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Abstract

One-shot Federated Learning (FL) has recently emerged as a promising approach,
which allows the central server to learn a model in a single communication round.
Despite the low communication cost, existing one-shot FL methods are mostly
impractical or face inherent limitations, e.g., a public dataset is required, clients’
models are homogeneous, and additional data/model information need to be up-
loaded. To overcome these issues, we propose a novel two-stage Data-freE oNe-
Shot federated lEarning (DENSE) framework, which trains the global model by a
data generation stage and a model distillation stage. DENSE is a practical one-shot
FL method that can be applied in reality due to the following advantages: (1)
DENSE requires no additional information compared with other methods (except
the model parameters) to be transferred between clients and the server; (2) DENSE
does not require any auxiliary dataset for training; (3) DENSE considers model
heterogeneity in FL, i.e., different clients can have different model architectures.
Experiments on a variety of real-world datasets demonstrate the superiority of our
method. For example, DENSE outperforms the best baseline method Fed-ADI by
5.08% on CIFAR10 dataset.

1 Introduction

Deep neural networks (DNNs) have recently gained popularity as a powerful tool for advancing
artificial intelligence in both established and emerging fields [25, 22, 13, 9, 8, 51, 52, 58, 5, 4, 16].
Federated learning (FL) [42] has emerged as a promising learning paradigm which allows multiple
clients to collaboratively train a global model without exposing their private training data. In FL, each
client trains a local model on its own data and is required to periodically share its high-dimensional
model parameters with a central server. Recent years, FL has shown its potential to facilitate
real-world applications in many fields, including medical image analysis [36, 6], recommender
systems [34, 38], natural language processing [63, 46] and computer vision [27, 26].

The original FL framework requires participants to communicate frequently with the central server
in order to exchange models. In real-world FL, such high communication cost may be intolerable
and impractical. Reducing the communication cost between clients and the server is desired both for
system efficiency and to support the privacy goals of federated learning [40, 41]. Recent research
proposed some common methods to reduce communication costs, e.g., utilize multiple local up-
dates [18], employ compression techniques [48], and one-shot FL [10]. Among them, one-shot FL is

*Both authors contributed equally to this work. Work done during Jie Zhang’s internship at Tencent Youtu
Lab and partly done at Sony AI.

*Work is completed during Chen Chen’s internship at Sony AI.
‡Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



a promising solution which only allows one communication round. There are several motivations
behind one-shot FL:1) First of all, multi-round training is not practical in some scenarios such as
model markets [45], in which users can only buy the pre-trained models from the market without any
real data.2) Furthermore, frequent communication poses a high risk of being attacked. For instance,
frequent communication can be easily intercepted by attackers, who can launch man-in-the-middle
attacks [47] or even reconstruct the training data from gradients [54]. In this way, one-shot FL can
reduce the probability of being intercepted by malicious attackers due to the one-round property.
Thus, in this paper, we mainly focus on one-shot FL.

However, existing one-shot FL studies [10, 30, 62, 7] are still hard to apply in real-world applications,
due to impractical settings. For example, Guhaet al. [10] and Li et al. [30] involved a public dataset
for training, which may be impractical in very sensitive scenarios such as the biomedical domains.
Zhuet al. [62] adopted dataset distillation [50] in one-shot FL, but they need to send distilled data
to the central server, which causes additional communication cost and potential privacy leakage.
Denniset al. [7] utilized cluster-based method in one-shot FL, which requires to upload the cluster
means to the server, causing additional communication cost. Additionally, none of these methods
consider model heterogeneity,i.e., different clients have different model architectures [31], which is
very common in practical scenarios. For instance, in model market, models sold by different sellers
are likely to be heterogeneous. Besides, when several medical institutions participate in FL, they
may need to design their own model to meet distinct speci�cations. Therefore, developing a practical
one-shot FL method is in urgent need.

In this work, we propose a novel two-stageData-freE oNe-Shot federated lEarning (DENSE)
framework, which trains the global model by a data generation stage and a model distillation stage.
In the �rst stage, we utilize the ensemble models (i.e., ensemble of local models uploaded by clients)
to train a generator, which can generate synthetic data for training in the second stage. In the second
stage, we distill the knowledge of the ensemble models to the global model. In contrast to traditional
FL methods based on FedAvg [42], our method does not require averaging of model parameters, thus
it can support heterogeneous models,i.e., clients can have different model architectures. In summary,
our main contributions are summarized as follows:

• We propose a novel data-free one-shot FL framework named DENSE, which consists of
two stages. In the �rst stage, we train a generator that considerssimilarity, stability, and
transferabilityat the same time. In the second stage, we use the ensemble models and the
data generated by the generator to train a global model.

• The setting of DENSE is practical in the following aspects. First, DENSE requires no
additional information (except the model parameters) to be transferred between clients
and the server; Second, DENSE does not require any auxiliary dataset for training; Third,
DENSE considers model heterogeneity,i.e., different clients can have different model
architectures.

• DENSE is a compatible approach, which can be combined with any local training techniques
to further improve the performance of the global model. For instance, we can adopt
LDAM [ 1] to train the clients' local models, and improve the accuracy of the global model
(refer to Section 2.3 and Section 3.2).

• Extensive experiments on various datasets verify the effectiveness of our proposed DENSE.
For example, DENSE outperforms the best baseline method Fed-ADI [55] by 5.08% on
CIFAR10 dataset.

2 Data-Free One-Shot Federated Learning

2.1 Framework Overview

To tackle the problems in recent one-shot FL methods as mentioned in Sec. 1, we propose a novel
method named DENSE, which conducts one-shot FL without the need to share additional information
or rely on any auxiliary dataset, while considering model heterogeneity. To simulate real-world
applications, we consider a more challenging yet practical setting where the data on each client are
not independent and identically distributed (non-IID).

The illustration of the learning procedure is demonstrated in Figure 1, and the whole training process
of DENSE is shown in Algorithm 1. After clients upload their local models to the server, the server
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Figure 1: An illustration of training process of DENSE on the server, which consists of two stages:
(1) In data generation stage, we train an auxiliary generator that considers similarity, stability, and
transferability at the same time; (2) In model distillation stage, we distill the knowledge of the
ensemble models and transfer to the global model. Note that the �xed global model is used as an
additional discriminator in the divergence lossL div .

trains a global model with DENSE in two stages. In the data generation stage (�rst stage), we train
an auxiliary generator that can generate synthetic data by the ensemble models,i.e., ensemble of
local models uploaded by clients. In the model distillation stage (second stage), we use the ensemble
models and the synthetic data (generated by the generator) to train the global model.

2.2 Data Generation

In the �rst stage, we aim to train a generator to generate synthetic data. Speci�cally, given the
ensemble of well-trained models uploaded by clients, our goal is to train a generator that can generate
data that have similar distribution to the training data of clients. In addition, we aim not to leak private
information from our generated data,i.e., attackers are not able to predict any sensitive information of
clients from the generated data. Recent work [35] generated data by utilizing a pre-trained generative
adversarial network (GAN). However, such a method is unable to generate data as the pre-trained
GAN is trained on public datasets, which is likely to have different data distribution from the training
data of clients. Moreover, we need to consider model heterogeneity, which makes the problem more
complicated.

To solve these issues, we propose to train a generator that considerssimilarity* , stability, and
transferability. The data generation process is shown in line 8 to 11 in Algorithm 1. In particular,
given a random noisez (generated from a standard Gaussian distribution) and a random one-hot
labely (generated from a uniform distribution), the generatorG(�) aims to generate a synthetic data
x̂ = G(z) such that̂x is similar to the training data (with labely ) of clients.

Similarity. First, we need to consider the similarity between synthetic datax̂ and the training data.
Since we are unable to access the training data of clients, we cannot compute the similarity between
the synthetic data and the training data directly. Instead, we �rst compute the average logits (i.e.,
outputs of the last fully connected layer) ofx̂ computed by the ensemble models.

D (x̂ ; f � k gm
k=1 ) =

1
m

X

k2C

f k
�

x̂ ; � k
�

; (1)

wherem = jCj, andD(x̂ ; f � k gm
k=1 ) is the average logits of̂x , � k is the parameter of thek-th client.

And f k
�

x̂ ; � k
�

is the prediction function of clientk that outputs the logits of̂x given parameter� k .

For simplicity, we useD(x̂ ) to denoteD(x̂ ; f � k gm
k=1 ) in the rest of the paper.

* Note that the ideal synthetic data should be visually distinct from the real data for visual privacy, but similar
in distribution for utility.
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Then, we minimize the average logits and the random labely with the following cross-entropy (CE)
loss.

L CE (x̂ ; y ; � G ) = CE(D(x̂ ); y ); (2)

It is expected that the synthetic images can be classi�ed into one particular class with a high
probability by the ensemble models. In fact, during the training phase, the loss betweenD(x̂ ) and
y can easily reduce to almost 0, which indicates the synthetic data matches the ensemble models
perfectly. Moreover, we do not directly compute the similarity between the synthetic data and the
training data, which can reduce the probability of leaking sensitive information of the clients.

However, by utilizing only the CE loss, we cannot achieve a high performance (please refer to
Section 3.2 for detail). We conjecture this is because the ensemble models are trained on non-IID data,
the generator may be unstable and trapped into sub-optimal local minima or over�t to the synthetic
data [49, 32].

Stability. Second, to improve the stability of the generator, we propose to add an additional
regularization to stabilize the training. In particular, we utilize the Batch Normalization (BN) loss to
make the synthetic data conform with the batch normalization statistics [55].

L BN (x̂ ; � G ) =
1
m

X

k2C

X

l

�
k� l (x̂ ) � � k;l k +




 � 2

l (x̂ ) � � 2
k;l




 �

; (3)

where� l (x̂ ) and� 2
l (x̂ ) are the batch-wise mean and variance estimates of feature maps corresponding

to thel-th BN layer of the generatorG(�)†, � k;l and� 2
k;l are the mean and variance of thel-th BN

layer [17] of f k (�). The BN loss minimizes the distance between the feature map statistics of the
synthetic data and the training data of clients. As a result, the synthetic data can have a similar
distribution to the training data of clients, no matter if the data is non-IID or IID.

Figure 2: The illustration of generated data and
decision boundary of ensemble models (teachers)
and global model (student).Left panel: Synthetic
data (red circles) are far away from the decision
boundary, which is less helpful to the transfer of
knowledge.Right panel: By utilizing our bound-
ary support loss, we can generate more synthetic
data near the decision boundaries (black circles),
which helps the student better learn the decision
boundary of the teacher.

Transferability. By utilizing the CE loss and
BN loss, we can train a generator that can gen-
erate synthetic data, but we observed that the
synthetic data are likely to be far away from
the decision boundary (of the ensemble models),
which makes the ensemble models (teachers)
hard to transfer their knowledge to the global
model (student). We illustrate the observation
in the left panel of Figure 2. S and T are the
decision boundaries of the global model (the
detail of the global model is introduced in Sec-
tion 2.3) and ensemble models respectively. The
essence of knowledge distillation is transferring
the information of decision boundary from the
teacher model to the student model [12]. We
aim to learn the decision boundary of global
model and have a high classi�cation accuracy
on the real test data (blue diamonds). However,
the generated synthetic data (red circles) are
likely to be on the same side of the two deci-
sion boundaries and unhelpful to the transfer
of knowledge [12]. To solve this problem, we
argue to generate more synthetic data that fall between the decision boundaries of the ensemble
models and the global model. We illustrate our idea in the right panel of Figure 2. Red circles are
synthetic data on the same side of the decision boundary, which are less helpful in learning the global
model. Black circles are synthetic data between the decision boundaries,i.e., the global model and
the ensemble models have different predictions on these data. Black circles can help the global model
better learn the decision boundary of the ensemble models.

Motivated by the above observations, we introduce a new boundary support loss, which urges the
generator to generate more synthetic data between the decision boundaries of the ensemble models
and the global model. We divide the synthetic data into 2 sets: (1) the global model and the ensemble

†We assume the input is a batch of data.
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