
Appendix

A Dataset Details

A.1 Pre-training Datasets

Dataset Source Total Size
YFCC Flickr 14,826,000
LAION Common Crawl 15,504,742
CC-12M Unspecified web pages 9,594,338
RedCaps Reddit 11,882,403

WIT Wikipedia 5,038,295
ShutterStock ShutterStock 11,800,000

Table 1: Origin and total number of samples for each of the datasets we used in our experiments.

To get a better understanding of the diversity of different data sources, we analyze the distributions of
caption lengths, image sizes and image aspect ratios for a set of 10,000 samples randomly selected
from each source:

Figure 7: Distributions of caption lengths for each data source.

16

Figure 8: Distributions of image sizes for each data source.

Figure 9: Distributions of image aspect ratios for each data source.

Below we also show some examples of image-caption pairs randomly selected from each data source:

17

Figure 10: Random training samples from YFCC.

18

Figure 11: Random training samples from LAION.

19

Figure 12: Random training samples from Conceptual Captions (CC-12M).

20

Figure 13: Random training samples from RedCaps.

21

Figure 14: Random training samples from WIT.

22

Figure 15: Random training samples from ShutterStock.

23

A.2 Test Distributions

Figure 16 illustrates the four distribution shifts that we use for evaluating the quality of CLIP features
after pre-training on different data sources.

Figure 16: Distribution shifts at test time. We visualize samples of the class “broom” from the reference
distribution ImageNet [18], and the four distribution shifts derived from ImageNet: ImageNet-V2 [50], ImageNet-
R [32], ImageNet-Sketch [59] and ObjectNet [6].

B Training Details

Our implementation closely follows the training code from OpenCLIP GitHub repository [34]. When
training CLIP from scratch on each of the pre-training datasets, unless otherwise mentioned, we
use AdamW optimizer [42] with default PyTorch parameters �1 = 0.9,�2 = 0.999, ✏ = 10�8, (per
GPU) batch size 128 and weight decay of 0.1. For learning rate, we start with a learning rate of 10�3

and apply a cosine-annealing learning rate schedule [41] with 5,000 steps. We use the same data
augmentations as in [48]. Models then undergo distributed training on 8 A40 or A100 GPUs for 16
epochs.

24

C Behavior of Individual Data Sources

Figure 17: Data efficiency of the six pre-training data sources on different test sets. For each source,
we randomly sample various subsets of data with sizes ranging from 1M to a maximum of 15M samples,
and measure the zero-shot classification error of a CLIP model trained on the subset, on ImageNet and the
four shifted test sets (i.e., ImageNet-V2, ImageNet-R, ImageNet-Sketch, ObjectNet). Plotted error values are
log-transformed and averaged over 3 random seeds. We find that the data efficiency (i.e., how fast the error
would decrease with more samples) of the six data sources varies significantly based on the evaluation setting.

25

D Input Mixing

D.1 More Experiments with CLIP Pre-training Data Sources

Figure 18: Full plot for Figure 3 with all distribution shifts. Combining YFCC and LAION training data in
equal ratios results in a CLIP model with intermediate robustness.

Figure 19: Full plot for Figure 4 with all distribution shifts. Varying the sample contributions of YFCC
and LAION to the input data mixture produces a smooth interpolation of the linear trend between the trends of
training on YFCC and LAION separately.

26

Figure 20: Input mixing results for YFCC and RedCaps data sources. Similar to previous observations
(Figure 4), combining YFCC and RedCaps data in the pre-training dataset with different ratios yields different
linear trends that all lie between that of training on YFCC and that of training on RedCaps alone.

Figure 21: Input mixing results for all six data sources. We combine data from all six sources in the testbed
with equal ratios (i.e., taking 2.7M samples from each), and find that the resulting robustness of CLIP trained
on this data mixture (black line), is less than that of training only on the best-performing data source for each
distribution shift setting.

27

D.2 Experiments on CIFAR-10 & CINIC-10

We also investigate the phenomenon that mixing data sources resulting in diluted robustness (Section
5.1) in smaller-scale, uni-modal classification settings. Here, we experiment with mixing CIFAR-10
[37] and CINIC-10 [17] sources, each having 50K samples in total. CINIC-10 is itself a mixture of
CIFAR-10 images and images selected and downsampled from the ImageNet database (for the same
10 classes). We use three architectures—ResNet-18, ResNet-34 and ResNet-50 [28]—and vary the
number of epochs of training to obtain models of different accuracies. Models are evaluated on both
CIFAR-10 and CINIC-10 standard test sets, and their performances are plotted along the axes of a
scatter plot. Similar to previous input mixing results for CLIP, we observe in Figure 22 that ResNets
trained on a 50K-sample dataset made up of both CIFAR-10 and CINIC-10 data, produce a linear
trend that lies in between the trends of training models separately on just 50K CIFAR-10 images and
just 50K CINIC-10 images.

Figure 22: Mixing inputs from CIFAR-10 and CINIC-10 distributions also produces models with

intermediate robustness. Similar to our findings from the multimodal setting with CLIP pre-training, we also
observe that for standard image classification tasks like CIFAR-10 and CINIC-10, combining data samples from
these two distributions with varying ratios ends up diluting the robustness of the original sources. The training
set size is fixed at 50K samples for all linear trends displayed in this plot.

28

E Output Mixing

E.1 More Experiments with CLIP Pre-training Data Sources

Figure 23: Full plot for Figure 5 with all distribution shifts. Ensemble outputs of two CLIP models trained
on YFCC and LAION separately share the same linear trend as a single model trained on the combined data
mixture (with equal sample contribution from each source).

Figure 24: Full plot for Figure 6 with all distribution shifts. Given an existing pre-training dataset that could
be a mixture (e.g., YFCC-5M + LAION-5M, green line) and a new data source (e.g., CC-5M, orange line), we
could use the ensemble outputs (blue markers) of two CLIP models that have been trained separately on these
two data distributions, to estimate the linear trend for models that would be trained on all the data (purple line).

29

Figure 25: Output mixing results for two CLIP models trained on YFCC-3M + CC-3M mixture and

ShutterStock-3M respectively. We repeat the experiment in Figure 24 for a different set of data sources (YFCC,
ShutterStock, Conceptual Captions), taking 3M samples from each. The same output mixing phenomenon
applies: the ensemble outputs of CLIPs trained on different data sources and dataset sizes (purple and orange
lines), taken from the same epoch, lie on the linear trend of training a single model on the combined dataset
made up of these three sources (cyan line). The two models’ logit predictions are ensembled with equal weights
(blue markers).

Figure 26: Output mixing results for two CLIP models trained on YFCC-3M + CC-3M mixture and

RedCaps-3M respectively. Ensemble outputs of CLIPs trained on different data sources and dataset sizes
(red and orange lines), taken from the same stage of training (i.e., epoch), lie on the linear trend of training a
single model on the combined dataset made up of these three sources (cyan line), when the two models’ logit
predictions are ensembled with equal weights (blue markers).

30

Figure 27: Ensemble outputs of CLIPs trained separately on each of the data sources of interest share

the same linear trend as a single CLIP model trained on the 6-source data mixture. Following the input
mixing setup in Figure 21, when we ensemble the logit predictions of six CLIP models, each trained on 2.7M
samples randomly selected from a single data source, with equal weights, we find that the ensemble outputs are
also predictive of the linear trend of training CLIP models on a single data mixture made up of 2.7M samples
from each source.

31

E.2 Experiments on CIFAR-10 & CINIC-10

Figure 28: Ensembling outputs of two models trained separately on CIFAR10 and CINIC10 lie on the

same linear trend as training from scratch on the combined data mixture (where each source contributed

equally). We combine the logit predictions of CINIC10-trained and CIFAR10-trained models that have the same
architecture (e.g., ResNet-18, ResNet-34 and ResNet-50 in this case) with varying ensemble weights between 0
and 1 (dashed lines). Similar to our findings from the multimodal setting with CLIP, we also observe that when
the predictions are combined with equal weights (markers on the dashed lines), the resulting test accuracies on
the two corresponding test sets lie on the linear trend produced by training ResNets on a CIFAR10 + CINIC10
data mixture with equal number of samples from each source.

32

F Proofs of the Analyses

We provide proofs of main theoretical claims in Section 6.

F.1 Proof of Theorem 1

Assumption 5. Under the hypotheses of Theorem 1, suppose there exists a positive constant c such

that the third moments are bounded by E(X,Y)⇠P✓1,⇢1
[(XiY � ✓1,i)3] cE(X,Y)⇠P✓1,⇢1

[(XiY �
✓1,i)2]3/2, E(X,Y)⇠P✓2,⇢2

[(XiY �✓1,i)3] cE(X,Y)⇠P✓2,⇢2
[(XiY �✓1,i)2]3/2, and E[(✓̂n,i�✓i)3]

cE[(✓̂n,i � ✓i)2]3/2 for all i 2 [d].

Under this assumption, we show that

��1(Acc✓1,⇢1
) = cos(✓1, ✓)⇢1

⇢

⇠

r
n

d
+ O

⇣ exp(⇢
2

1
⇢2n

2⇠2d)
p
n

⌘
, and (4)

��1(Acc✓2,⇢2
) = cos(✓2, ✓)⇢2

⇢

⇠

r
n

d
+ O

⇣ exp(⇢
2

2
⇢2n

2⇠2d)
p
n

⌘
, (5)

as it will make the first and second claims straightforward. For (X1, Y1) ⇠ P✓1,⇢1
, the first error event

is {sign(hX1, ✓̂n,⇠i) 6= Y1} = {hX1, ✓̂n,⇠iY1 0} = {h✓+(⇠k✓k/⇢
p
n)z, ✓1+(k✓1k/⇢1)z1i 0},

where we used the fact that ✓̂n,⇠ = ✓ + (⇠k✓k/⇢
p
n)z and XY

d
= ✓1 + (k✓1k/⇢1)z1. Since

the third moments are bounded, applying Berry-Esseen theorem, we get that the probability of
error is bounded by �(�(h✓, ✓1i⇢1⇢

p
n/(⇠k✓1kk✓k

p
d))) + O(1/

p
d). This gives Acc✓1,⇢1

=
�(h✓, ✓1i⇢1⇢

p
n/(⇠k✓1kk✓k

p
d)) +O(1/

p
d), and consequently

��1(Acc✓1,⇢1
) = cos(✓1, ✓) ⇢1

⇢

⇠

r
n

d
+O

⇣
e

cos(✓1,✓)2⇢2
1
⇢2n

2⇠2d

p
n

⌘
. (6)

This proves the desired claim.

F.2 Proof of Theorem 2

Recall that Slope(✓̂n(Dn,✓,⇢)) = ch✓2, ✓i/h✓1, ✓i for a positive constant c > 0 that does not depend
on the training data. Although the slope only depends on the training data and algorithm through ✓,
we write all the parameters including the sample size n and the training SNR ⇢ to make it explicit that
the results hold for all variations of the sample size and the training algorithm within the class that we
assume. It is sufficient to show that this is a monotonic function over ✓ when we linearly traverse from
✓̃1 to ✓̃2, i.e. ✓(↵) = ↵✓̃1 + (1 � ↵)✓̃2 for ↵ 2 [0, 1]. Note that f(↵) = ch✓2, ✓(↵)i/h✓1, ✓(↵)i =
c1 + c2/h✓1, ✓(↵)i for some c1 and c2 that do not depend on ↵. The monotonicity follows from the
fact that the derivative is

@f(↵)

@↵
= �c2

h✓1, ✓̃1 � ✓̃2i
h✓1, ✓(↵)i2

,

whose sign does not change for any ↵.

F.3 Proof of Theorem 3

The train data distribution satisfies xiyi ⇠ N (✓train, (k✓traink/⇢)2I). Note that filtering does not
change the distribution in d � 1 dimensional subspace orthogonal to ✓̂pretrained, due to rotation
invariance of a spherical Gaussian distribution. This implies that E[P?(✓̂filtered)] = P?(✓train),
where P? denotes the projection operator to the d� 1 dimensional subspace orthogonal to ✓̂pretrained.
On the other hand, on the direction of ✓̂pretrained, the filtering increases the correlation in expectation:
|E[Pk(✓̂filtered)]�Pk(✓̂pretrained)| |Pk(✓train)�Pk(✓̂pretrained)|, where Pk denotes the projection
operator to the one dimensional subspace spanned by ✓̂pretrained. This implies that E[✓̂filtered] =
✓train + c✓̂pretrained for some positive c. It follows that E[✓̂filtered] is a convex interpolation between

33

two vectors, each in the direction of ✓trian and ✓̂pretrained, respectively. We can apply Theorem 2
which gives that

Slope(✓̂unfiltered) < Slope(E[✓̂filtered]) Slope(✓̂pretrained) ,

when Slope(✓̂unfiltered) < Slope(✓̂pretrained).

34

