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Abstract

One-shot Federated Learning (FL) has recently emerged as a promising approach,
which allows the central server to learn a model in a single communication round.
Despite the low communication cost, existing one-shot FL methods are mostly
impractical or face inherent limitations, e.g., a public dataset is required, clients’
models are homogeneous, and additional data/model information need to be up-
loaded. To overcome these issues, we propose a novel two-stage Data-freE oNe-
Shot federated lEarning (DENSE) framework, which trains the global model by a
data generation stage and a model distillation stage. DENSE is a practical one-shot
FL method that can be applied in reality due to the following advantages: (1)
DENSE requires no additional information compared with other methods (except
the model parameters) to be transferred between clients and the server; (2) DENSE
does not require any auxiliary dataset for training; (3) DENSE considers model
heterogeneity in FL, i.e., different clients can have different model architectures.
Experiments on a variety of real-world datasets demonstrate the superiority of our
method. For example, DENSE outperforms the best baseline method Fed-ADI by
5.08% on CIFAR10 dataset.

1 Introduction

Deep neural networks (DNNs) have recently gained popularity as a powerful tool for advancing
artificial intelligence in both established and emerging fields [25, 22, 13, 9, 8, 51, 52, 58, 5, 4, 16].
Federated learning (FL) [42] has emerged as a promising learning paradigm which allows multiple
clients to collaboratively train a global model without exposing their private training data. In FL, each
client trains a local model on its own data and is required to periodically share its high-dimensional
model parameters with a central server. Recent years, FL has shown its potential to facilitate
real-world applications in many fields, including medical image analysis [36, 6], recommender
systems [34, 38], natural language processing [63, 46] and computer vision [27, 26].

The original FL framework requires participants to communicate frequently with the central server
in order to exchange models. In real-world FL, such high communication cost may be intolerable
and impractical. Reducing the communication cost between clients and the server is desired both for
system efficiency and to support the privacy goals of federated learning [40, 41]. Recent research
proposed some common methods to reduce communication costs, e.g., utilize multiple local up-
dates [18], employ compression techniques [48], and one-shot FL [10]. Among them, one-shot FL is
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a promising solution which only allows one communication round. There are several motivations
behind one-shot FL: 1) First of all, multi-round training is not practical in some scenarios such as
model markets [45], in which users can only buy the pre-trained models from the market without any
real data. 2) Furthermore, frequent communication poses a high risk of being attacked. For instance,
frequent communication can be easily intercepted by attackers, who can launch man-in-the-middle
attacks [47] or even reconstruct the training data from gradients [54]. In this way, one-shot FL can
reduce the probability of being intercepted by malicious attackers due to the one-round property.
Thus, in this paper, we mainly focus on one-shot FL.

However, existing one-shot FL studies [10, 30, 62, 7] are still hard to apply in real-world applications,
due to impractical settings. For example, Guha et al. [10] and Li et al. [30] involved a public dataset
for training, which may be impractical in very sensitive scenarios such as the biomedical domains.
Zhu et al. [62] adopted dataset distillation [50] in one-shot FL, but they need to send distilled data
to the central server, which causes additional communication cost and potential privacy leakage.
Dennis et al. [7] utilized cluster-based method in one-shot FL, which requires to upload the cluster
means to the server, causing additional communication cost. Additionally, none of these methods
consider model heterogeneity, i.e., different clients have different model architectures [31], which is
very common in practical scenarios. For instance, in model market, models sold by different sellers
are likely to be heterogeneous. Besides, when several medical institutions participate in FL, they
may need to design their own model to meet distinct specifications. Therefore, developing a practical
one-shot FL method is in urgent need.

In this work, we propose a novel two-stage Data-freE oNe-Shot federated lEarning (DENSE)
framework, which trains the global model by a data generation stage and a model distillation stage.
In the first stage, we utilize the ensemble models (i.e., ensemble of local models uploaded by clients)
to train a generator, which can generate synthetic data for training in the second stage. In the second
stage, we distill the knowledge of the ensemble models to the global model. In contrast to traditional
FL methods based on FedAvg [42], our method does not require averaging of model parameters, thus
it can support heterogeneous models, i.e., clients can have different model architectures. In summary,
our main contributions are summarized as follows:

• We propose a novel data-free one-shot FL framework named DENSE, which consists of
two stages. In the first stage, we train a generator that considers similarity, stability, and
transferability at the same time. In the second stage, we use the ensemble models and the
data generated by the generator to train a global model.

• The setting of DENSE is practical in the following aspects. First, DENSE requires no
additional information (except the model parameters) to be transferred between clients
and the server; Second, DENSE does not require any auxiliary dataset for training; Third,
DENSE considers model heterogeneity, i.e., different clients can have different model
architectures.

• DENSE is a compatible approach, which can be combined with any local training techniques
to further improve the performance of the global model. For instance, we can adopt
LDAM [1] to train the clients’ local models, and improve the accuracy of the global model
(refer to Section 2.3 and Section 3.2).

• Extensive experiments on various datasets verify the effectiveness of our proposed DENSE.
For example, DENSE outperforms the best baseline method Fed-ADI [55] by 5.08% on
CIFAR10 dataset.

2 Data-Free One-Shot Federated Learning

2.1 Framework Overview

To tackle the problems in recent one-shot FL methods as mentioned in Sec. 1, we propose a novel
method named DENSE, which conducts one-shot FL without the need to share additional information
or rely on any auxiliary dataset, while considering model heterogeneity. To simulate real-world
applications, we consider a more challenging yet practical setting where the data on each client are
not independent and identically distributed (non-IID).

The illustration of the learning procedure is demonstrated in Figure 1, and the whole training process
of DENSE is shown in Algorithm 1. After clients upload their local models to the server, the server
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Figure 1: An illustration of training process of DENSE on the server, which consists of two stages:
(1) In data generation stage, we train an auxiliary generator that considers similarity, stability, and
transferability at the same time; (2) In model distillation stage, we distill the knowledge of the
ensemble models and transfer to the global model. Note that the fixed global model is used as an
additional discriminator in the divergence loss Ldiv .

trains a global model with DENSE in two stages. In the data generation stage (first stage), we train
an auxiliary generator that can generate synthetic data by the ensemble models, i.e., ensemble of
local models uploaded by clients. In the model distillation stage (second stage), we use the ensemble
models and the synthetic data (generated by the generator) to train the global model.

2.2 Data Generation
In the first stage, we aim to train a generator to generate synthetic data. Specifically, given the
ensemble of well-trained models uploaded by clients, our goal is to train a generator that can generate
data that have similar distribution to the training data of clients. In addition, we aim not to leak private
information from our generated data, i.e., attackers are not able to predict any sensitive information of
clients from the generated data. Recent work [35] generated data by utilizing a pre-trained generative
adversarial network (GAN). However, such a method is unable to generate data as the pre-trained
GAN is trained on public datasets, which is likely to have different data distribution from the training
data of clients. Moreover, we need to consider model heterogeneity, which makes the problem more
complicated.

To solve these issues, we propose to train a generator that considers similarity*, stability, and
transferability. The data generation process is shown in line 8 to 11 in Algorithm 1. In particular,
given a random noise z (generated from a standard Gaussian distribution) and a random one-hot
label y (generated from a uniform distribution), the generator G(·) aims to generate a synthetic data
x̂ = G(z) such that x̂ is similar to the training data (with label y) of clients.

Similarity. First, we need to consider the similarity between synthetic data x̂ and the training data.
Since we are unable to access the training data of clients, we cannot compute the similarity between
the synthetic data and the training data directly. Instead, we first compute the average logits (i.e.,
outputs of the last fully connected layer) of x̂ computed by the ensemble models.

D(x̂; {θk}mk=1) =
1

m

∑
k∈C

fk
(
x̂;θk

)
, (1)

where m = |C|, and D(x̂; {θk}mk=1) is the average logits of x̂, θk is the parameter of the k-th client.

And fk
(
x̂;θk

)
is the prediction function of client k that outputs the logits of x̂ given parameter θk.

For simplicity, we use D(x̂) to denote D(x̂; {θk}mk=1) in the rest of the paper.

*Note that the ideal synthetic data should be visually distinct from the real data for visual privacy, but similar
in distribution for utility.
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Then, we minimize the average logits and the random label y with the following cross-entropy (CE)
loss.

LCE(x̂,y;θG) = CE(D(x̂),y), (2)
It is expected that the synthetic images can be classified into one particular class with a high
probability by the ensemble models. In fact, during the training phase, the loss between D(x̂) and
y can easily reduce to almost 0, which indicates the synthetic data matches the ensemble models
perfectly. Moreover, we do not directly compute the similarity between the synthetic data and the
training data, which can reduce the probability of leaking sensitive information of the clients.

However, by utilizing only the CE loss, we cannot achieve a high performance (please refer to
Section 3.2 for detail). We conjecture this is because the ensemble models are trained on non-IID data,
the generator may be unstable and trapped into sub-optimal local minima or overfit to the synthetic
data [49, 32].

Stability. Second, to improve the stability of the generator, we propose to add an additional
regularization to stabilize the training. In particular, we utilize the Batch Normalization (BN) loss to
make the synthetic data conform with the batch normalization statistics [55].

LBN (x̂;θG) =
1

m

∑
k∈C

∑
l

(
∥µl(x̂)− µk,l∥+

∥∥σ2
l (x̂)− σ2

k,l

∥∥) , (3)

where µl(x̂) and σ2
l (x̂) are the batch-wise mean and variance estimates of feature maps corresponding

to the l-th BN layer of the generator G(·)†, µk,l and σ2
k,l are the mean and variance of the l-th BN

layer [17] of fk(·). The BN loss minimizes the distance between the feature map statistics of the
synthetic data and the training data of clients. As a result, the synthetic data can have a similar
distribution to the training data of clients, no matter if the data is non-IID or IID.

Synthetic data

Real test data

Student Teacher

(�) ��� ��������� ���� , 
easy to learn

(b) Train with desired 
synthetic data

Student Teacher

Figure 2: The illustration of generated data and
decision boundary of ensemble models (teachers)
and global model (student). Left panel: Synthetic
data (red circles) are far away from the decision
boundary, which is less helpful to the transfer of
knowledge. Right panel: By utilizing our bound-
ary support loss, we can generate more synthetic
data near the decision boundaries (black circles),
which helps the student better learn the decision
boundary of the teacher.

Transferability. By utilizing the CE loss and
BN loss, we can train a generator that can gen-
erate synthetic data, but we observed that the
synthetic data are likely to be far away from
the decision boundary (of the ensemble models),
which makes the ensemble models (teachers)
hard to transfer their knowledge to the global
model (student). We illustrate the observation
in the left panel of Figure 2. S and T are the
decision boundaries of the global model (the
detail of the global model is introduced in Sec-
tion 2.3) and ensemble models respectively. The
essence of knowledge distillation is transferring
the information of decision boundary from the
teacher model to the student model [12]. We
aim to learn the decision boundary of global
model and have a high classification accuracy
on the real test data (blue diamonds). However,
the generated synthetic data (red circles) are
likely to be on the same side of the two deci-
sion boundaries and unhelpful to the transfer
of knowledge [12]. To solve this problem, we
argue to generate more synthetic data that fall between the decision boundaries of the ensemble
models and the global model. We illustrate our idea in the right panel of Figure 2. Red circles are
synthetic data on the same side of the decision boundary, which are less helpful in learning the global
model. Black circles are synthetic data between the decision boundaries, i.e., the global model and
the ensemble models have different predictions on these data. Black circles can help the global model
better learn the decision boundary of the ensemble models.

Motivated by the above observations, we introduce a new boundary support loss, which urges the
generator to generate more synthetic data between the decision boundaries of the ensemble models
and the global model. We divide the synthetic data into 2 sets: (1) the global model and the ensemble

†We assume the input is a batch of data.
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models have the same predictions on data in the first set (argmaxc D
(c)(x̂) = argmaxc f

(c)
S (x̂;θS));

(2) different predictions on data in the second set (argmaxc D
(c)(x̂) ̸= argmaxc f

(c)
S (x̂;θS)), where

D(c)(x̂) and f
(c)
S (x̂;θS) are the logits for the c-th label of the ensemble models and the global model

respectively. The data in the first set are on the same side of those two decision boundaries (red circles
in Figure 2) while the data in the second set (black circles in Figure 2) are between the decision
boundaries of the ensemble models and the global model. We maximize the differences of predictions
of the global model and the ensemble models on data in the second set with Kullback-Leibler
divergence loss as follows.

Ldiv(x̂;θG) = −ωKL (D(x̂), fS(x̂;θS)) , (4)

where KL(·, ·) denotes the Kullback-Leibler (KL) divergence loss, ω = 1(argmaxc D
(c)(x̂) ̸=

argmaxc f
(c)
S (x̂;θS)) outputs 0 for data in the first set and 1 for data in the second set, and 1(a)

is the indicator function that outputs 1 if a is true and outputs 0 if a is false. By maximizing the
KL divergence loss, the generator can generate more synthetic data that are more helpful to the
model distillation stage (refer to Section 2.3 for detail) and further improve the transferability of the
ensemble models.

By combining the above losses, we can obtain the generator loss as follows,

Lgen(x̂,y;θG) = LCE(x̂,y;θG) + λ1LBN (x̂;θG) + λ2Ldiv(x̂;θG), (5)

where λ1 and λ2 are scaling factors for the losses.

Algorithm 1 Training process of DENSE
Input: Number of client m, clients’ local models {f1(), · · · , fm()}, generator G(·) with parameter
θG, learning rate of the generator ηG, number of training rounds TG for generator in each epoch,
global model fS() with parameter θS , learning rate of the global model ηS , global model training
epochs T , and batch size b.

for each client k ∈ C in parallel do
θk ← LocalUpdate(k)

end for
Initialize parameter θG and θS

for epoch=1, · · · , T do
Sample a batch of noises and labels {zi,yi}bi=1
// data generation stage
for j = 1, · · · , TG do

Generate {x̂i}bi=1 with {zi}bi=1 and G(·)
θG ← θG − ηG

1
b

∑b
i=1∇θG

ℓgen(x̂i,yi;θG)
end for
// model distillation stage
Generate {x̂i}bi=1 with {zi}bi=1 and G(·)
θS = θS − ηS

1
b

∑b
i=1∇θS

ℓdis(x̂i;θS)
end for

Note that the generated synthetic data have similar features but different from the training data (of
clients), which reduces the probability of leaking sensitive information of clients. More discussions
of the privacy issues are in Section 3.3.3.

2.3 Model Distillation
In the second stage, we train the global model with the generator (discussed in the previous section)
and the ensemble models. Previous research [60, 35] showed that model ensemble provides a general
method for improving the accuracy and stability of learning models. Motivated by [60], we propose
to use the ensemble models as a teacher to train a student (global) model. A straightforward method is
to obtain the global model by aggregating the parameters of all client models (e.g., by FedAvg [42]).
However, in real-world applications, clients are likely to have different model architectures [44],
making FedAvg useless. Moreover, since the data in different clients are non-IID, FedAvg cannot
deliver a good performance or even diverge [59, 32].
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To this end, we follow [35] to distill the knowledge of the ensemble models to the global model by
minimizing the predictions between the ensemble models (teacher) and the global model (student)
on the same synthetic data. The model distillation process is shown in line 13 to 14 in Algorithm 1.
First, we compute the average logits of the synthetic data according to Eq. (1), i.e., D(x̂) =
1
m

∑
k∈C f

k
(
x̂;θk

)
. In contrast to traditional aggregation methods (e.g., FedAvg) that are unable to

aggregate heterogeneous models, averaging logits can be easily applied to both heterogeneous and
homogeneous FL systems.

Then, we use the average logits to distill the knowledge of the ensemble models by minimizing the
following objective function.

Ldis(x̂;θS) = KL (D(x̂), fS(x̂;θS)) . (6)
By minimizing the KL loss, we can train a global model with the knowledge of the ensemble models
and the synthetic data regardless of data and model heterogeneity.

Note that DENSE has no restriction on the clients’ local models, i.e., clients can train models with
arbitrary techniques. Thus, DENSE is a compatible approach, which can be combined with any local
training techniques to further improve the performance of the global model. We further discuss the
combination of local training techniques in Section 3.2.

Discussions on privacy-preserving Research [15] has shown that it is possible to launch an attack
where a malicious user uses GANs to recreate samples of another participant’s private datasets.
Besides, in FL, exchanging models between the server and clients can result in potential privacy
leakage. Note that our method prohibits the generator from seeing the real data directly, and there is
only one communication round, which reduces the risk of privacy leakage. In addition, we display
our generated images in Section 3.3.3, which does not directly reveal the information of real data.
Several existing privacy-preserving methods can be incorporated into our framework to better protect
clients from adversaries [37, 20]. We leave this as our future work.

Discussions on Knowledge Distillation in FL In traditional FL frameworks, all users have to agree
on the specific architecture of the global model. To support model heterogeneity, Li et al. [28]
proposed a new federated learning framework that enables participants to independently design
their models by knowledge distillation [14]. With the use of a proxy dataset, knowledge distillation
alleviates the model drift issue induced by non-IID data. However, the requirement of proxy data
renders such a method impractical for many applications, since a carefully designed dataset is not
always available on the server. Data-free knowledge distillation is a promising approach, which
can transfer knowledge of a teacher model to a student model without any real data [2, 55]. Lin
et al. [35] proposed data-free ensemble distillation for model fusion through synthetic data in each
communication round, which requires high communication costs and computational costs. However,
in this paper, we are more concerned with obtaining a good global model through only one round
of communication in cases of heterogeneous models, which is more challenging and practical. Zhu
et al. [64] also proposed a data-free knowledge distillation approach for FL, which learns a generator
derived from the prediction of local models. However, the learned generator is later broadcasted to all
clients, and then clients need to send their generators to the server, which increases the communication
burden. More seriously, the generator has direct access to the local data (the generator can easily
remember the training samples [39]), which can cause privacy concerns. As the generator used in our
method is always stored in the central server, it never sees any real local data.

3 Experiments
3.1 Experimental Setup
3.1.1 Datasets
Our experiments are conducted on the following 6 real-world datasets: MNIST [24], FMNIST [53],
SVHN [43], CIFAR10 [21], CIFAR100 [21], and Tiny-ImageNet [23].MNIST dataset contains binary
images of handwritten digits. There are 60,000 training images and 10,000 testing images in MNIST
dataset. CIFAR10 dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images
per class. There are 50,000 training images and 10,000 test images in CIFAR10 dataset. CIFAR100
dataset is similar to CIFAR10 dataset, except it has 100 classes containing 600 images each. There
are 500 training images and 100 testing images per class. Tiny-ImageNet contains 100000 images of
200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training
images, 50 validation images and 50 test images.
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Table 1: Accuracy of different methods across α = {0.1, 0.3, 0.5} on different datasets.
Dataset MNIST FMNIST CIFAR10 SVHN CIFAR100 Tiny-ImageNet

Method α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5

FedAvg 48.24 72.94 90.55 41.69 82.96 83.72 23.93 27.72 43.67 31.65 61.51 56.09 4.58 11.61 12.11 3.12 10.46 11.89
FedDF 60.15 74.01 92.18 43.58 80.67 84.67 40.58 46.78 53.56 49.13 73.34 73.98 28.17 30.28 36.35 15.34 18.22 27.43

Fed-DAFL 64.38 74.18 93.01 47.14 80.59 84.02 47.34 53.89 58.59 53.23 76.56 78.03 28.89 34.89 38.19 18.38 22.18 28.22
Fed-ADI 64.13 75.03 93.49 48.49 81.15 84.19 48.59 54.68 59.34 53.45 77.45 78.85 30.13 35.18 40.28 19.59 25.34 30.21

DENSE (ours) 66.61 76.48 95.82 50.29 83.96 85.94 50.26 59.76 62.19 55.34 79.59 80.03 32.03 37.32 42.07 22.44 28.14 32.34

3.1.2 Data partition

To simulate real-world applications, we use Dirichlet distribution to generate non-IID data partition
among clients [56, 29]. In particular, we sample pk ∼ Dir(α) and allocate a pik proportion of the
data of class k to client i. By varying the parameter α, we can change the degree of imbalance. A
small α generates highly skewed data. We set α = 0.5 as default.

3.1.3 Baselines

To ensure fair comparisons, we neglect the comparison with methods that require to download
auxiliary models or datasets, such as FedBE [3] and FedGen [64]. Moreover, since there is only one
communication round, aggregation methods that are based on regularization have no effect. Thus, we
also omit the comparison with these regularization-based methods, e.g., FedProx [31], FedNova [49],
and Scaffold [18]. Instead, we compare our proposed DENSE with FedAvg [42] and FedDF [35].
Furthermore, since DENSE is a data-free method, we derive some baselines from prevailing data-free
knowledge distillation methods, including: 1) DAFL [2], a novel data-free learning framework based
on generative adversarial networks; 2) ADI [55], an image synthesizing method that utilizes the image
distribution to train a deep neural network without real data. We apply these methods to one-shot FL,
and name these two baselines as Fed-DAFL and Fed-ADI.

3.1.4 Settings

For clients’ local training, we use the SGD optimizer with momentum=0.9 and learning rate=0.01.
We set the batch size b = 128, the number of local epochs E = 200, and the client number m = 5.
Following the setting of [2], we train the auxiliary generator G(·) with a deep convolutional network.
We use Adam optimizer with learning rate ηG = 0.001. We set the number of training rounds in
each epoch as TG = 30, and set the scaling factor λ1 = 1 and λ2 = 0.5. For the training of the
server model fS(), we use the SGD optimizer with learning rate ηS = 0.01 and momentum=0.9. The
number of epochs for distillation T = 200. All baseline methods use the same setting as ours.

3.2 Results

3.2.1 Evaluation on real-world datasets
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Figure 3: Left panel: Accuracy of FedAvg and
clients’ local models across different local training
epochs E = {20, 40, 60, · · · , 400}. Right panel:
The accuracy curve for local training. The dotted
lines represent the best results of two one-shot FL
methods (FedAvg and DENSE). Our DENSE out-
performs FedAvg and local models consistently.

To evaluate the effectiveness of our method, we
conduct experiments under different non-IID
settings by varying α = {0.1, 0.3, 0.5} and
report the performance on different datasets
and different methods in Table 1. The re-
sults show that: (1) Our DENSE achieves
the highest accuracy across all datasets. In
particular, DENSE outperforms the best base-
line method Fed-ADI [55] by 5.08% when
α = 0.3 on CIFAR10 dataset. (2) FedAvg
has the worst performance, which implies that
directly averaging the model parameters can-
not achieve a good performance under non-
IID setting in one-shot FL. (3) As α becomes
smaller (i.e., data become more imbalanced),
the performance of all methods decrease sig-
nificantly, which shows that all methods suffer
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Table 2: Accuracy comparisons across heterogeneous client models on CIFAR10. There are five
clients in total, and each client has a personalized model.

Model Client Server (ResNet-18)
ResNet-18 CNN1 CNN2 WRN-16-1 WRN-40-1 FedDF Fed-DAFL Fed-ADI DENSE (ours)

α=0.1 40.83 33.67 35.21 27.73 32.93 42.35 43.12 44.63 49.76
α=0.3 51.49 52.78 44.96 47.35 37.24 52.72 57.72 58.96 63.25
α=0.5 59.96 58.67 54.28 53.39 58.14 60.05 61.56 63.24 67.42
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Figure 4: Visualization of the test accuracy and data distribution for CIFAR10 with α = {0.3, 0.5}.

from highly skewed data. Even under highly skewed setting, DENSE still significantly outperforms
other methods, which further demonstrates the superiority of our proposed method.

3.2.2 Impact of model distillation

We show the impact of model distillation by comparing with FedAvg. We first conduct one-shot FL
and use FedAvg to aggregate the local models. We show the results of the global model and clients’
local models across different local training epochs E = {20, 40, 60, · · · , 400} in the left panel of
Figure 3. The global model achieves the best performance (test accuracy=34%) when E = 40, while
a larger value of E can cause the model to degrade even collapse. This result can be attributed to the
inconsistent optimization objectives with non-IID data [49], which leads to weight divergence [61].
Then, we show the results of one-shot FL when E = 400 and report the performance of FedAvg and
DENSE in the right panel of Figure 3. We also plot the performance of clients’ local models. DENSE
outperforms each client’s local model while FedAvg underperforms each client’s local model. This
validates that model distillation can enhance training while directly aggregating is harmful to the
training under non-IID setting in one-shot FL.

3.2.3 Results in heterogeneous FL

Note that our proposed DENSE can support heterogeneous models. We apply five different CNN
models on CIFAR10 dataset with Dirichlet distribution α = {0.1, 0.3, 0.5}. The heterogeneous
models include: 1) one ResNet-18 [11], 2) two small CNNs: CNN1 and CNN2; 3) two Wide-ResNets
(WRN) [57]: WRN-16-1 and WRN-40-1. For knowledge distillation, we use ResNet-18 as the
server’s global model. Detailed architecture information of the given deep networks can be found
in Appendix. Table 2 evaluates all methods in heterogeneous one-shot FL under practical non-IID
data settings. We omit the results for FedAvg as FedAvg does not support heterogeneous models. We
remark that FL under both the non-IID data distribution and different model architecture setting is
a quite challenging task. Even under this setting, our DENSE still significantly outperforms other
baselines. In addition, we report the accuracy curve of global distillation. As shown in Figure 4, our
method outperforms other baselines by a large margin.

3.3 Analysis of Our Method

3.3.1 Impact of the number of clients

Furthermore, we evaluate the performance of these methods on CIFAR10 and SVHN datasets by
varying the number of clients m = {5, 10, 20, 50, 100}. According to [33], the server can become a
bottleneck when the number of clients is very large, we are also concerned with the model performance
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Table 3: Accuracy across different number of clients m = {5, 10, 20, 50, 100} on CIFAR10 and
SVHN datasets.

Dataset CIFAR10 SVHN

m FedAvg FedDF Fed-DAFL Fed-ADI DENSE (ours) FedAvg FedDF Fed-DAFL Fed-ADI DENSE (ours)
5 43.67 53.56 55.46 58.59 62.19 56.09 73.98 78.03 78.85 80.03

10 38.29 54.44 56.34 57.13 61.42 45.34 62.12 63.34 65.45 67.57
20 36.03 43.15 45.98 46.45 52.71 47.79 60.45 62.19 63.98 66.42
50 37.03 40.89 43.02 44.47 48.47 36.53 51.44 54.23 57.35 59.27
100 33.54 36.89 37.55 36.98 43.28 30.18 46.58 47.19 48.33 52.48

Table 4: Performance analysis of DENSE+LDAM.

Dataset CIFAR10 SVHN

Method α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5

DENSE 50.26 59.76 62.19 55.34 79.59 80.03

DENSE+LDAM 57.24 63.13 64.76 58.04 81.28 81.77

when m increases. Table 3 shows the results of different methods across different m. The accuracy
of all methods decreases as the number of clients m increases, which is consistent with observations
in [33, 42]. Even though the number of clients can affect the performance of one-shot FL, our method
still outperforms other baselines. The increasing number of clients poses new challenges for ensemble
distillation, which we leave for future investigation.

3.3.2 Combination with imbalanced learning
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Figure 5: Left panel: Accuracy curves of DENSE
and DENSE+LDAM. Right panel: Data distri-
bution of different clients for CIFAR10 dataset
(α=0.1).

The accuracy of federated learning reduces sig-
nificantly with non-IID data, which has been
broadly discussed in recent studies [29, 49]. Ad-
ditionally, previous studies [1, 19] have demon-
strated their superiority on imbalanced data. The
combination of our method with these tech-
niques to address imbalanced local data can lead
to a more effective FL system. For example, by
using LDAM [1] in clients’ local training, we
can mitigate the impact of data imbalance, and
thereby build a more powerful ensemble model.
We compare the performance of the original
DENSE and DENSE combined with LDAM
(DENSE+LDAM) across α = {0.1, 0.3, 0.5}
on CIFAR10 and SVHN datasets.
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Figure 6: Visualization of synthetic data on CI-
FAR10 and SVHN datasets.

As demonstrated in Table 4, DENSE+LDAM
can significantly improve the performance, es-
pecially for highly skewed non-IID data (i.e.
α = 0.1). To help understand the performance
gap and data skewness, in Figure 5, we visual-
ize the accuracy curve and data distribution of
CIFAR10 (α=0.1) in the left panel and right
panel respectively. The number in the right
panel stands for the number of examples as-
sociated with the corresponding label in one
particular client. These figures imply that sig-
nificant improvement can be achieved by com-
bining DENSE with LDAM on highly skewed
data.
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3.3.3 Visualization of synthetic data

To compare the synthetic data with the training data, we visualize the synthetic data on CIFAR10
and SVHN datasets in Figure 6. As shown in the figure, the first / third row is the original data of
CIFAR10 / SVHN dataset, and the second / last row is the synthetic data generated by the model
trained on CIFAR10 / SVHN dataset. The synthetic data are not similar to the original data, which
can effectively reduce the probability of leaking sensitive information of clients. Note that although
the synthetic data look much different from the original data, our method still achieves a higher
performance than other baseline methods by training with these synthetic data (as shown in Table 1).
Note that the ideal synthetic data should be visually distinct from the real data.

3.3.4 Extend to multiple rounds

Table 5: Accuracy for multiple communication rounds.
Dataset CIFAR10 SVHN

Communication rounds α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5

Tc = 1 50.72 59.41 63.89 54.344 79.87 80.14
Tc = 2 63.08 65.90 71.16 56.13 79.75 85.18
Tc = 3 61.61 69.73 73.91 74.41 86.42 86.18
Tc = 4 66.26 69.40 74.39 78.67 86.36 86.43
Tc = 5 67.65 71.42 76.01 80.28 86.25 86.55

We also extend DENSE to multi-round
FL to test its effectiveness, i.e., there
are multiple communication rounds be-
tween clients and server. Table 5 demon-
strates the results of DENSE across
different communication rounds Tc =
{1, 2, 3, 4, 5} on CIFAR10 and SVHN
datasets. The local training epoch is
fixed as E = 10. The performance of
DENSE improves as Tc increases, and DENSE achieves the best performance when Tc = 5. This
shows that DENSE can be extended to multi-round FL and the performance can be further enhanced
by increasing the communication rounds.

3.3.5 Contribution of LBN and Ldiv

Table 6: Impact of loss functions in data generation.
Dataset CIFAR10 SVHN CIFAR100

DENSE 62.19 80.03 42.07
w/ LCE 53.12 73.11 36.47

w/o LBN 61.05 78.36 39.89

w/o Ldiv 59.18 77.59 39.14

We investigate the contributions of differ-
ent loss functions used in data generation.
We conduct leave-one-out testing and
show the results by removing Ldiv (w/o
Ldiv), and removing LBN (w/o LBN ).
Additionally, we report the result by re-
moving both Ldiv and LBN , i.e., using
only LCE (w/ LCE). As illustrated in
Table 6, using only LCE to train the gen-
erator leads to poor performance. Be-
sides, removing either the LBN loss or Ldiv loss also affects the accuracy of the global model. A
combination of these loss functions leads to a high performance of global model, which shows that
each part of the loss function plays an important role in enhancing the generator.

4 Conclusion

In this paper, we propose an effective one-shot federated learning method called DENSE, which trains
the global model by a data generation stage and a model distillation stage. Extensive experiments
across various settings validate the efficacy of our method. Overall, DENSE is by far the most
practical framework that can conduct data-free one-shot FL with model heterogeneity. A promising
future direction is to consider the potential privacy attacks in one-shot FL.

5 Acknowledgement

This work was supported by Sony AI, the National Key Research and Development Project of
China (2021ZD0110400 No. 2018AAA0101900), National Natural Science Foundation of China
(U19B2042), Zhejiang Lab (2021KE0AC02), Academy Of Social Governance Zhejiang University,
Fundamental Research Funds for the Central Universities.

10



References
[1] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced

datasets with label-distribution-aware margin loss, 2019.

[2] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing
Xu, Chao Xu, and Qi Tian. Dafl: Data-free learning of student networks. In ICCV, 2019.

[3] Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to
federated learning, 2021.

[4] Zhaoyu Chen, Bo Li, Shuang Wu, Jianghe Xu, Shouhong Ding, and Wenqiang Zhang. Shape
matters: Deformable patch attack. In European conference on computer vision, 2022.

[5] Zhaoyu Chen, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Wenqiang Zhang. Towards
practical certifiable patch defense with vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 15148–15158, June
2022.

[6] Zhen Chen, Meilu Zhu, Chen Yang, and Yixuan Yuan. Personalized retrogress-resilient frame-
work for real-world medical federated learning. In Marleen de Bruijne, Philippe C. Cattin,
Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, and Caroline Essert, editors,
Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 - 24th Interna-
tional Conference, Strasbourg, France, September 27 - October 1, 2021, Proceedings, Part III,
volume 12903 of Lecture Notes in Computer Science, pages 347–356. Springer, 2021.

[7] Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogeneity for the win: One-shot federated
clustering, 2021.

[8] Jiahua Dong, Yang Cong, Gan Sun, Zhen Fang, and Zhengming Ding. Where and how to
transfer: Knowledge aggregation-induced transferability perception for unsupervised domain
adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1):1–17, 2021.

[9] Jiahua Dong, Yang Cong, Gan Sun, Bineng Zhong, and Xiaowei Xu. What can be transferred:
Unsupervised domain adaptation for endoscopic lesions segmentation. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4022–4031, June 2020.

[10] Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[12] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge distillation with
adversarial samples supporting decision boundary. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3771–3778, 2019.

[13] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2(7), 2015.

[14] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015.

[15] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan:
information leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pages 603–618, 2017.

[16] Hao Huang, Yongtao Wang, Zhaoyu Chen, Yuze Zhang, Yuheng Li, Zhi Tang, Wei Chu,
Jingdong Chen, Weisi Lin, and Kai-Kuang Ma. Cmua-watermark: A cross-model universal
adversarial watermark for combating deepfakes. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(1):989–997, Jun. 2022.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015.

11



[18] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[19] Jaehyung Kim, Jongheon Jeong, and Jinwoo Shin. M2m: Imbalanced classification via major-
to-minor translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[20] Aashish Kolluri, Teodora Baluta, and Prateek Saxena. Private hierarchical clustering in federated
networks. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, pages 2342–2360. ACM, 2021.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[23] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[25] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pages
II–104. IEEE, 2004.

[26] Bo Li, Zhengxing Sun, and Yuqi Guo. Supervae: Superpixelwise variational autoencoder for
salient object detection. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 8569–8576. AAAI Press, 2019.

[27] Bo Li, Zhengxing Sun, Lv Tang, Yunhan Sun, and Jinlong Shi. Detecting robust co-saliency with
recurrent co-attention neural network. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, pages 818–825. ijcai.org, 2019.

[28] Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation.
arXiv preprint arXiv:1910.03581, 2019.

[29] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data
silos: An experimental study, 2021.

[30] Qinbin Li, Bingsheng He, and Dawn Song. Practical one-shot federated learning for cross-silo
setting. arXiv preprint arXiv:2010.01017, 2020.

[31] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks, 2020.

[32] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated
learning on non-iid features via local batch normalization. In International Conference on
Learning Representations, 2020.

[33] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent, 2017.

[34] Feng Liang, Weike Pan, and Zhong Ming. Fedrec++: Lossless federated recommendation
with explicit feedback. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021.

12



[35] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust
model fusion in federated learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[36] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated domain
generalization on medical image segmentation via episodic learning in continuous frequency
space. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021, pages 1013–1023. Computer Vision Foundation / IEEE, 2021.

[37] Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa. FLAME:
differentially private federated learning in the shuffle model. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 8688–8696. AAAI
Press, 2021.

[38] Shuchang Liu, Shuyuan Xu, Wenhui Yu, Zuohui Fu, Yongfeng Zhang, and Amélie Marian.
Fedct: Federated collaborative transfer for recommendation. In Fernando Diaz, Chirag Shah,
Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai, editors, SIGIR ’21: The 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
Virtual Event, Canada, July 11-15, 2021, pages 716–725. ACM, 2021.

[39] Yi Liu, Jialiang Peng, JQ James, and Yi Wu. Ppgan: Privacy-preserving generative adversarial
network. In 2019 IEEE 25Th international conference on parallel and distributed systems
(ICPADS), pages 985–989. IEEE, 2019.

[40] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang Yang, and
Philip S Yu. Privacy and robustness in federated learning: Attacks and defenses. arXiv preprint
arXiv:2012.06337, 2020.

[41] Lingjuan Lyu, Han Yu, Jun Zhao, and Qiang Yang. Threats to federated learning. In Federated
Learning, pages 3–16. Springer, 2020.

[42] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data, 2017.

[43] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[44] Lichao Sun and Lingjuan Lyu. Federated model distillation with noise-free differential privacy.
In IJCAI, 2021.

[45] Manasi Vartak. MODELDB: A system for machine learning model management. In 8th
Biennial Conference on Innovative Data Systems Research, CIDR 2017, Chaminade, CA, USA,
January 8-11, 2017, Online Proceedings. www.cidrdb.org, 2017.

[46] Chenghong Wang, Jieren Deng, Xianrui Meng, Yijue Wang, Ji Li, Fei Miao, Sanguthevar
Rajasekaran, and Caiwen Ding. A secure and efficient federated learning framework for NLP.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021.

[47] Derui Wang, Chaoran Li, Sheng Wen, Surya Nepal, and Yang Xiang. Man-in-the-middle attacks
against machine learning classifiers via malicious generative models. IEEE Transactions on
Dependable and Secure Computing, 2020.

[48] Hongyi Wang, Saurabh Agarwal, and Dimitris S. Papailiopoulos. Pufferfish: Communication-
efficient models at no extra cost. CoRR, abs/2103.03936, 2021.

[49] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the
objective inconsistency problem in heterogeneous federated optimization. arXiv preprint
arXiv:2007.07481, 2020.

13



[50] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation,
2020.

[51] Kun Wei, Da Chen, Yuhong Li, Xu Yang, Cheng Deng, and Dacheng Tao. Incremental
embedding learning with disentangled representation translation. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[52] Kun Wei, Cheng Deng, Xu Yang, and Maosen Li. Incremental embedding learning via zero-shot
translation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
10254–10262, 2021.

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[54] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov.
See through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16337–16346, 2021.

[55] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem,
Niraj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8715–8724, 2020.

[56] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia
Hoang, and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks,
2019.

[57] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

[58] Jie Zhang, Chen Chen, Jiahua Dong, Ruoxi Jia, and Lingjuan Lyu. Qekd: Query-efficient and
data-free knowledge distillation from black-box models. arXiv preprint arXiv:2205.11158,
2022.

[59] Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated
learning with label distribution skew via logits calibration. In International Conference on
Machine Learning, pages 26311–26329. PMLR, 2022.

[60] Shaofeng Zhang, Meng Liu, and Junchi Yan. The diversified ensemble neural network. Advances
in Neural Information Processing Systems, 33, 2020.

[61] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data, 2018.

[62] Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot federated
learning. arXiv preprint arXiv:2009.07999, 2020.

[63] Xinghua Zhu, Jianzong Wang, Zhenhou Hong, and Jing Xiao. Empirical studies of institutional
federated learning for natural language processing. In Trevor Cohn, Yulan He, and Yang Liu,
editors, Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pages 625–634. Association
for Computational Linguistics, 2020.

[64] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heteroge-
neous federated learning. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 12878–12889. PMLR, 2021.

14



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


	Introduction
	Data-Free One-Shot Federated Learning
	Framework Overview
	Data Generation
	Model Distillation

	Experiments
	Experimental Setup
	Datasets
	Data partition
	Baselines
	Settings

	Results
	Evaluation on real-world datasets
	Impact of model distillation
	Results in heterogeneous FL

	Analysis of Our Method
	Impact of the number of clients
	Combination with imbalanced learning
	Visualization of synthetic data
	Extend to multiple rounds
	Contribution of LBN and Ldiv


	Conclusion
	Acknowledgement

