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Abstract

Text generation is of great importance to many natural language processing ap-
plications. However, maximization-based decoding methods (e.g., beam search)
of neural language models often lead to degenerate solutions—the generated text
is unnatural and contains undesirable repetitions. Existing approaches introduce
stochasticity via sampling or modify training objectives to decrease the probabilities
of certain tokens (e.g., unlikelihood training). However, they often lead to solutions
that lack coherence. In this work, we show that an underlying reason for model
degeneration is the anisotropic distribution of token representations. We present a
contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the
model’s representation space, and (ii) a decoding method—contrastive search—to
encourage diversity while maintaining coherence in the generated text. Extensive
experiments and analyses on three benchmarks from two languages demonstrate
that our proposed approach significantly outperforms current state-of-the-art text
generation methods as evaluated by both human and automatic metrics.1

1 Introduction

Open-ended neural text generation [19, 23] with Transformer [25] is an indispensable component in
various natural language applications, such as story generation [7, 20], contextual text completion [18],
and dialogue systems [22]. However, the conventional approach of training a language model with
maximum likelihood estimation (MLE) and decoding the most likely sequence is often not sufficient
[10, 27]. Specifically, this modelling formulation often leads to the problem of degeneration, i.e., the
generated texts from the language model tend to be dull and contain undesirable repetitions at different
levels (e.g., token-, phrase-, and sentence-level) [4]. To alleviate this problem, previous solutions
modify the decoding strategy by sampling from less likely vocabularies [7, 10]. While reducing
the generated repetition, these sampling methods introduce another critical problem (semantic
inconsistency)—the sampled text tends to diverge from or even contradict to the original semantics
defined by the human-written prefix [1]. Another approach addresses the degeneration problem by
modifying the model’s output vocabulary distribution with unlikelihood training [27].

In this work, we argue that the degeneration of neural language models stems from the anisotropic
distribution of token representations, i.e., their representations reside in a narrow subset of the entire
space [6, 5, 21]. In Figure 1(a), we showcase a cosine similarity matrix of token representations (taken
from the output layer of the Transformer) produced by GPT-2. We see that the cosine similarities
between tokens within a sentence are over 0.95, meaning that these representations are close to each

1Our code and models are publicly available at https://github.com/yxuansu/SimCTG.
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Figure 1: Token cosine similarity matrix of (a) GPT-2 and (b) SimCTG. (best viewed in color)

other. Such high similarity is undesirable as it can naturally cause the model to generate repetitive
tokens at different steps. In an ideal setting, the token representations should follow an isotropic
distribution, i.e., the token similarity matrix should be sparse and the representations of distinct
tokens should be discriminative as shown in Figure 1(b). Moreover, during the decoding process, the
sparseness of the token similarity matrix of the generated text should be preserved to avoid model
degeneration.

Based on the above motivations, we present SimCTG (a simple contrastive framework for neural text
generation) that encourages the model to learn discriminative and isotropic token representations.
We also present a novel decoding strategy to complement SimCTG, contrastive search. The key
intuitions behind contrastive search are: (i) at each decoding step, the output should be selected
from the set of most probable candidates predicted by the model to better maintain the semantic
coherence between the generated text and the human-written prefix, and (ii) the sparseness of the
token similarity matrix of the generated text should be preserved to avoid degeneration.

We conduct comprehensive experiments on three widely used benchmarks. We show that our approach
is generalizable to different tasks and different languages (§4 and §5) as well as different model
sizes (§4.3 and Appendix D). Specifically, the experimental results verify that SimCTG improves the
intrinsic qualities of the language model, as evaluated by perplexity and token prediction accuracy
(§4.2 and Appendix D). Moreover, we demonstrate that the proposed contrastive search significantly
outperforms previous state-of-the-art decoding methods in both human and automatic evaluations (§4
and §5). Furthermore, we provide in-depth analyses to get better insights on the inner-workings of
our proposed approach (§6).

2 Background

2.1 Language Modelling

The goal of language modelling is to learn a probability distribution pθ(x) over a variable-length text
sequence x = {x1, ..., x|x|}, where θ denotes model parameters. Typically, the maximum likelihood
estimation (MLE) objective is used to train the language model which is defined as

LMLE = − 1

|x|

|x|∑
i=1

log pθ(xi|x<i). (1)

However, as observed in many recent studies [6, 5, 21], training with likelihood maximization
objective often yields an anisotropic distribution of model representations (especially for Transformer-
based models) that undermines the model’s capacity.

2.2 Open-ended Text Generation

In this work, we focus on studying the task of open-ended text generation due to its generality
in various applications, such as story generation [7, 20], contextual text completion [18], poetry
generation [14], and dialogue systems [22]. Formally, conditioned on a human-written prefix (i.e.,
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context) x, the task is to decode a continuation x̂ from the language model and the resulting text
is {x1, .., x|x|, x̂|x|+1, ..., x̂|x|+|x̂|}. Typically, there are two classes of methods used for decoding,
which are (1) deterministic methods and (2) stochastic methods.

Deteriminstic Methods. Two widely used deterministic approaches are greedy and beam search
which aim to select the text continuation with highest probability based on the model’s probability
distribution pθ. However, solely maximizing the output probability often leads to dullness [13] and
degeneration [7, 10] in the generated text.

Stochastic Methods. To remedy the issues of deterministic decoding, several approaches have
been proposed to sample from pθ. To avoid sampling from the unreliable tail of distribution,
Fan et al. [7] proposed top-k sampling which draws sample from the vocabulary subset V (k) that
maximizes

∑
v∈V (k) pθ(v|x). Here, |V (k)|= k and x is the prefix context. Differently, the current

state-of-the-art nucleus sampling [10] draws sample from the smallest vocabulary subset U with
total probability mass above a threshold p ∈ [0, 1]; i.e., U is the smallest vocabulary subset such
that

∑
v∈U pθ(v|x) ≥ p. While the sampling approaches help to alleviate model degeneration, the

intrinsic stochasticity in these methods could cause the semantic meaning of the sampled text to
diverge from or even contradict to the human-written prefix [1].

3 Methodology

In this section, we first present how to apply contrastive learning to calibrate the representation space
of the language model. Then, we introduce our proposed contrastive search decoding algorithm.

3.1 Contrastive Training

Our goal is to encourage the language model to learn discriminative and isotropic token representa-
tions. To this end, we introduce a contrastive objective LCL into the training of the language model.
Specifically, given a variable-length sequence x = {x1, ..., x|x|}, the LCL is defined as

LCL =
1

|x|×(|x|−1)

|x|∑
i=1

|x|∑
j=1,j ̸=i

max{0, ρ− s(hxi , hxi) + s(hxi , hxj )}, (2)

where ρ ∈ [−1, 1] is a pre-defined margin and hxi
is the representation of token xi produced by the

model. The similarity function s computes the cosine similarity between token representations as

s(hxi , hxj ) =
h⊤
xi
hxj

∥hxi∥·∥hxj∥
. (3)

Intuitively, by training with LCL, the model learns to pull away the distances between representations
of distinct tokens.2 Therefore, a discriminative and isotropic model representation space can be
obtained. The overall training objective LSimCTG is then defined as

LSimCTG = LMLE + LCL, (4)

where the maximum likelihood estimation (MLE) objective LMLE is described in Eq. (1). Note that,
when the margin ρ in LCL equals to 0, the LSimCTG degenerates to the vanilla MLE objective LMLE.

3.2 Contrastive Search

We propose a novel decoding method, contrastive search. At each decoding step, the key ideas
of contrastive search are (i) the generated output should be selected from the set of most probable
candidates predicted by the model; and (ii) the generated output should be discriminative enough with
respect to the previous context. In this way, the generated text can (i) better maintain the semantic
coherence with respect to the prefix while (ii) avoiding model degeneration.

Formally, given the previous context x<t, at time step t, the selection of the output xt follows

xt = argmax
v∈V (k)

{
(1− α)× pθ(v|x<t)︸ ︷︷ ︸

model confidence

− α× (max{s(hv, hxj
) : 1 ≤ j ≤ t− 1})︸ ︷︷ ︸

degeneration penalty

}
, (5)

2By definition, the cosine similarity s(hxi , hxi) of the identical token xi is 1.0.
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where V (k) is the set of top-k predictions from the model’s probability distribution pθ(·|x<t) and k
is typically set as 3∼10. In Eq. (5), the first term, model confidence, is the probability of candidate
v predicted by the model. The second term, degeneration penalty, measures how discriminative of
candidate v with respect to the previous context x<t and s is defined in Eq. (3). Specifically, it is
defined as the maximum cosine similarity between the representation of v and that of all tokens in
x<t. Here, the candidate representation hv is computed by the model given the concatenation of x<t

and v. Intuitively, a larger degeneration penalty of v means it is more similar to the context, therefore
more likely leading to model degeneration. The hyperparameter α ∈ [0, 1] regulates the importance
of these two components. When α = 0, contrastive search degenerates to the greedy search method.

4 Document Generation

We first evaluate our approach on the task of open-ended document generation.

Model and Baselines. Our proposed approach is architecture-agnostic and can be applied to any
generation model. In this work, we evaluate our method on the representative GPT-2 model [18].
Specifically, we fine-tune GPT-2 on the evaluated benchmark (detailed below) with the proposed
objective LSimCTG (Eq. (4)) and generate the text continuation with different decoding methods. We
perform experiments using the base model (117M parameters) which consists of 12 Transformer
layers [25] with 12 attention heads.3 We compare our approach with two strong baselines: (1) GPT-2
fine-tuned with the standard MLE objective (Eq. (1)); and (2) GPT-2 fine-tuned with unlikelihood
objective [27].4 Our implementation is based on the Huggingface Library [28].

Evaluation Benchmark. We conduct experiments on the Wikitext-103 dataset [16] which contains a
large collection of Wikipedia articles with over 100 million words and 260 thousands unique tokens.
Wikitext-103 is a document-level dataset and has been widely used for the evaluation of large-scale
language modelling [3, 11, 29].

Training. For our SimCTG and the MLE baseline, we fine-tune the models on Wikitext-103 for 40k
training steps. For the unlikelihood baseline, following Welleck et al. [27], we first fine-tune the
model with the token-level unlikelihood objective for 38.5k steps and then with the sequence-level
unlikelihood objective for 1.5k steps. Therefore, the overall training steps of all compared methods
are the same. The batch size is set as 128 and the training samples are truncated to a maximum length
of 256. We optimize the model with Adam optimizer [12] and a learning rate of 2e-5.

Decoding. We evaluate the models by producing text continuations given the prefixes from the test
set. In the experiments, the lengths of the prefix and the generated continuation are set as 32 and 128,
respectively. We test different models with various decoding methods. For deterministic method, we
use greedy search and beam search with a beam size of 10. For stochastic method, we use the current
state-of-the-art nucleus sampling [10] with p = 0.95. For the proposed contrastive search, the k and
α in Eq. (5) are set as 8 and 0.6.5 The hyperparameters of different methods are selected based on
their optimal MAUVE (detailed in §4.1.2) performance on the validation set.

4.1 Evaluation Metrics

We perform evaluation from two aspects: (1) language modelling quality which measures the intrinsic
quality of the model; and (2) generation quality which measures the quality of the generated text.

4.1.1 Language Modelling Quality

Following Welleck et al. [27], we report the results of the model on the metrics below.

Perplexity. The model perplexity (ppl) on the test set of Wikitext-103.

Prediction Accuracy. It is defined as: acc = 1∑
x∈D|x|

∑
x∈D

∑|x|
t=1 1[argmax pθ(x|x<t) = xt],

where D is the Wikitext-103 test set, x<t is the prefix, and xt is the reference token at time step t.

3In Appendix D, we demonstrate the experimental results of our approach on other language models.
4The unlikelihood baseline is implemented with the official code, which can be found at https://github.
com/facebookresearch/unlikelihood_training.

5In Appendix E, we provide detailed ablation studies on the effect of both k and α in contrastive search.
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Model Language Modelling Quality Generation Quality

ppl↓ acc↑ rep↓ wrep↓ Method rep-2↓ rep-3↓ rep-4↓ diversity↑ MAUVE↑ coherence↑ gen-ppl

MLE 24.32 39.63 52.82 29.97

greedy 69.21 65.18 62.05 0.04 0.03 0.587 7.32
beam 71.94 68.97 66.62 0.03 0.03 0.585 6.42

nucleus 4.45 0.81 0.43 0.94 0.90 0.577 49.71
contrastive 44.20 37.07 32.44 0.24 0.18 0.599 9.90

Unlike. 28.57 38.41 51.23 28.57

greedy 24.12 13.35 8.04 0.61 0.69 0.568 37.82
beam 11.83 5.11 2.86 0.81 0.75 0.524 34.73

nucleus 4.01 0.80 0.42 0.95 0.87 0.563 72.03
contrastive 7.48 3.23 1.40 0.88 0.83 0.574 43.61

SimCTG 23.82 40.91 51.66 28.65

greedy 67.36 63.33 60.17 0.05 0.05 0.596 7.16
beam 70.32 67.17 64.64 0.04 0.06 0.591 6.36

nucleus 4.05 0.79 0.37 0.94 0.92 0.584 47.19
contrastive 3.93 0.78 0.31 0.95 0.94 0.610 18.26

Human - - 36.19 - - 3.92 0.88 0.28 0.95 1.00 0.644 24.01

Table 1: Evaluation results on Wikitext-103 test set. “Unlike.” denotes the model trained with
unlikelihood objective. ↑ means higher is better and ↓ means lower is better.

Prediction Repetition. The fraction of next-token (top-1) predictions that occur in the prefix which
is defined as: rep = 1∑

x∈D|x|
∑

x∈D
∑|x|

t=1 1[argmax pθ(x|x<t) ∈ x<t].

In addition, the next token repetitions that do not equal to the ground truth token: wrep =
1∑

x∈D|x|
∑

x∈D
∑|x|

t=1 1[argmax pθ(x|x<t) ∈ x<t ∧ ≠ xt] is also reported.

4.1.2 Generation Quality

Generation Repetition. This metric measures the sequence-level repetition as the portion of duplicate
n-grams in the generated text [27]. For a generated text continuation x̂, the repetion at n-gram level

is defined as: rep-n = 100× (1.0− |unique n-grams(x̂)|
|total n-grams(x̂)|

).

Diversity. This metric takes into account the generation repetition at different n-gram levels and it is
defined as: diversity =

∏4
n=2(1.0 −

rep-n
100 ). It can be deemed as an overall assessment of model

degeneration. A lower diversity means a more severe degeneration of the model.

MAUVE [17] is a metric that measures the token distribution closeness between the generated text
and human-written text. A higher MAUVE score means the model generates more human-like texts.

Semantic Coherence. To automatically measure the semantic coherence (i.e., consistency) between
the prefix and the generated text, we employ the advanced sentence embedding method, SimCSE
[9]. Specifically, given the prefix x and the generated text x̂, the coherence score is defined as:
coherence = v⊤x vx̂/(∥vx∥·∥vx̂∥), where vx = SimCSE(x) and vx̂ = SimCSE(x̂).

Perplexity of Generated Text. Lastly, we evaluate the perplexity of the generated text x̂ given
the prefix x, which is defined as: gen-ppl = 2f(D,θ) and f(D, θ) = 1∑

x∈D|x̂|
∑

x∈D log2 pθ(x̂|x).
Importantly, the optimal approach should produce text which has a perplexity close to that of the
human-written text [10]. A high gen-ppl means the generated text is very unlikely given the prefix,
therefore being low quality. In contrastive, a low gen-ppl means the generated text has a low diversity
and gets stuck in repetitive loops [10]. We use the model θ trained with LSimCTG to measure the
gen-ppl of different approaches, therefore making sure the numbers are comparable with each other.6

4.2 Results

The experimental results on Wikitext-103 are shown in Table 1.

Language Modelling Quality. From the results, we observe that SimCTG achieves the best perplexity
and next token accuracy. The reason is that, with more discriminative representations, SimCTG is
less confusing when making next token predictions, leading to the improved model performance.

6We obtain similar gen-ppl results and can draw the same conclusion when using the model trained with MLE
and Unlikelihood. Therefore, we only include the results acquired by the model trained with LSimCTG in Table 1.
We refer to Appendix F for the gen-ppl results obtained by the MLE and Unlikelihood models.
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On the rep and wrep metrics, the unlikelihood model yields the best result but at the expense of
unfavorable performance drops in the perplexity and next token accuracy.

Generation Quality. Firstly, on the rep-n and diversity metrics, SimCTG + contrastive search obtains
the best result, suggesting it best addresses the degeneration problem. Secondly, the MAUVE score
demonstrates that SimCTG + contrastive search generates texts that are closest to human-written
texts in terms of token distribution. Thirdly, among all methods, SimCTG + contrastive search is the
only approach that achieves over 0.6 coherence score, showing it produces semantically consistent
text with respect to the prefix. Lastly, the gen-ppl metric also validates the superiority of SimCTG +
contrastive search as it obtains notably better generation perplexity comparing with other approaches.

Moreover, from the results of MLE and Unlikelihood baselines, we see that contrastive search still
brings performance boost as compared with greedy and beam search. However, the performance gain
still lags behind SimCTG, which demonstrates the necessity of contrastive training. The underlying
reason is that, without using the contrastive objective LCL (Eq. (2)), the token representations obtained
by MLE or Unlikelihood are less discriminative (§6.1). Therefore, the degeneration penalty (Eq. (5))
of different candidates are less distinguishable and the selection of output is dominated by the model
confidence, making contrastive search less effective.

Model Decoding Method Coherence Fluency Informativeness
Agreement - 0.51 0.64 0.70

MLE
nucleus 2.92 3.32 3.91

contrastive 2.78 2.29 2.56

Unlikelihood
nucleus 2.59 3.02 3.58

contrastive 2.76 2.90 3.35

SimCTG
nucleus 2.96 3.34 3.96

contrastive 3.25⋆ 3.57⋆ 3.96

SimCTG-large
nucleus 3.01 3.37 3.98

contrastive 3.33⋆ 3.66⋆ 3.98
Human - 3.70 3.71 4.21

Table 2: Human evaluation results. ⋆ results significantly outperforms the results of nucleus sampling
with different models (Sign Test with p-value < 0.05).

4.3 Human Evaluation

We also conduct a human evaluation with the help of graders proficient in English from a third-party
grading platform. We randomly select 200 prefixes with length of 32 from the test set of Wikitext-103.
For each prefix, we use different models (MLE, Unlikelihood, and SimCTG) with two decoding
methods (nucleus sampling and contrastive search) to generate text continuations with length of
128. To examine the generality of our approach across different model sizes, we include a large size
SimCTG (i.e., SimCTG-large) which is obtained by fine-tuning the GPT-2-large model that consists
of 36 Transformer layers with 20 attention heads. All generated results, plus the reference text, are
randomly shuffled and evaluated by five graders, which results in 9,000 annotated samples in total.
The evaluation follows a 5-point Likert scale (1, 2, 3, 4, or 5) for each of the following features:7

• Coherence: Whether the generated text is semantically consistent with the prefix.
• Fluency: Whether the generated text is fluent and easy to understand.
• Informativeness: Whether the generated text is diverse and contains interesting content.

Table 2 presents the human evaluation results, with the first row showing strong inter-annotator
agreements as measured by Fleiss′ kappa coefficient [8]. Firstly, we see that, directly applying
contrastive search with MLE or Unlikelihood model does not yield satisfactory results. This is
due to the anisotropic nature of their representation space as discussed in Section §4.2. Secondly,
the coherence score of Unlikelihood model is notably lower than MLE and SimCTG, suggesting
it generates the most unlikely results which is also shown by its generation perplexity (gen-ppl) in
Table 1. Furthermore, the results of SimCTG + contrastive search significantly outperforms nucleus
sampling with different models in terms of coherence and fluency (Sign Test with p-value < 0.05).

7We refer to Appendix G for more details of human evaluation.
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Lastly, SimCTG-large + contrastive search achieves the best performance across the board and even
performs comparably with human-written text on the fluency metric (Sign Test with p-value > 0.4).
This reveals the clear generalization ability of our approach to large size models and future work
could focus on extending it to models that contain over billions of parameters such as GPT-3 [2].

5 Open-domain Dialogue Generation

To test the generality of our approach across different tasks and languages, we then evaluate our
method on the task of open-domain dialogue generation. In this task, given a multi-turn dialogue
context (where each turn is an user utterance), the model is asked to generate an adequate response
that is semantically consistent with the context. Here, the dialogue context is deemed as the prefix.

Benchmark and Baselines. We conduct experiments on two benchmark datasets from two languages
(i.e., Chinese and English). For the Chinese benchmark, we use the LCCC dataset [26]. For the
English Benchmark, we use the DailyDialog dataset [15].

We compare the GPT-2 models fine-tuned with SimCTG and MLE.8 Specifically, for the Chinese
benchmark (i.e., LCCC), we use a publicly available Chinese GPT-2 [31].9 Same as in Section §4,
during training, we use a batch size of 128 and truncate the training samples to a maximum length of
256. On the LCCC dataset, we train (i.e., fine-tune) the models for 40k steps. As for the DailyDialog
dataset, due to its smaller dataset size, we train the models for 5k steps. For optimization, we use
Adam optimizer and a learning rate of 2e-5.

For each model, we use four decoding methods, including (1) greedy search; (2) beam search (beam
size of 10); (3) nucleus sampling (p = 0.95); and (4) contrastive search (k = 5, α = 0.6).

Evaluation. We rely on human evaluation to assess the model performance. Same as in Section §4.3,
we randomly select 200 dialogue contexts from the test set and ask five annotators to evaluate the
generated responses plus the reference response in three dimensions: (i) coherence, (ii) fluency; and
(iii) informativeness. The scores follow a 5-point Likert scale (1, 2, 3, 4, or 5).

Model Method
LCCC DailyDialog

Coherence Fluency Informativeness Coherence Fluency Informativeness
Agreement - 0.73 0.61 0.57 0.64 0.60 0.55

MLE

greedy 3.01 3.27 1.97 3.28 3.51 2.92
beam 2.60 2.90 1.55 3.16 3.43 2.78

nucleus 2.78 3.55 2.64 2.67 3.58 3.42
contrastive 3.28⋆ 3.84⋆ 3.06⋆ 3.27 3.41 2.82

SimCTG

greedy 3.04 3.32 2.01 3.31 3.50 2.94
beam 2.57 2.93 1.59 3.19 3.45 2.79

nucleus 2.84 3.58 2.72 2.75 3.59 3.39
contrastive 3.32⋆ 3.96⋆ 3.13⋆ 3.73⋆ 3.85⋆ 3.46

Human - 3.42 3.76 3.20 4.11 3.98 3.74

Table 3: Human evaluation results. ⋆ results significantly outperforms the results of greedy search,
beam search, and nucleus sampling with different models. (Sign Test with p-value < 0.05).

Table 3 shows the evaluation results where the first row shows strong inter-annotator agreements
as measured by Fleiss′ kappa coefficient. On both datasets, we see that SimCTG + contrastive
search significantly outperforms other methods on various metrics, suggesting that our approach is
generalizable to different languages and tasks. It is worth emphasizing that, on the LCCC benchmark,
SimCTG + contrastive search surprisingly outperforms the human performance on the fluency metric,
while performing comparably on the coherence and informativeness metrics (Sign Test with p-value >
0.4). Moreover, even without contrastive training, the MLE model performs significantly better when
using contrastive search. This is due to the intrinsic property of Chinese language model for which
the MLE objective can already yield a representation space that displays a high level of isotropy,

8We acknowledge that there are other GPT-like models (e.g., Zhang et al. [30] and Thoppilan et al. [24]) that are
designed for dialogue generation. We leave the test of our approach on these models to our future work.

9https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
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Figure 2: Layer-wise representation self-similarity. Figure 3: The effect of contrastive margin ρ.

making contrastive search directly applicable.10 This finding is particularly attractive as it reveals
the potential applicability of contrastive search on off-the-shelf (i.e., without contrastive training)
language models for certain languages such as Chinese.

6 Further Analysis

6.1 Token Representation Self-similarity

To analyze the token representations learned by SimCTG, we follow Ethayarajh [6] and define the
averaged self-similarity of token representations within a text sequence x as

self-similarity(x) =
1

|x|×(|x|−1)

|x|∑
i=1

|x|∑
j=1,j ̸=i

h⊤
xi
hxj

∥hxi
∥·∥hxj

∥
, (6)

where hxi
and hxj

are the token representations of xi and xj produced by the model. Intuitively, a
lower self-similarity(x) indicates the representations of distinct tokens within the sequence x are
less similar to each other, therefore being more discriminative.

We use texts from Wikitext-103 test set and compute the self-similarity of token representations over
different layers for different models. Figure 2 plots the results averaged over all samples. We see that,
in the intermediate layers, the self-similarity of different models are relatively the same. In contrast,
at the output layer (layer 12), SimCTG’s self-similarity becomes notably lower than other baselines.
We note that the Unlikelihood model also yields more discriminative representations than MLE, but
its language model accuracy is lower than MLE and SimCTG as shown in Table 1. On the other hand,
SimCTG obtains the most discriminative and isotropic representations while maintaining the best
language model accuracy, which further validates the clear advantage of our proposed approach.

6.2 The Effect of Contrastive Loss Margin

Next, we analyze the effect of contrastive loss margin ρ (Eq. (2)). To this end, we fine-tune the GPT-2
by varying ρ from 0.1 to 1.0 and measure the model perplexity on the Wikitext-103 test set. Figure
3 plots the results of different ρ along with the result of the MLE baseline. Note that, when ρ = 0,
SimCTG is equivalent to MLE (Section §3.1). From Figure 3, we see that the contrastive training
always helps to improve the perplexity as compared with MLE. However, when ρ is either too small
(e.g., 0.1) or large (e.g., 1.0), the learned representation space of the model would be either less or too
isotropic, leading to a sub-optimal perplexity. In our experiments, the most suitable margin ρ = 0.5.

6.3 Contrastive Search versus Nucleus Sampling

Then, we provide an in-depth comparsion between our proposed contrastive search and the current
state of the art, nucleus sampling. To this end, we compare the results of SimCTG using these two
decoding methods. Specifically, we vary the probability p for nucleus sampling and the α (Eq. (5))

10We provide more in-depth analyses and several generated examples on LCCC in Appendix H and J, respectively.
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Figure 4: Contrastive search vs nucleus sampling. Figure 5: Inference latency comparison.

for contrastive search to generate results using prefixes from Wikitext-103 test set.11 We evaluate the
results from two aspects: (1) generation diversity and (2) perplexity of the generated text (gen-ppl).
Both metrics are described in Section §4.1.2. Figure 4 plots the results of different methods along
with the human performance. For nucleus sampling, when p is small (i.e., p ≤ 0.7), its generation
perplexity is comparable to that of human. However, the diversity is notably lower than human
performance, meaning it stuck in undesirable repetition loops [10]. On the other hand, when p is
large (i.e., p ≥ 0.95), the generation diversity is close to that of human but the generation perplexity
is significantly higher. Such high perplexity means the generated text is very unlikely, therefore
being low quality. As for contrastive search, when α ∈ [0.5, 0.8], it yields generation diversity and
perplexity that are both comparable to human performance. These results demonstrate the superiority
of contrastive search as it better balances the trade-off between the generation diversity and perplexity.

6.4 Decoding Latency Comparison

We compare the decoding latency of different decoding methods using SimCTG. For beam search
and contrastive search, we vary the beam width b and the k in Eq. (5). The latency is measured by
generating fixed length text continuations on Wikitext-103 test cases with a batch size of 1. In Figure
5, we show the averaged relative decoding latency of different methods. We see that greedy search is
the fastest method and the latency of different methods are generally comparable with each other.
Comparing contrastive search with beam search, when b and k are small (i.e., ≤ 6), their latency are
nearly identical. When b and k gets larger (i.e., > 6), contrastive search becomes faster. In summary,
these comparison results further verify the practical usage of contrastive search.

prefix Butt criticized Donald’s controls in certain situations in the game, as well as the difficulty
of some levels and puzzles. Buchanan also criticized the controls, calling div. coh. gen-ppl

beam

them " too easy " and " too difficult ". He also criticized the game’s graphics, stating that the game’s
graphics were " too simplistic " and " too simplistic ". He also criticized the game’s graphics, stating
that the game’s graphics were " too simplistic " and " too simplistic ". He also criticized the graphics,
stating that the game’s graphics were " too simplistic " and " too simplistic ". He also criticized the
graphics, stating that the game’s graphics were " too simplistic " and " too simplistic ". He also
criticized the graphics, stating that the game’s graphics were" ...

0.02 0.605 7.91

nucleus

them " offensively rudimentary ". After the game was released, Buchanan wrote a number of game
reviews about his review of the game, primarily summarizing what he thought the reviewers had
enjoyed about it. Buchanan was pleased with how consistently these reviews awarded the game.
For one, he praised the puzzles, compared them to Nos. 1 and 2 and enjoyed the construction of the
artificial intelligence in the game’s forms. He found no fault with the puzzles, even in those situations
where they seemed repetitive. According to an Xbox Magazine review, " every time ...

0.98 0.597 37.83

contrastive

them " unimpressive " and a " nightmare " of an experience to play with players unfamiliar with
Tetris. On the other hand, his opinion was shared by other reviewers, and some were critical of the
game’s technical design for the Wii version of Tetris. In addition, Tintin’s review included a quote
from Roger Ebert, who said that Tetris was better than the original game due to its simplicity and
ease of play. Ebert’s comments were included in the game’s DVD commentary, released on March
22, 2010. It is unclear if any of the video commentary was taken from ...

0.98 0.626 19.64

Table 4: Case Study: The beam search produces degeneration repetitions (highlighted in red) and the
nucleus sampling produces text that has incoherent semantics with respect to the prefix (highlighted
in blue). The reasonable repetitions produced by contrastive search are highlighted in green. The
“div.” and “coh.” stand for diversity and coherence metrics. (best viewed in color)

11For contrastive search, we only vary the value of α and keep k constant to 8 as described in Section §4. In
Appendix E, we provide detailed ablation studies on the effect of both k and α in contrastive search.
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6.5 Case Study

In Table 4, we present generated examples of SimCTG with different decoding methods given a
specific prefix.12 From the results, we see that beam search produces undesirable sequence-level
repetitions, resulting in low diversity and low generation perplexity. On the other hand, in the prefix,
the person “Buchanan” criticizes the game. However, the result from nucleus sampling displays a
contradicted semantic, resulting in a low coherence score as well as a high generation perplexity.
As for contrastive search, it generates a text that is semantically consistent to the prefix with a
proper generation perplexity while obtaining the same diversity as that of the nucleus sampling.
Additionally, it is worth emphasizing that, while the degeneration penalty in Eq. (5) encourages the
model to generate diverse outputs, contrastive search is still able to generate reasonable repetitions as
highlighted in Table 4. This is due to the incorporation of model confidence in Eq. (5) which enables
the model to repeat the important content (e.g., person names or entity names) from the previous
context like humans do.

Figure 6: (a) MLE + beam search; (b) SimCTG + beam search; (c) SimCTG + contrastive search.
The token similarity matrix of the prefix and the generated text are highlighted in red and yellow.

6.6 Comparison of Token Similarity Matrix

To better understand how contrastive search works, in Figure 6, we show the generated token similarity
matrix of SimCTG using beam search and contrastive search. For a better comparsion, we also
include the result of MLE using beam search. All results are produced with the same prefix as in
Table 4. The red and yellow boxes highlight the similarity matrix of the prefix and the generated text.
Firstly, we see that, the MLE + beam search yields a very dense similarity matrix, meaning that its
token representations are indiscriminative. In addition, the high similarity scores in its off-diagonal
entries clearly show the degeneration repetitions. Secondly, for SimCTG + beam search, we observe
a desirable similarity matrix of the prefix which is sparse and isotropic. However, degeneration
repetitions still exist in the generated result as shown in Figure 6(b). Lastly, for SimCTG + contrastive
search, the entire similarity matrix is sparse and isotropic, showing that it successfully solves the
model degeneration. These observations are in line with our motivations as described in Section §1.

7 Conclusion

In this work, we show that the degeneration of neural language models stems from the anisotropic
nature of their token representations. We present a new approach, SimCTG, for training the language
model such that it obtains an isotropic and discriminative representation space. In addition, we
introduce a novel decoding method, contrastive search, which works coherently with the proposed
SimCTG. Extensive experiments and analyses are conducted on three benchmarks from two languages.
Both automatic and human evaluations demonstrate that our approach substantially reduces model
degeneration and significantly outperforms current state-of-the-art text generation approaches.
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