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1 Parameter setting and simulation details

1.1 Parameter setting

Table 1 lists the parameters used in Fig. 1&2 in the main text; Table 2 lists the parameters used in
Fig. 3 in the main text.

Table 1: Parameters used in Fig. 1&2 in the main text.

Parameters Value
Time constant of U : τs 1
Time constant of V : τz 5
Neuron density: ρ 1
Global inhibition strength: k 0.5
Recurrent connection strength: J0 10
Recurrent connection radius: a π/10
Input strength: γ 0.1
Observation: so 0

1.2 Simulation details

1.2.1 For Fig. 1& 2

In the simulation, the periodic boundary (−π, π] is used for the feature space. The CANN contains
N = 360 neurons uniformly distributed in the feature space. Other parameters are listed in Table.1.
For fixed values of m and Λ, we simulate the network dynamics for 50 trials. In a single trial, the
network dynamics is simulated using the Euler method with time step ∆t = 0.01τs. We collect the
traces of bump position to calculate the sampled mean, variance, distribution, and autocorrelation.
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Table 2: Parameters used in Fig. 3 in the main text.

Parameters Value
Dimension of feature s (number of CANNs): M 5
Time constant of Ui: τs 1
Time constant of Vi: τz 5
Neuron density: ρ 1
Global inhibition strength: k 0.5
Recurrent connection strength: Ji 10
Recurrent connection radius: a π/10
Input strength: γ 0.1
Observation: so 0
Elements of prior matrix: L randomly sampled

in range [−1, 0)
Elements of likelihood matrix: Λ randomly sampled

in range (0, 1]

1.2.2 For Fig. 3

Each CANN in coupled-CANNs is the same as the single CANN case described above. The periodic
boundary (−π, π] is used for each feature si. Each CANN contains N = 360 neurons uniformly
distributed in its feature space. Other parameters are listed in Table.2. The connection strengths
between CANNs are calculated by Eq.(29) in the main text. For a fixed value of m, we simulate the
network dynamics for 50 trials. In a single trial, the network dynamics is simulated by using the
Euler method with time step ∆t = 0.01τs. We collect the traces of bump position to calculate the
sampled distribution.

2 Sampling dynamics of a 1D CANN with noisy adaptation

In this section, we present the mathematical details of using a projection method to derive the
dynamics of the bump position s(t) and the adaptation delay z(t) of the network, i.e, Eq.(17-18) in
the main text.

As shown in the main text (Eq.11-14), the dynamics of a CANN with adaptation is written as,

τs
∂U(x, t)

∂t
= −U(x, t) + ρ

∫
x′
W (x, x′)r(x′, t)dx′ + γIext(x, t)− V (x, t), (S1)

τz
∂V (x, t)

∂t
= −V (x, t) +mU(x, t) + σV

√
τzU(x, t)ξ(x, t), (S2)

r(x, t) =
U2(x, t)

1 + kρ
∫
x′ U2(x′, t)dx′ . (S3)

where W (x, x′) = J0 exp
[
−(x− x′)/(2a2)

]
and Iext(x, t) = γΛexp

[
−(x− so)2/(4a2)

]
. And

ξ(x, t) are gaussian white noise satisfying ⟨ξ(x, t)⟩ = 0 and ⟨ξ(x, t)ξ(x′, t′)⟩ = δ(t− t′)δ(x− x′).

As shown in the main text (Eq.15), the presumed network state have the following form,

U(x, t) = u0 exp

[
− (x− s)2

4a2

]
, (S4)

r(x, t) = r0 exp

[
− (x− s)2

2a2

]
, (S5)

V (x, t) = v0 exp

[
− (x− s+ z)2

4a2

]
. (S6)
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The first two dominating motion modes representing the height and position variations of the bump
are given by (Eq.16 in the main text),

ϕ0(x|s) = exp

[
− (x− s)2

4a2

]
, (S7)

ϕ1(x|s) = (x− s) exp

[
− (x− s)2

4a2

]
. (S8)

Substituting Eqs.(S4-S5) into (S3), we get the relationship between r0 and u0, which is,

r0 =
u2
0

1 + kρ
√
2πau2

0

. (S9)

Substituting Eqs.(S4-S6) into (S1), we get,

τsu0
d

dt
exp

[
− (x− s)2

4a2

]
=

(
−u0 +

ρJ0√
2
r0

)
exp

[
− (x− s)2

4a2

]
+ γΛexp

[
− (x− so)2

4a2

]
− v0 exp

[
− (x− s+ z)2

4a2

]
. (S10)

Projecting both sides of the above equation onto the motion mode ϕ0(x|s), we obtain,

0 = −u0 +
ρJ0√
2
r0 + γΛexp

[
− (so − s)2

8a2

]
− v0 exp

(
− z2

8a2

)
. (S11)

Here, projecting a function f(x, t) on a motion mode u(t) means to compute
∫
x
f(x, t)u(x)dx.

Projecting both sides onto the motion mode ϕ1(x|s), we obtain,

τsu0
ds

dt
= γΛ(so − s) exp

[
− (so − s)2

8a2

]
+ v0z exp

(
− z2

8a2

)
. (S12)

Substituting Eqs.(S4-S6) into (S2), we get,

τzv0
d

dt
exp

[
− (x− s+ z)2

4a2

]
=− v0 exp

[
− (x− s+ z)2

4a2

]
+mu0 exp

[
− (x− s)2

4a2

]
+ σV

√
τzu0 exp

[
− (x− s)2

8a2

]
ξ(x, t). (S13)

Projecting both sides of the above equation onto the motion mode ϕ0(x|s), we obtain,

τz
z

4a2
v0 exp

(
− z2

8a2

)
ds

dt
= −v0 exp

(
− z2

8a2

)
+mu0 +

√
1

a
√
3π

σV
√
τzu0ξ0. (S14)

where ξ0 is Gaussian white noise of zero mean and unit variance.

Projecting both sides onto the motion mode ϕ1(x|s), we obtain,

τzv0 exp

(
− z2

8a2

)(
1

2
− z2

8a2

)(
ds

dt
− dz

dt

)
=

v0z

2
exp

(
− z2

8a2

)
+

√
2a

3
√
3π

σV
√
τzu0ξ1.

(S15)
where ξ1 is Gaussian white noise of zero mean and unit variance.

Utilizing the properties z2 ≪ 8a2 and γ ≪ J0, and solving Eqs.(S9,S11,S14), we obtain,

u0 =
J0

4
√
πak

1 +

√
1− 8

√
2πak

J2
0ρ

 , (S16)

v0 = mu0. (S17)
Further solving Eqs.(S12,S15), we obtain,

τs
ds

dt
=

γΛ

u0
(so − s) +mz, (S18)

τz
dz

dt
= −z + τz

ds

dt
+

√
τzσzξ1. (S19)

where σz = 2
√
2a/(3

√
3π)σV /(m

√
u0). The above dynamics gives Eq.(17-18) in the main text.
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3 Sampling performance of a 1D CANN with noisy adaptation

In this section, we present the detailed analyses of the sampling performance of a 1D CANN with
noisy adaptation.

3.1 Sampling performance of the network

We re-organize Eqs.(S18-S19) to be,

d

dt

(
s
z

)
= −

(
γΛ/(τsu0) −m/τs
γΛ/(τsu0) (τs/τz −m)/τs

)(
s
z

)
+

(
γΛso/(τsu0)
γΛso/(τsu0)

)
+

(
0

σz/
√
τzξ

)
,

(S20)
and denote H = [γΛ/(τsu0),−m/τs; γΛ/(τsu0), (τs/τz −m)/τs] to be the drift matrix.

The eigenvalues (λ) of the drift matrix determine the behavior of the dynamic system, which are
calculated by, ∣∣∣∣ γΛ/(τsu0)− λ −mτ−1

s

γΛ/(τsu0) τ−1
z −mτ−1

s − λ

∣∣∣∣ = 0, (S21)

which gives

λ± =
1

2

(
(τs/τz + Λγ/u0 −m)/τs ±

√
(τs/τz + Λγ/u0 −m)2/τ2s − 4γΛ/(u0τsτz)

)
. (S22)

The real part of the smallest eigenvalue h determines the convergence of the dynamic system, which
is calculated as h = min (Re(λ−),Re(λ+)) = Re(λ−), and it gives Eq.(23) in the main text. It is
straightforward to check that:

• When 0 < m ≤ mmax = (
√
τs/τz −

√
Λγ/u0)

2, h monotonically increases with m and
h > 0.

• When m > mmax, h monotonically decreases with m. In particular, when mmax < m <
mth = τs/τz + Λγ/u0, h > 0; when m > mth, h < 0, indicating the divergence of the
dynamic system.

Thus, the network performs HDF when 0 < m < mth, and when m = mmax, h reaches the
maximum value, i.e., the sampling reaches the fastest speed.

3.2 Returning to FLD when m → 0

We show that Eq.(S18-S19) degenerates to FLD when m is sufficently small. When m → 0, Eq.(S18)
shows that the variation of s is rather slow when it approaches to the stationary distribution. And

because of σz = 2
√
2a/(3

√
3π)σV /(m

√
u0) → ∞, the delay variable z changes much faster than

s which can be regarded as a fast variable. Therefore, we can regard s as fixed and approximate
Eq.(S19) to be,

τz
dz

dt
= −z +

√
τzσzξ (S23)

which gives that the stationary distribution of z to be Gaussian, i.e., p̃(z) = N
(
0, σzσ

T
z /(2τz)

)
.

Thus, by setting dt = 2τ2z , Eq.(S18) can be written as,

τs
ds

dt
=

γ

u0
Λ(so − s) +

√
τsσsξs, (S24)

where σs = mσz

√
dt/(2τzτs), which implements FLD, i.e., Eq.(6) in the main text.

3.3 The effect of σ2
V

As stated in the main text, it in theory requires the condition σ2
V = σ2

opt ≡ 3
√
3πγ(τs/τz − m +

Λγ/u0)/(4a), for the stationary distribution p̃(s) of Eq.(S18-S19) equalling to the target distribution
p(s|so). We check in practice how restricted this condition is for the network to have a good
performance.
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Figure S1: The KL divergence between the stationary and target distributions vs. the violation of the
optimal noise strength.

We set σ2
V = (1 + c)σ2

opt, with c controlling the violation of the optimal condition. It can be proved
that the KL divergence between the stationary and the target distribution is bounded by

KL [p̃(s)||p(s|so)] ≤ 1

2
[c− ln(1 + c)] . (S25)

As shown in Fig. S1, simulation results agree well with the theoretical bound (Eq. S25). The
performance of the network is robust for a wide range of σ2

V values (orange area in Fig. S1): up
to −20% or 40% violation of the optimal noise strength, the KL-divergence between the stationary
and the target posterior distributions is smaller than 0.05. Furthermore, considering that γ ≪ u0,
σ2
V ≈ 3

√
3πγ(τs/τz −m)/(4a), which is independent of the input uncertainty Λ.

4 Sampling dynamics of coupled CANNs

In this section, we present the mathematical details of using a projection method to derive the
sampling dynamics of coupled CANNs, i.e., Eqs.(25-16) in the main text.

As described in the main text (Eq.24 and the followed descriptions), the dynamic of coupled CANNs
with noisy adaptation are written as,

τs
∂Ui(x, t)

∂t
=− Ui(x, t) + ρ

∫
x′
Wi(x, x

′)rj(x
′, t)dx′ + ρ

M∑
j ̸=i

∫
x′
W̃ij(x, x

′)rj(x
′, t)dx′

+ γIexti (x, t)− Vi(x, t), (S26)

τz
∂Vi(x, t)

∂t
=− Vi(x, t) +mUi(x, t) + σV

√
τzUi(x, t)ξi(x, t), (S27)

ri(x, t) =
U2
i (x, t)

1 + kρ
∫
x′ U2

i (x
′, t)dx′ , (S28)

where Wi(x, x
′) = Ji exp

[
−(x− x′)/(2a2)

]
, W̃ij(x, x

′) = Gij exp
[
−(x− x′)/(2a2)

]
,

Iexti (x, t) = γΛi exp
[
−(x− soi )

2/(4a2)
]
, ⟨ξi(x, t)⟩ = 0 and ⟨ξi(x, t)ξj(x′, t′)⟩ = δijδ(t −

t′)δ(x− x′).

The state of each CANN is assumed to have the following form,

Ui(x, t) = ui exp

[
− (x− si)

2

4a2

]
, (S29)

ri(x, t) = Ri exp

[
− (x− si)

2

2a2

]
, (S30)

Vi(x, t) = vi exp

[
− (x− si + zi)

2

4a2

]
. (S31)
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The first two dominating motion modes representing the height and position variations of the bump
are,

ϕ0(x|si) = exp

[
− (x− si)

2

4a2

]
, (S32)

ϕ1(x|si) = (x− si) exp

[
− (x− si)

2

4a2

]
. (S33)

Substituting Eqs.(S29-S30) into (S28), we can get the relationship between Ri and ui, which is

Ri =
u2
i

1 + kρ
√
2πau2

i

. (S34)

Substituting Eqs.(S29-S31) into (S26), we get

τsui
d

dt
exp

[
− (x− si)

2

4a2

]
= −ui exp

[
− (x− si)

2

4a2

]
+

ρ√
2
JiRi exp

[
− (x− si)

2

4a2

]
+

ρ√
2

M∑
j ̸=i

GijRj exp

[
− (x− sj)

2

4a2

]
+ γΛi exp

[
− (x− soi )

2

4a2

]
− vi exp

[
− (x− si + zi)

2

4a2

]
.

(S35)

Projecting both sides onto the motion mode ϕ0(x|si), we obtain

0 =− ui +
ρ√
2
JiRi +

ρ√
2

M∑
j ̸=i

GijRj exp

[
− (si − sj)

2

8a2

]
+ γΛi exp

[
− (soi − si)

2

8a2

]

− vi exp

(
− z2i
8a2

)
(S36)

Projecting both sides onto the motion mode ϕ1(x|si), we obtain

τsu0
dsi
dt

=
ρ√
2

M∑
j ̸=i

GijRj(sj − si) exp

[
− (si − sj)

2

8a2

]
+ γΛi(s

o
i − si) exp

[
− (soi − si)

2

8a2

]

+ vizi exp

(
− z2i
8a2

)
. (S37)

Substituting Eqs.(S29-S31) into (S27), we get

τzvi
d

dt
exp

[
− (x− si + zi)

2

4a2

]
= −vi exp

[
− (x− si + zi)

2

4a2

]
+mui exp

[
− (x− si)

2

4a2

]
+σV

√
τzui exp

[
− (x− si)

2

8a2

]
ξi(x, t).

(S38)

Projecting both sides onto the motion mode ϕ0(x|si), we obtain

τz
zi
4a2

vi exp

(
− z2i
8a2

)
dsi
dt

= −vi exp

(
− z2i
8a2

)
+mui +

√
1

a
√
3π

σV
√
τzuiξi,0. (S39)

Projecting both sides onto the motion mode ϕ1(x|s), we obtain

τsvi exp

(
− z2i
8a2

)(
1

2
− z2i

8a2

)(
dsi
dt

− dzi
dt

)
=

vizi
2

exp

(
− z2i
8a2

)
+

√
2a

3
√
3π

σV
√
τzuiξi,1.

(S40)
The noise terms ξi,0 and ξi,1 are written as

ξi,0(t) =
1√√
2πa

∫
exp

[
− (x− si)

2

4a2

]
ξi(x, t)dx, (S41)

ξi,1(t) =
1√√
2πa3

∫
(x− si) exp

[
− (x− si)

2

4a2

]
ξi(x, t)dx. (S42)
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It can be checked that

⟨ξi,1(t)⟩ = 0, (S43)

⟨ξi,1(t)ξj,1(t′)⟩ = δijδ(t− t′). (S44)

Utilizing the properties z2i ≪ 8a2 and γ ≪ Ji, and solving Eqs.(S34,S36,S39), we obtain

ui =
Ji

4
√
πak

1 +

√
1− 8

√
2πak

J2
i ρ

 , (S45)

vi = mui. (S46)

Further solving Eqs.(S37,S40), we obtain

τs
ds

dt
= γu−1

[
Λso −

(
u

γ
J−1G+Λ

)
s

]
+mz, (S47)

τz
dz

dt
= −z+ τz

ds

dt
+

√
τzσzξ1, (S48)

where u = diag (u1, ...,uM), J = diag (J1, ..., JM), ξ1 = diag (ξ1,1, ..., ξM,1), G = {Gij} is a
Laplacian matrix and σzσ

T
z = 8a/(3

√
3πm)σ2

V u
−1. The above dynamics correspond to Eq.(25-26)

in the main text.

The above dynamics (Eq.(S47-S48)) implement HDF, and its stationary distribution equals to the target
distribution, i.e., p̃(s) = p(s|so). In particular, the stationary distribution of each feature sampled
by each CANN equals to the corresponding marginal target distribution, i.e., p̃(si) = p(si|so). This
indicates that the coupled CANNs implement sampling-based Bayesian inference in a distributed
way.

5 Sampling performances of coupled CANNs

We can re-organize Eq.(S47-S48) as:

d

dt

(
s
z

)
= −

(
τ−1
s α−1(L+Λ) −mτ−1

s I
τ−1
s α−1(L+Λ) τ−1

z −mτ−1
s I

)(
s
z

)
+

(
τ−1
s α−1Λso

τ−1
s α−1Λso

)
+

(
0

σz/
√
τzξ

)
,

(S49)
where I denotes the M ×M identical matrix, L = uJ−1G/γ and α = u/γ.

We first solve the eigenvalues (λ) of the drift matrix, which satisfy,∣∣∣∣ τ−1
s α−1(L+Λ)− λI −mτ−1

s I
τ−1
s α−1(L+Λ) (τ−1

z −mτ−1
s − λ)I

∣∣∣∣ = 0. (S50)

Note when λ = τ−1
z −mτ−1

s ,∣∣∣∣ τ−1
s α−1(L+Λ)− λI −mτ−1

s I
τ−1
s α−1(L+Λ) 0

∣∣∣∣ ̸= 0. (S51)

In the case λ ̸= τ−1
z −mτ−1

s , Eq.(S50) becomes,∣∣τ−1
s α−1(L+Λ)− λI +mτ−1

s (τ−1
z −mτ−1

s − λ)−1τ−1
s α−1(L+Λ)

∣∣ = 0. (S52)

Denote the Jordan normal form of α−1(L+Λ) is α−1(L+Λ) = PQP T . Eq.(S50) is written as∣∣τ−1
s Q− λI +mτ−1

s (τ−1
z −mτ−1

s − x)−1τ−1
s Q

∣∣ = 0. (S53)

Denote i-th diagonal element of the matrix Q as Qi, and rank them in the descending order, i.e.,
Qi > Qj , for i < j. Since α−1(L+Λ) is a general symmetric matrix, all the eigenvalues are real
numbers. Eq.(S50) is equivalent to,

τ−1
s Qi − λ+mτ−1

s (τ−1
z −mτ−1

s − λ)−1τ−1
s Qi = 0, i = 1, ...,M. (S54)

Solving the above equation, we obtain,

λ±
i =

1

2

(
−τ−1

s m+ τ−1
z + τ−1

s Qi ±
√
(−τ−1

s m+ τ−1
z + τ−1

s Qi)2 − 4τ−1
z τ−1

s Qi

)
. (S55)
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The real-part of the smallest eigenvalue h determines the convergence of the dynamic system.
It can be checked that Re(λ−

M ) ≤ Re(λ−
i ) and Re(λ+

M ) ≤ Re(λ+
i ), for i < M . Thus, h =

min
(
Re(λ−

M ),Re(λ+
M )

)
= Re(λ−

M ) corresponding to Eq.(30) in main text.

It is straightforward to check that:

• When 0 < m ≤ mmax = (
√
τs/τz −

√
QM )2, h monotonically increases with m and

h > 0.
• When m > mmax, h monotonically decreases with m. In particular, when mmax < m <
mth = τs/τz + QM , h > 0; when m > mth, h < 0 indicating the divergence of the
dynamic system.

Thus, the coupled CANNs performs HDF when 0 < m < mth. In particular, when m = mmax, h
reaches the maximum value, and the sampling reaches to the fastest speed.
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