convenient MCMC algorithm is Langevin
Dynamics (LD) [30]. Given a step size s > 0, and an initial value z0, the Lanegvin dynamics iterates

zk+1 = zk +
s

2
∇z log pθ(z|x) +

√
sωk, (3)

where ωk ∼ N (0, I). For sufficiently small step size s, the marginal distribution of zk will converge
to pθ(z|x) as k → ∞. However, it is not feasible to run Langevin dynamics until convergence, and
in practice the iteration in Eq. 3 is run for finite iterations, which yields a Markov chain with an
invariant distribution approximately close to the original target distribution. When z0 is initialized
from the noise distribution, the algorithm is called noise-initialized short-run LD [32, 33].

2.2 Learning EBMs with discriminative density ratio estimation

Suppose there are two distributions with density functions p(x) and q(x) from which we can sample,
we can estimate the density ratio1 r(x) = p(x)

q(x) by training a classifier to distinguish samples from p

and q [44]. Specifically, we can train the binary classifier D : Rn → (0, 1) by minimizing the binary
cross-entropy loss

min
D

−Ex∼q(x)[logD(x)]− Ex∼p(x)[log(1−D(x))].

1Assuming q(x) > 0 when p(x) > 0.
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The objective is minimized when D(x) = q(x)
q(x)+p(x) [11], and denoting the classifier at optimality by

D∗(x), we have r(x) = p(x)
q(x) ≈ 1−D∗(x)

D∗(x) . Equivalently, the ratio r(x) = p(x)
q(x) can be estimated by

directly minimizing

L(ϕ) =− Ex∼p(x) log

(
rϕ (x)

1 + rϕ (x)

)
− Ex∼q(x) log

(
1

1 + rϕ (x)

)
, (4)

where rϕ(x) is a non-negative ratio estimating model implemented as the exponential of an uncon-
strained neural network with scalar output. The minimizer ϕ∗ satisfies rϕ∗(x) = p(x)

q(x) [12].

Such a technique can be useful for training Energy-based models (EBMs). Given samples from the
true data distribution pdata(x) and a base distribution q(x) that we can sample from, we consider EBMs
of the form pϕ(x) =

1
Z rϕ(x)q(x), where Z is the normalizing constant and rϕ is an unconstrained

positive function. With this parametrization, obviously the optimal rϕ equals the density-ratio pdata(x)
q(x) .

In fact, if rϕ(x) is trained with density ratio estimation, the normalizing constant Z is simply 1.
Therefore, the problem of learning an EBM becomes the problem of estimating a density-ratio, which
can be solved by discriminative density ratio estimation. Typically the base distribution q(x) is
chosen to be Gaussian, resulted in so-called noise contrastive estimation (NCE) [12].

Although NCE provides a promising way to train EBMs without running MCMC, the accuracy
of the density ratio estimation depends on the closeness between the two distributions. The ratio
estimator is often severely inaccurate when the gap between p and q is large. Rhodes et al. [42]
propose Telescoping density-Ratio Estimation (TRE), which breaks the density ratio estimation
task into a collection of harder sub-tasks and show improvement over simple NCE on density ratio
estimation. However, it is still difficult to apply the technique to energy-based modeling. On one
hand, EBMs in high-dimensional data space such as image space can be highly complex and multi-
modal, making them extremely far away from simple noise distribution. On the other hand, the
intermediate distributions are pre-designed through linear transition, making them less effective to
connect complicated target densities. In Rhodes et al. [42], TRE only obtains limited success on
training EBMs through density estimation on MNIST dataset.

3 Adaptive Multi-stage Desnity Ratio Estimation

In this section, we introduce adaptive multi-stage density ratio estimation on latent space in details.

3.1 Multi-stage density ratio estimation in latent space

Instead of modeling directly on high-dimensional data space, it is easier to introduce low-dimensional
latent variables and learn an EBM in latent space, while also learning a mapping from the latent space
to the data space [3, 26]. We follow this approach and attempt to model a latent space EBM using
contrastive estimation.

The latent EBM can be learned discriminatively by estimating the ratio between prior density and the
posterior density. Due to low-dimensionality of the latent space, such densities can be much easier to
deal with than those in high dimensional data space. However, it presents new challenges. Firstly,
while the target density in data space is given and fixed (i.e., empirical data distribution), posterior
density in latent space is driven by the prior density and the inference on the posterior can be hard.
Secondly, while the prior is typically assumed to be un-informative and fixed (e.g., unit Gaussian),
the expressiveness of the model is limited.

Inspired by [42], we propose to learn the latent space EBM of the below form through multiple stages

pϕ(z) =

m−1∏
k=0

rϕk
(z) p0(z), (5)

where p0(z) is the unit Gaussian base distribution, and rϕk
is the intermediate density ratio learned in

each stage. Such proposed model shares the similar root as the Product-of-Expert (PoE) [17] where
rϕk

in each stage can be treated as individual expert model, and it has the potential to produce much
sharper distribution than the one with single expert model built such as [36].
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Figure 1: Training adaptive multi-stage density ratio estimation. We estimate the density ratio rk(z)
in each stage using contrastive estimation which trains a classifier to distinguish samples from the
prior pϕk

(z) and samples from the aggregate posterior qk(z). Posterior samples are obtained by
short-run LD (blue dashed curve), prior samples can be obtained either by short-run LD (orange
dashed curve) or using persistent chain (orange dashed line). The ratio estimated in stage k can be
integrated to form a new prior in stage k + 1. The whole prior is adapted across multiple stages and
learned sequentially.

Although the formulation of EBM in Eq. 5 is related to the TRE proposed in Rhodes et al. [42], our
training method is fundamentally different. In the next section, we will introduce the training of our
model, and highlight the distinction with TRE.

3.2 Learning latent EBMs with adaptive multi-stage density ratio estimation

Our proposed generator model specifies the distribution on joint space (x, z): pθ,ϕ(x, z) =
pϕ(z)pθ(x|z), where pϕ(z) is the prior model specified in Eq. 5, and ϕ = {ϕ0, . . . , ϕm−1} that
collects parameters for all intermediate learned ratios.

It is tempting to apply maximum likelihood estimation (MLE) to train such model. However, there are
several challenges: (1) learning of latent EBM pϕ(z) needs costly and hard mixing MCMC sampling.
(2) the prior pϕ(z) needs to have a fixed form during training and cannot be adaptively adjusted. To
alleviate the aforementioned limitations, we therefore break the density ratio estimation of pϕ(z) into
m stages, learn and build the prior sequentially and adaptively. Specifically, in the kth stage, we
consider the generator model of the form

pθ,ϕk
(x, z) = pϕk

(z)pθ(x|z), (6)

where pϕk
(z) =

∏k−1
i=0 rϕi

(z) p0(z). The whole training procedure iterates between the maximum
likelihood estimation of generation model θ and the sequential contrastive estimation of prior ϕ.

MLE for generation model θ: The generation model can be trained by maximizing the marginal
log-likelihood pθ(x). In kth stage, the complete data log-likelihood of the model pθ,ϕk

(x, z) can be
expressed as

log pθ,ϕk
(x, z) = log [pϕk

(z)pθ(x|z)] = log pϕk
(z)− 1

2

[
∥x− gθ(z)∥2 /σ2

]
+ C

where gθ is the decoder and C is a constant independent of θ. The generation model parameter θ is
then updated using the gradient based on Eq. 2 with a batch of training n samples xi:

θt+1 = θt + ηt

n∑
i=1

Epθt (zi|xi)

[
∂

∂θ
log pθ,ϕk

(xi, zi)

∣∣∣∣
θ=θt

]
, (7)

where ηt is the learning rate. The expectation over the posterior can be approximated by running
short-run Lanegvin dynamics in Eq. 3. Note that the running LD to sample from pθ(z|x) is equivalent
to sample from pθ(x, z) with fixed x.

Adaptive multi-stage NCE for prior ϕ: The prior model pϕ(z) can be sequentially and adaptively
learned to bridge the gap between prior and posterior densities in the previous stages. Specifically, in
kth stage, the correction term rϕk

can be trained to estimate the density ratio between pϕk
(z) and its
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aggregated posterior qk(z) through contrastive estimation using Eq. 4. The appealing advantage of
this estimator is that it simply trains a binary classifier rather than using expensive MCMC sampling.
The optimality of such logistic loss leads to the estimated rϕk

(z) ≈ qk(z)
pϕk

(z) .

The prior model in the (k + 1)th stage can then be sequentially adapted to match the previous
aggregated posterior qk(z), i.e., letting pϕk+1

(z) = rϕk
(z)pϕk

(z) match qk(z). Given the new prior,
we similarly infer the posterior using short-run LD in Eq. 3. Then, the next density ratio estimator
rϕk+1

can be learned through contrastive estimation to match the updated prior and its aggregated
posterior, which is further used to adapt the prior in next stage. Particularly, we have

qm−1(z)

p0(z)
=

qm−1(z)

pϕm−1
(z)

qm−2(z)

pϕm−2
(z)

· · · q0(z)
p0(z)

,

where qk(z) is the aggregated posterior for prior pϕk
(z). The above telescoping product holds since

the new prior is designed to match the aggregated posterior in previous stage, i.e., pϕk+1
(z) ≈ qk(z).

Each stage estimates the ratio rϕk
(z) ≈ qk(z)

pϕk
(z) via contrasive estimation. Then the aggregated

posterior qm−1(z) can be obtained via

qm−1(z) = rϕm−1
(z) pϕm−1

(z) =

m−1∏
k=0

rϕk
(z) p0(z),

Our final prior model can then be obtained by matching such aggregated posterior qm−1(z) which
has the same form as Eq. 5. The proposed training is illustrated in Figure 1 and the algorithm is
detailed in Algorithm 1.

Comparison with TRE in Rhodes et al. [42]: The most significant difference between our training
method and TRE is that TRE assumes a fixed target distribution and construct multiple stages
simultaneously via interpolation, whereas our model considers adaptive targets and learn multi-stage
density ratio estimators sequentially via NCE. We conduct empirical comparisons in Sec. 5.5.

Sampling from prior pϕk
(z): The density ratio estimation of rϕk

in each stage requires the samples
from the prior pϕk

(z) and posterior. The posterior samples are inferred through short-run Langevin
dynamics which can be efficient and accurate. For drawing prior samples from pϕk

(z), we can either
use short-run prior Langevin dynamics or persistent update.

One one hand, we could directly utilize the short-run Langevin on the pϕk
(z) to obtain prior samples.

On the other hand, the samples from prior can also be obtained in a persistent chain manner to avoid
the prior Langevin altogether. When introducing the (k + 1)th stage of density ratio estimation, we
assume that the current estimator rϕk

(z) performs well in modeling the ratio between the current
aggregated posterior distribution qk(z) and current prior pϕk

(z). Therefore, we simply use samples
from qk(z) to approximately serve as samples from the new prior pϕk+1

(z) for the learning of
rϕk+1

(z). In practice, it is achieved by maintaining a memory matrix that stores a posterior samples
z̃i associated to each data point xi. Note that we only need to keep one memory matrix throughout
the training, as only the posterior samples from the previous stage are needed.

Test time sampling: After obtaining the density ratio estimators in each stage and form the final
EBM prior pϕ(z), we can sample latent variables z ∼ pϕ(z) and produce sample x by decoding
z. Sampling from pϕ(z) can be done by either running Langvin dynamics with ∇z log pϕ(z) =

∇z

(∑m−1
i=0 log rϕi

(z)− 1
2∥z∥

2
)

, or Sampling-Importance-Resampling (SIR) techniques.

4 Related Work

Latent variable deep generative models: Our proposed method aims to improve the performance
of latent variable deep generative models. Such models consist of a decoder for generation, and
require an inference mechanism to infer latent variables. VAEs [23, 46] learn the decoder network by
training a tractable inference network (encoder) to approximate the intractable posterior distribution
of the latent variables. Alternatively, Han et al. [13, 14], Xie et al. [52], Nijkamp et al. [33] infer the
latent variables by Langevin sampling from the posterior distribution without using a encoder. Our
method follows the latter approach that uses Langevin sampling to infer latent variables.
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Algorithm 1: Adaptive Multi-stage Density Ratio Estimation.
input :Learning iterations T , number of stages K, observed examples {xi}ni=1, number of posterior

sampling steps L, initial prior model p0(z)
output : Estimated parameters θ, ϕk, k = 1, . . . ,m.
k = 0
for t = 0 : T − 1 do

1. Mini-batch: Sample observed examples {xi}mi=1.
2. Posterior sampling for qk(z) : For each xi, sample zi ∼ pθt(z|xi) using Eq. (3) for L steps with

current prior pk(z).
3. Learning density ratio rϕk (z): Update ϕk using contrastive estimation between qk(z) and pk(z)

via Eq. (4).
4. Learning generation model: update θ according to Eq. (7)
if t is a multiple of T/K then

5. Stage transition and prior update: Construct new stage k = k + 1, update the prior
pk(z) = rϕk−1(z)pk−1(z)

Discriminative contrastive estimation for learning generative models: The efforts has been
made to combine the discriminative and generative models [27, 20, 47], particularly, as introduced in
Section 2.2, discriminative contrastive estimation can be applied to learning EBMs. Gao et al. [7] use
a normalizing flow [38] as the base distribution for contrastive estimation. Aneja et al. [1] refine the
prior distribution of a pre-trained VAE by noise contrastive estimation. However, such a method may
fail if the empirical latent distribution (called aggregated posterior) is far away from the Gaussian
noise. Rhodes et al. [42] propose telescoping density-ratio estimation, which breaks the estimation
into several sub-problems. The method is connected to a range of methods leverage sequences of
intermediate distributions such as [8, 29, 24].

Generator model with flexible prior: Our method trains an energy-based prior on the latent space
by proposed adaptive multi-stage NCE, so our work is related to the broader line of previous papers
on introducing flexible prior distribution. Tomczak and Welling [45] parameterized the prior based on
the posterior inference model, and [2] proposed to construct priors using rejection sampling. Some
previous work adopt a two-stage approach, which first trains a latent variable model with simple prior,
and then trains a separate prior model to match the aggregated posterior distribution. For example,
2s-VAE [4] trains another VAE in the latent space; Ghosh et al. [9] fit a Gaussian mixture model on
latent codes. Additional work in this line include [34, 5, 48, 50, 39, 53, 54].

Pang et al. [36] have the closest connection to our work. Similar to us, they introduce an EBM on the
latent space. Both the latent space EBM and the generator network are learned jointly by maximum
likelihood, and in particular the training involves short-run MCMC sampling from both the prior and
posterior distributions. In contrast, we sequentially learn a more expressive EBM with our novel
adaptive multi-stage NCE, which avoids running MCMC for EBM prior. We also show improved
results on image generation and outlier detection tasks.

5 Experiments

In this section, we present a set of experiments which highlight the effectiveness of our proposed
method. We want to show that our method can (i) learn an generator model with expressive prior
distribution from which visually realistic images can be synthesized, (ii) generalize well by faithfully
reconstructing test images during training, and (iii) successfully perform anomaly detection. To show
the performance of our method, we mainly include SVHN [31], CelebA [28] and CIFAR-10 [25] in
our study. Besides, we also include studies on the training dynamics and the Langevin sampling, as
well as ablation studies to better understand our method. Details about the experiments, including
network architecture, the choices of the model hyper-parameters and the optimization method for
each dataset can be found in Appendix A.

5.1 Image Synthesis and Reconstruction

We evaluate the quality of the generated and reconstructed images. Ideally, if the model is well-trained,
the EBM prior on latent space will fit the marginal distribution of latent variables, which in turn
leads to realistic samples and faithful reconstructions. We benchmark our model against a variety
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Table 1: MSE(↓) and FID(↓) obtained from models trained on different datasets. For our reported
results, the FID is computed based on 50k generated images and 50k real images and the MSE is
computed based on 10k test images.

SVHN CelebA CIFAR-10
MSE FID MSE FID MSE FID

VAE [23] 0.019 46.78 0.021 65.75 0.057 106.37
ABP [13] - 49.71 - 51.50 - -
SRI [33] 0.018 44.86 0.020 61.03 - -

SRI (L=5) [33] 0.011 35.32 0.015 47.95 - -
2s-VAE [4] 0.019 42.81 0.021 44.40 0.056 72.90

RAE [9] 0.014 40.02 0.018 40.95 0.027 74.16
NCP-VAE [1] 0.020 33.23 0.021 42.07 0.054 78.06
LEBM [36] 0.008 29.44 0.013 37.87 0.020 70.15

Adaptive CE (ours) 0.004 26.19 0.009 35.38 0.008 65.01

(a) SVHN (b) CelebA (c) CIFAR-10

Figure 2: Samples generated from our models trained on SVHN, CelebA and CIFAR-10 datasets.

of previous methods including VAE [23], Alternating Back-propogation (ABP) [13] and Short-run
Inference (SRI) [33] which assume a simple standard Gaussian prior distribution for the latent vector,
as well as recent two-stage methods such as 2-stage VAE [4], RAE [9] and NCP-VAE [1], whose prior
distributions are learned with posterior samples in a second stage after the generator is trained. We
also compare our method with LEBM [36], which learns a EBM prior adaptively during training the
generator, while the EBM prior is trained by maximum likelihood instead of density ratio estimation.
To make fair comparisons, we follow the protocol as in [36].

Synthesis: We report the quantitative results of FID [16] in Table 1, where we observe that across
all datasets, our proposed method achieves superior generation performance compared to baseline
models based with simple or learned prior distribution.

We show qualitative results of generated samples in Figure 2, where we observe that our model can
generate diverse, sharp and high-quality samples. Additional qualitative samples are presented in
Appendix C. To test our method’s scalability, we trained a larger generator on CelebA-HQ (128×128)
and show samples in Appendix C, the model can produce realistic samples.

Reconstruction: Note that the posterior Langevin dynamics should not only help to learn the latent
space EBM prior model but also produce samples that approximately come from true posterior
distribution pθ(z|x) of the generator model. To verify this, we evaluate the accuracy of the posterior
inference by looking at reconstruction error on test images. We quantitatively compare reconstructions
of test images with baseline models using mean square error (MSE) in Table 1. We observe that our
method consistently obtain lower reconstruction error than competing methods do. We also provide
qualitative results of reconstruction in Appendix B.

5.2 Anomaly Detection

Anomaly detection is another task to evaluate the generator model. With a generator and an EBM
prior model trained on in-distribution data, the posterior pθ(z|x) would have separated probability
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Table 2: AUPRC(↑) scores for unsupervised anomaly detection on MNIST. Numbers are taken from
[36] and results for our model are averaged over last 10 trials to account for variance.

Heldout Digit 1 4 5 7 9

VAE [23] 0.063 0.337 0.325 0.148 0.104
ABP [13] 0.095± 0.03 0.138± 0.04 0.147± 0.03 0.138± 0.02 0.102± 0.03
MEG [26] 0.281± 0.04 0.401± 0.06 0.402± 0.06 0.290± 0.04 0.342± 0.03

BiGAN-σ [55] 0.287± 0.02 0.443± 0.03 0.514± 0.03 0.347± 0.02 0.307± 0.03
LEBM [36] 0.336± 0.01 0.630± 0.02 0.619± 0.01 0.463± 0.01 0.413± 0.01

Adaptive CE (ours) 0.531 ± 0.02 0.729 ± 0.02 0.742 ± 0.01 0.620 ± 0.02 0.499 ± 0.01

densities for in-distribution and out-of-distribution (anomalous) samples. In particular, we decide
whether a test sample x is anomalous or not by first sampling z from the posterior pθ(z|x) by
short-run Langevin dynamics, and then computing the joint density pθ,ϕ(x, z) = pθ(x|z)pϕ(z). A
higher value of log joint density indicates the test sample is more likely to be a normal sample. Some
prior work on using latent variable generative model for anomaly detection includes [49, 15, 36].

Following the experimental settings in [26, 55], we set each class in the MNIST dataset as an
anomalous class and leave the other 9 classes as normal. Note that it is a challenging task and all
previous methods do not perform well. To evaluate the performance, we use the log-posterior density
to compute the area under the precision-recall curve (AUPRC) [6]. We compare our method with
related models in Table 2, where we observe that our method obtains significant improvements.

5.3 Analyzing Training Loss

In Figure 4, we plot the evolution of the density ratio estimation loss (Eq. 4) for each stage of
estimation during training. Our experiment has 4 estimation stages, resulted in 4 density ratio
estimators. We observe that the loss for the first stage, which estimates the density ratio between unit
Gaussian prior p0(z) and aggregated posterior is significantly lower than later stages, which estimate
the ratio between the updated prior and updated posterior. This observation is consistent with our
intuition: directly discriminating between Gaussian prior and posterior is very easy, while introducing
additional stages of estimation make the task more difficult, and hence the estimated density ratio is
more reliable. Higher losses in later stages also suggests that the prior is getting close to aggregated
posterior, as the discrimination becomes harder.

5.4 Analyzing Langevin Dynamics

Figure 3: Transition of Langevin dynamics ini-
tialized from p0(z) towards pϕ(z) for 200 steps. Figure 4: Density ratio estimation loss for each

estimation stage.

In Figure 3, we visualize the transition of Langevin dynamics initialized from p0(z) towards pϕ(z)
on a model trained on CelebA. The LD iterates for 200 steps, which is longer than the LD for
training (30 steps). We expect that with a well-trained pϕ(z), the trajectory of a Markov chain
should transit towards samples of higher quality. Indeed, we observe that the quality of synthesis
improves significantly with as the LD progresses. In addition, we observe human faces with different
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Table 3: Results for ablation study on CelebA dataset.
Method Adaptive Non-adaptive

# of stages 0 1 2 4 8 0 1 2 4 8
FID 62.78 44.17 39.85 35.38 35.84 62.78 43.84 42.61 42.48 43.06

identities along the LD, suggesting that the Markov chain can mix between different modes of
the prior distribution. This indicates that the density function of learned EBM prior has a smooth
geometry that allows MCMC to mix well.

5.5 Ablation Study

To better understand our proposed method, we conduct ablation study on number of density ratio
estimators and training methods. We use CelebA for the ablation experiments.

Number of stages. The most important hyper-parameter of our method is the number of density
ratio estimators, or equivalently, the number of training stages. We present the FID score of models
trained with different number of stages in the first part of Table 3. The line of 0 stage means no latent
EBM at all, i.e., simply training a generator model by short-run inference and sampling from it by
decoding z ∼ p0(z).

We make the following observations. Firstly, directly sampling latent variables from p0 leads to
poor results, while any latent EBM trained by density ratio estimation significantly improves the
performance, suggesting the necessity of learning the latent EBM. Secondly, we see that multi-stage
density ratio estimation can further significantly improve the performance of single-stage estimation.
The results indicate that multi-stage density ratio estimation facilitates the training of latent EBM by
gradually making the estimation task harder. We observe that the FID score does not improve for
more than 4 stages, and therefore we choose 4 as the number of stages for our main experiments.

Training method: adaptive vs. non-adaptive. It is important to distinguish our method from TRE
in Rhodes et al. [42]. TRE assumes the target distribution to be fixed, therefore, if we adopt TRE, the
posterior distribution pθ(z|x) will be a fixed one throughout the training. In contrast, our training
method is adaptive in the sense that the target posterior is updated by incorporating the current EBM
prior into the joint distribution when a new stage is introduced. To quantitatively compare these two
approaches, we also train non-adaptive version of the model and report the numbers in the second part
of Table 3. We observe that models trained with non-adaptive multi-stage density ratio estimation
obtain significantly worse results. Therefore, we believe that it is crucial to learn density ratios
sequentially with adaptive posterior.

5.6 Parameter Efficiency

One potential disadvantage of our method is its parameter inefficiency from multiple estimator
networks. Moreover, since the training is sequential, we cannot share parameters between estimators
as done in Rhodes et al. [42]. Fortunately, our EBM is on the latent space so the network is light-
weighted. For example, with 4 density ratio estimators, the number of parameters in the prior EBM
is only around 1% of the number of parameters in the generator. In addition, we confirm the larger
number of parameters in the latent EBM is not the cause of improvements, as we train a single stage
model with 4× size and observe no improvement.

6 Conclusions

In this paper, we propose adaptive multi-stage density ratio estimation, which is an effective method
for learning a EBM prior for a generator model. Our method learns the latent EBMs by introducing
multiple density ratio estimators that learn the density ratio between prior and posterior sequentially
and adaptively. We demonstrate the effectiveness of our method by conducting comprehensive
experiments, and empirical results show the advantage of our method on generation, reconstruction
and anomaly detection tasks.

As future directions, our method can potentially be applied to modeling the latent space of generator
models in other domains, such as text [35] and graph. We also tend to develop more advanced and
efficient inference schemes for posterior density estimation.
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