
A Appendix

A.1 Concept Alignment Score Implementation Details

As discussed in Section 4, there is lack of agreed-upon metrics to use for evaluating the interpretability
of concept-based XAI models. For example, while concept predictive accuracy is well defined for
scalar concept representations (e.g., vanilla CBMs), there seems to be no clear metric for evaluating
the “concept accuracy” of an embedding representation. Therefore, in this work we build upon this
gap and propose the CAS score as a generalization of the concept predictive accuracy. Intuitively, if a
concept representation is able to capture a concept correctly, then we would expect that clustering
samples based on that representation would result in coherent clusters where samples within the same
cluster all have the concept active or inactive. The CAS attempts to capture this by looking at how
coherent clusters are for each concept representation using the known concept labels for each sample
as we change the size of each cluster. This is formally computed via Equation 2 throught a repeated
evaluation of Rosenberg et al.’s homogeneity score [19] for different clusterings.

Following Rosenberg and Hirschberg [19], we compute the homogeneity score as described in
Section 4 by estimating the conditional entropy of ground truth concept labels Ci w.r.t. cluster labels
Πi, i.e. H(Ci,Πi), using a contingency table. This table is produced by our selected clustering
algorithm κ, i.e. A = {au,v} where au,v is the number of data points that are members of class
ci = v ∈ {0, 1} and elements of cluster πi = u ∈ {1, · · · , ρ}:

H(Ci,Πi) = − ρ

N

ρ∑
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(
au,0 log

au,0
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+ au,1 log
au,1

au,0 + au,1

)
(1)

Similarly, we compute the entropy of the ground truth concept labels Ci, i.e. H(C), as:

H(Ci) = −

(∑ρ
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2

log
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2

+
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2

log
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)
(2)

When evaluating the CAS, we use δ = 50 to speed up its computation across all datasets.

A.2 Kernel Density Estimation of Mutual Information

Following the approach of [35, 36] we approximate the Mutual Information (MI) through the
Kernel Density Estimation (KDE) method. Kolchinsky et al. [35] show that this method accurately
approximates the MI computed through the binning procedure proposed by Tishby et al. [22]. The
KDE approach assumes that the activity of the analysed layer (in this case, the concept encoding
layer Ĉ) is distributed as a mixture of Gaussians. This approximation holds true if the input samples
used for evaluation are representative of the true input distribution. Therefore, we can consider the
input distribution as delta functions over each sample in the dataset. Moreover, Gaussian noise is
added to the layer activity to bound the mutual information w.r.t. the input – i.e., Ĉ = ĉ+ ϵ, where ĉ
is the bottleneck activation vector and ϵ ∼ N(0, σ2I) is a noise matrix with noise variance σ2. In
this setting, the KDE estimation of the MI with the input is:

I(Ĉ;X) = H(Ĉ)−H(Ĉ|X) = H(Ĉ) ≤ ζ

2
− 1

n
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log

 1

n

1

2πσ2

n∑
j=1

e
||ĉ(i)−ĉ(j)||22

2σ2

 , (3)

where n is the number of input samples and ζ is the dimension of the concept encoding layer Ĉ (e.g.,
ζ = m · k for CEM). Notice that Shwartz-Ziv and Tishby [27] neglect the conditional entropy term
arguing that the output of any neural network layer is a deterministic function of the input, which
implies H(Ĉ|X) = 0.

When considering instead the mutual information w.r.t. the downstream task label distribution Y , the
conditional entropy is H(Ĉ|Y ) ̸= 0 and the mutual information I(Ĉ;Y ) can be estimated as:
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I(Ĉ;Y ) = H(Ĉ)−H(Ĉ|Y ) ≤ ζ
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where L is the number of downstream task labels, Pl the number of data with output label l, and
pl = Pl/n is the probability of task label l.

When considering the concept labels C, however, the same estimation cannot be employed since
it requires the labels to be mutually exclusive. While this holds true for the task labels Y in the
considered settings, the concepts in C are generally multi-labeled — i.e., more than one concept can
be true when considering a single sample x(i). Therefore, in this case we compute the average of the
conditional entropies H(Ĉ|C) = 1/k

∑
aH(Ĉ|Ca) across all k concepts. More precisely,

I(Ĉ;C) = H(Ĉ)−H(Ĉ|C)

= H(Ĉ)− 1
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where Pa,m is the number of samples having the concept ca = m, Mk is the set of possible values
that the ca concept can assume (generally Ma = {0, 1}), and pa,m = Pa,m/n is the probability of
concept label ca = m.

In all the previous cases, since we use the natural logarithm, the MI is computed in NATS. To convert
it into bits, we scale the obtained values by 1

log(2) .

The role of noise The variance σ2 of the noise matrix ϵ, plays an important role in the computation
of the MI. More precisely, low values of σ entail high negative values forH(Ĉ|X), and, consequently,
high positive values for I(Ĉ;X). In the extreme case where we do not add any noise, we have
H(Ĉ|X) = − inf and I(Ĉ;X) ∼ inf , as long as the entropy H(Ĉ) is finite. Furthermore, as we
can observe in the equations above, the dimensionality ζ of the concept representation also plays an
important role in the computation of the MI, the latter being directly proportional to the dimensionality
of concept representation layer Ĉ. To mitigate this issue, we also consider the noise to be directly
proportional to the dimension of Ĉ, by setting σ2 = ζ/100.

A.3 Datasets

A.3.1 XOR problem

The first dataset used in our experiments is inspired by the exclusive-OR (XOR) problem proposed
by [24] to show the limitations of Perceptrons. We draw input samples from a uniform distribution in
the unit square x ∈ [0, 1]2 and define two binary concepts {c1, c2} by using the Boolean (discrete)
version of the input features ci = 1xi>0.5. Finally, we construct a downstream task label using the
XOR of the two concepts y = c1 ⊕ c2.
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A.3.2 Trigonometric dataset

The second dataset we use in our experiments is inspired by that proposed by Mahinpei et al. [14]
(see Appendix D of their paper). Specifically, we construct synthetic concept-annotated samples
from three independent latent normal random variables hi ∼ N (0, 2). Each of the 7 features in
each sample is constructed via a non-invertible function transformation of the latent factors, where 3
features are of the form (sin(hi) + hi), 3 features of the form (cos(hi) + hi), and 1 is the nonlinear
combination (h21 + h22 + h23). Each sample is then associated with 3 binary concepts representing the
sign of their corresponding latent variables, i.e. ci = (hi > 0). In order to make this task Boolean-
undecidable from its binary concepts, we modify the downstream task proposed by Mahinpei et al.
[14] by assigning each sample a label y = 1(h1+h2)>0 indicating whether h1 + h2 is positive or not.

A.3.3 Dot dataset

As much as the Trigonometric dataset is designed to highlight that fuzzy concept representations
generalize better than Boolean concept representations, we designed the Dot dataset to show the
advantage of embedding concept representations over fuzzy concept representations. The Dot dataset
is based on four 2-dimensional latent factors from which concepts and task labels are constructed.
Two of these four vectors correspond to fixed reference vectors w+ and w− while the remaining two
vectors {vi}2i=1 are sampled from a 2-dimensional normal distribution:

v1,2 ∼ N (0, 2 I) w+ = [1 1]
T

w− = −w+ (4)

We then create four input features as the sum and difference of the two factors vi:

x = [(v1 + v2) (v1 − v2)]
T (5)

From this, we create two binary concepts representing whether or not the latent factors vi point in
the same direction as the reference vectors wj (as determined by their dot products):

c =
[
1(v1·w1)>0 1(v2·w2)>0

]T
(6)

Finally, we construct the downstream task as determining whether or not vectors v1 and v2 point in
the same direction (as determined by their dot product):

y = 1(v1·v2)>0 (7)

A.3.4 Real-world datasets

Furthermore, we evaluate our methods on two real-world vision tasks: (1) the Caltech-UCSD Birds-
200-2011 dataset (CUB, [16]), as prepared by [9], and the Large-scale CelebFaces Attributes dataset
(CelebA, [25]).

CUB [16] In CUB we construct a dataset with complete concept annotations by using the same
k = 112 bird attributes selected by Koh et al. [9] as binary concept annotations (e.g., beak_type,
wing_color, etc ...) and using the bird identity (l = 200) as the downstream task. All images are
preprocessed in the same fashion as in [9] by normalizing and randomly flipping and cropping each
image during training. This results in a dataset of around 6,000 RGB images with sizes (3, 299, 299)
which are split into test, validation, and training sets using the same splits by Koh et al. [9]. In our
evaluation, we use CUB to test CBMs in real-world tasks where we have a complete set of concept
annotations w.r.t. the downstream task.

CelebA [25] In CelebA, we select the 8 most balanced attributes [a1, · · · a8] out of each image’s
40 binary attributes, as defined by how close their distributions are to a random uniform binary
distribution, and use attributes [a1, · · · , a6] as concepts annotations for each sample. To simulate a
task in which complete concept annotations are lacking, each image in CelebA is assigned a label
corresponding to the base-10 representation of the number formed by the binary vector [a1, · · · , a8],
resulting in a total of l = 28 = 256 classes. Note that concept annotations in this task are incomplete
as attributes a7 and a8 are needed for predicting the downstream task but they are not provided
during training. To improve resource utilization and training times, we further reduce the size of the
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CelebA dataset by randomly subsampling the dataset and selecting every 12th sample during training
and we downsample every image to have shape (3, 64, 64). This results in a dataset with around
16,900 RGB images from which a train, validation, and test datasets are generated using a traditional
70%-10%-20% split. In our experiments, we use CelebA to evaluate CBMs in scenarios where the
bottleneck is extremely narrow and incomplete w.r.t. the downstream task.

A.4 Effect of Concept Encoder Capacity

Different concept encoders will have different approximation capabilities, and the resulting concept
representations will be affected by the architectural choices. To test whether the choice of a specific
model might bias our results, here we show that the relative rankings across methods in our real-world
tasks (CUB and CelebA) are preserved when using backbones with significantly different capacities
i.e., a ResNet18 vs a ResNet34. Specifically, Figure A.1 compares the concept and task predictive
accuracies of our baselines in CUB and CelebA when using different backbone capacities (trained
while fixing all other hyperparamters are described in Appendix A.6). Notice that although we observe
a drop in performance when using a ResNet18 backbone, this drop is similar across all baselines and
therefore leads to our results having the same ranking as observed when using a ResNet34 backbone.
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Figure A.1: Task and average concept accuracy when using a ResNet18 backbone vs a ResNet34
backbone in CUB and CelebA.

Similarly, Figure A.2 shows that the same rankings and results observed in Figure 6, where a
ResNet34 backbone was used, can be seen when performing interventions in the baselines which use
a ResNet18 backbone.
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Figure A.2: Effects of performing positive random concept interventions (left and center left) and
incorrect random interventions (center right and right) for different models with a ResNet18 backbone
in CUB and CelebA. As in [9], when intervening in CUB we jointly set groups of mutually exclusive
concepts.

A.5 RandInt Probability Ablation Study

Figure A.3 shows the results of varying pint for CEMs trained on CUB (using the same training
setup as defined in Appendix A.6). We observe that although there is a slight trade-off in validation
task accuracy as we increase pint, this trade-off is eclipsed compared to the concept intervention
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capabilities which come by increasing pint. Because of this, in our work we settle with pint = 0.25 as
this study shows that this value leverages good performance without interventions while enabling
effective interventions.
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Figure A.3: Ablation study for pint in CUB. (a) Task and concept validation accuracy of CEMs trained
with different values of pint. (b) Task validation accuracy when intervening on an increasing number
of concept groups for CEMs trained with different values of pint.

A.6 Training Details

Model Architectures For simplicity, we use the same DNN architectures across all synthetic tasks
(i.e., XOR, Trig, Dot) unless specified otherwise. Specifically, we use an MLP with hidden layer sizes
{128, 128} and LeakyReLU activations for latent code generator ψ in CEM and concept encoder g
in all CBM variants. When learning concept embedding representations in synthetic datasets, we
learn embeddings with m = 128 activations.

In both CUB and CelebA, for latent code generator ψ in CEM and concept encoder g in all CBM
variants we use a pretrained ResNet-34 model [37] with its last layer modified to output nhidden = m
activations. When using CEM, we learn embeddings with m = 16 activations, smaller than in the
synthetic datasets given the larger number of concepts in these tasks (see Appendix A.14 for an
ablation study showing how the embedding size affects performance in CEM).

Across all datasets we always use a single fully connected layer for label predictor f and, for the
sake of fairness, set γ = k · (m− 1) when evaluating Hybrid CBMs. This is done so that the overall
bottleneck of Hybrid-CBM has size k+γ = k+k(m−1) = km, just as in an equivalent CEM model.
Notice therefore that the dimensionality of ĉ is k for Bool and Fuzzy CBMs while it is k ·m for our
Hybrid-CBM and CEM baselines. When training end-to-end models without concept supervision
(i.e., our “No Concepts” baseline), we use the exact same architecture as in the Hybrid-CBM but
provide no concept supervision in its bottleneck (equivalent to setting the weight for the concept loss
to 0 during training). Finally, when using RandInt, we set pint = 0.25, as empirically we observe that
this yields good results across all datasets (see Appendix A.5 above).

Training Hyperparameters In all synthetic tasks, we generate datasets with 3,000 samples and use
a traditional 70%-10%-20% random split for training, validation, and testing datasets, respectively.
During training, we then set the weight of the concept loss to α = 1 across all models. We then train
all models for 500 epochs using a batch size of 256 and a default Adam [38] optimizer with learning
rate 10−2.

In CUB, we set the concept loss weight to α = 5 in all models and, as in [9], we use a weighted cross
entropy loss for concept prediction to mitigate imbalances in concept labels. All models in this task
are trained for 300 epochs using a batch size of 128 and an SGD optimizer with 0.9 momentum and
learning rate of 10−2.

In our CelebA task, we fix the concept loss weight to α = 1 in all models and also use a weighted
cross entropy loss for concept prediction to mitigate imbalances in concept labels. All models in this
task are trained for 200 epochs using a batch size of 512 and an SGD optimizer with 0.9 momentum
and learning rate of 5×10−3 (different from CUB to avoid instabilities observed if the initial learning
rate was too high).

In all models and tasks, we use a weight decay factor of 4e− 05 and scale the learning rate during
training by a factor of 0.1 if no improvement has been seen in validation loss for the last 10 epochs.
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Furthermore, all models are trained using an early stopping mechanism monitoring validation loss
and stopping training if no improvement has been seen for 15 epochs.

A.7 Task and Mean Concept Performance

In Figure A.4a we show the task and mean concept predictive performance of all of our baselines.
Notice that as claimed in Section 5, all baselines are able to achieve a very similar mean concept
accuracy but they have very distinct task accuracies, suggesting a that the interpretability-vs-accuracy
trade-off is different across different models. For further clarity and to facilitate cross-comparison
across methods and datasets, we also show our concept alignment scores in a bar-plot format in
Figure A.4b.
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Figure A.4: (a) Task and mean concept accuracy for all methods across all tasks. (b) Concept
alignment scores for all methods across all tasks.

In Table 2 and Table 1 we report the same results in tabular form for clarity’s sake. Notice how in
CUB the baseline model without concept suppervision (i.e., “No Concepts”) has a better CAS mean
compared to Bool and Fuzzy CBMs. We hypothesize that because certain concepts in CUB tend to be
activated only for specific classes (e..g, there is a very high imbalance in how concepts are activated
across classes), clusters produced from the intermediate representations of a DNN trained to predict
said classes will be highly coherent with respect to concepts that are class-specific, leading to high
CAS scores. The same cannot be said of e.g., CelebA (where concept activations are highly balanced
across different classes by design), which is why we observe the CAS in black-box DNNs being
lower than that in CBM models.

Table 1: Task accuracy for all methods across all tasks reported with the mean and 95% confidence
interval.

No concepts Boolean-CBM Fuzzy-CBM Hybrid-CBM CEM (ours)

XOR 99.33, (99.01, 99.66) 51.33, (51.33, 51.33) 51.42, (51.42, 51.42) 99.23, (99.23, 99.23) 99.17, (98.71, 99.57)
Trigonometry 98.47, (98.47, 98.47) 77.77, (77.52, 77.99) 98.37, (98.37, 98.37) 98.67, (98.42, 98.90) 98.43, (97.79, 99.01)
Dot 97.57, (97.01, 98.09) 48.00, (48.00, 48.00) 48.17, (48.02, 48.31) 96.67, (96.67, 96.67) 97.13, (97.13, 97.13)
CUB 73.41, (71.83, 74.70) 67.11, (65.29, 68.56) 72.98, (70.39, 76.30) 70.70, (64.28, 77.68) 77.11, (75.89, 78.10)
CelebA 26.80, (25.90, 27.84) 24.23, (24.23, 24.23) 25.07, (24.36, 25.81) 30.24, (29.13, 31.41) 30.63, (29.62, 31.74)
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Table 2: Concept alignment scores for all methods across all tasks reported with the mean and 95%
confidence interval.

No concepts Boolean-CBM Fuzzy-CBM Hybrid-CBM CEM (ours)

XOR 79.65, (71.32, 89.12) 99.86, (99.86, 99.86) 99.92, (99.92, 99.92) 98.53, (97.88, 99.10) 98.79, (98.50, 99.06)
Trigonometry 63.02, (62.18, 63.66) 85.80, (85.80, 85.80) 97.84, (97.84, 97.84) 73.75, (73.75, 73.75) 97.55, (97.11, 97.93)
Dot 57.31, (53.80, 57.31) 93.40, (85.22, 99.57) 87.86, (75.03, 98.24) 72.66, (70.68, 74.26) 95.98, (94.90, 97.16)
CUB 82.12, (81.49, 82.69) 81.18, (80.12, 82.09) 80.79, (79.36, 82.75) 83.19, (79.81, 85.78) 86.14, (85.50, 86.68)
CelebA 71.66, (71.66, 71.66) 74.48, (73.87, 75.08) 75.56, (75.16, 75.91) 77.48, (77.48, 77.48) 79.47, (78.43, 80.33)

A.8 Concept Subsampling in CUB

All concept bottleneck models require datasets containing concept annotations, which may be costly
to acquire. Here we compare a CBM’s robustness when concept annotations are scarce. We simulate
this scenario by randomly selecting a random subsample of the 112 concepts in our CUB task
which we then use as annotations for all models during training (all models are trained using the
same architecture and training hyperparameters as our CUB model in Section 5). As we observe in
Figure A.5, the task and concept accuracy of both CEMs and Hybrid-CBMs are only mildly affected
by the reduction in concept supervisions, as opposed to Bool and Fuzzy CBMs. In both CEMs and
Hybrid-CBMs this robustness allows a dramatic reduction of required concept annotations and the
costs related to acquiring such annotations. Nevertheless, as seen in Section 5.4, notice that although
Hybrid-CBM performs well in concept scarsity, it is unable to effectively react to human concept
interventions (a crucial limitation that CEM is able to overcome).

Figure A.5: Task and average concept accuracies when using a percentage of the available concepts in
our CUB task during training. All points are generated by sampling, uniformly at random, 5 different
concept subsets at training time and averaging all metrics.

A.9 Bottleneck Representation Experiment Details

To explore our hypothesis that the high alignment observed in CEM’s representations may lead to
its embeddings forming more interpretable representations than Hybrid’s embeddings, we evaluate
the power of their learnt bottlenecks as representations for different tasks. With this aim, we train a
Hybrid-CBM and a CEM, both with the same architecture as described for models trained on CUB in
Appendix A.6, on a variation of CUB with only 25% of its concept annotations randomly selected
before training. This results on a total of k = 28 concepts being randomly selected to be provided as
supervision for both models. We then train these models to convergence using the same training setup
as in CUB models described in Appendix A.6 resulting in a Hybrid-CBM with 77.15% ± 0.33%
test task accuracy and 95.3%± 0.31% test mean concept accuracy. In contrast, its CEM counterpart
achieved 76.76%± 0.27% test task accuracy and 95.47%± 0.19% test mean concept accuracy.

Once trained, we use the bottleneck representations learn by both the Hybrid-CBM and the CEM
to predict the remaining 75% of the concept annotations in CUB using a simple logistic linear
model. In other words, for each concept not used to train each of these models (of which there
are 112 − 28 = 84 of them) we train a linear probe to predict the concept’s true value from the
entire bottleneck representations learnt by both our Hybrid-CBM and CEM models. We do this for a
total of 5 randomly initialized Hybrid-CBMs and CEMs and observe that the probes trained using
the Hybrid-CBM’s bottleneck have a mean concept accuracy of 91.83% ± 0.51% while the probes
trained using CEM’s bottleneck have a mean concept accuracy of 94.33% ± 0.88%.
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A.10 More Qualitative Results

In this section we show further qualitative results which highlight the same trends observed in
Section 5. Specifically, we see via the t-SNE [28] plots shown in Figure A.6 that the concept
representations learnt by Hybrid-CBMs are more visually entangled than those learnt by CEM.
Notice that because in Hybrid-CBM we use ĉi = ĉ[k:k+γ] as the embedding learnt for concept ci, all
Hybrid-CBM t-SNE plots shown in Figure A.6 have a very similar arrangement and differ only in
their coloring.

Has All Purpose Bill Shape

(CEM)

Concept Active

Concept Inactive

Has All Purpose Bill Shape

(Hybrid)

Concept Active

Concept Inactive

(a)

Has Brown Upperparts

(CEM)

Concept Active

Concept Inactive

Has Brown Upperparts

(Hybrid)

Concept Active

Concept Inactive

(b)

Has Solid Breast Pattern

(CEM)

Concept Active

Concept Inactive

Has Solid Breast Pattern

(Hybrid)

Concept Active

Concept Inactive

(c)

Figure A.6: t-SNE visualisations of CEM and Hybrid-CBM concept embeddings for concepts (a)
“has all purpose bill shape”, (b) “has brown upperparts”, and (c) “has solid breast pattern”. Each
visualised test sample point is coloured red if the concept is active in that sample and blue otherwise.
Concepts displayed in this figure were selected at random. All t-SNE plots are generated using a
perplexity of 30 and running the optimization for 1, 500 iterations.

Moreover, Figure A.7 shows that even when we include the concept probability as part of a concept’s
embedding in the Hybrid model (i.e., we let ĉi = [ĉ[k:k+γ], ĉ[i:(i+1)]]

T rather than ĉi = ĉ[k:k+γ]

as before), we still observe similar entanglement within the latent space learnt for each concept in
Hybrid-CBMs. This suggests that even when one includes a highly-discriminative feature, such as
the probability of a concept being activated as part of the Hybrid-CBM’s embeddings, the resulting
representation is far from being easily separable w.r.t. its ground truth concept activation.

Has All Purpose Bill Shape

(Hybrid)

Concept Active

Concept Inactive

(a)

Has Brown Upperparts

(Hybrid)

Concept Active

Concept Inactive

(b)

Has Solid Breast Pattern

(Hybrid)

Concept Active

Concept Inactive

(c)

Figure A.7: t-SNE visualisations of Hybrid-CBM concept embeddings for concepts (a) “has all
purpose bill shape”, (b) “has brown upperparts”, and (c) “has solid breast pattern”. In contrast to the
t-SNE plots shown in Figure A.6, when producing these results we include the concept probability
as part of the concept embedding learnt by Hybrid-CBM. All t-SNE plots are generated using a
perplexity of 30 and running the optimization for 1, 500 iterations.
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Finally, Figure A.8 shows that the coherency observed in Figure 5c is seen across different learnt
concept representations.

(a) (b) (c)

Figure A.8: Five nearest Euclidean neighbours to random test samples for concept embeddings (a)
“has all purpose bill shape”, (b) “has brown upperparts”, and (c) “has solid breast pattern”.

A.11 Computational Cost of CEM

As mentioned in our Conclusion, CEM’s use of an three linear layers (two for producing ĉ+i and ĉ−i
and one for generating p̂i) leads to CEM requiring more FLOPs than vanilla CBMs per training epoch.
Therefore, in this section we compare the computational cost of training CEM w.r.t. standard CBMs,
by studying (i) the average runtime of one training epoch (Figure A.9a) and (ii) the average number
of epochs taken for each method until convergence as dictated by our early stopping mechanism
(Figure A.9b). We observe that overall CEM does not incur in statistically significantly different
training convergence times than other baselines. Similarly, as expected we see that a training
step in CEM does require more FLOPs than vanilla CBMs (we empirically observe less than 10%
time increases in large datasets such as CUB and CelebA). Nevertheless, given its performance
improvements showcased in Section 5, and its positive reaction to interventions, we believe that these
small computational costs are justified.

Furthermore, we note that including RandInt in CEM does not significantly increase the training time
in practice. This is due to the fact that its subroutine can be implemented using a simple multiplicative
Bernoulli mask of the predictive concept probability vector.

A.12 Effect of RandInt in standard CBMs

RandInt is a form of regularization that we specifically designed to applicable to CEM’s use of a
positive and negative concept embedding. Its purpose is to incentivize each embedding to be better
aligned with the ground truth semantics it represents so that their use in interventions is more effective.
Nevertheless, as it is formulated in Section 3.2, it is possible to apply it to other kinds of CBMs (e.g.,
Fuzzy and Hybrid CBMs). When applied to other kinds of models, however, it may not have the
intended effect. For example, in vanilla CBMs where there is no extra capacity in the bottleneck,
RandInt will behave in a similar way to a dropout regularizer and may instead force the label predictor
to depend less on a specific concept activation when the concepts are an incomplete description
of the task (therefore leading to possibly worse responses to concept interventions). Notice that
this does not happen in CEM as during training RandInt still allows gradients to flow and update
the weights that generate the “correct” embedding, letting the model modify this embedding so
that it is aligned with its intended semantics. On the other hand, if the concepts are a complete
description of the downstream task, then, as pint approaches 1, we expect RandInt’s use in a CBM
to behave similarly to how a independently-trained CBM behaves (where the concept encoder and
label predictor models are trained separately). This means that, as shown in [9], it may lead to
some improvements in how effective interventions are. To verify this, and for a fair comparison
across methods, we train all CBM baselines with our RandInt regularizer (pint = 0.25 as in the
rest of experiments). As hypothesized, we observe in Figure A.10 that RandInt seems in fact to
hurt the performance of standard CBMs in concept-incomplete tasks (e.g., CelebA) while it adds
small performance improvements in concept-complete tasks (e.g., CUB). More importantly, however,
notice that our main result of our intervention results in Section 5.4 still hold: CEM still significantly
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Figure A.9: Computational cost of CEM compared to other baselines. (a) Average wall-clock runtime
(in seconds) for one training epoch of each model. (b) Average number of training epochs performed
until early stopping concluded the training run (recall we use a patience of 15 epochs).

outperforms Hybrid-CBMs, its closest competitor, even when the Hybrid model is trained with
RandInt.
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Figure A.10: Task accuracy after interventions with and without RandInt for all methods. (a) Task
accuracy after both “correct” and “incorrect” interventions for models trained without RandInt. (b)
Task accuracy after both “correct” and “incorrect” interventions for models trained with RandInt.

A.13 Intervention Experiment Details

Setup For our intervention results discussed in Section 5, for each method we train 5 different
models using different random seeds. Then, when intervening on a model M by correcting d of its
concepts at test-time, we select the same random subset of d concepts we will intervene on for all
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models trained with the same initial seed as M. Given that several CUB concept annotations are
mutually exclusive (e.g., “has white wings” and “has brown wings”), following [9] when intervening
in models trained in this task we jointly set groups of mutually exclusive concepts to their ground
truth values. This results in a total of 28 groups of mutually exclusive concepts in CUB which we
intervene on.

Exploring effects of different training procedures in CBM interventions Previous work by Koh
et al. [9] suggests that CBMs trained sequentially (where the concept encoder is trained first and
then frozen when training the label predictor) or independently (where the concept encoder and label
predictor are trained independently of each other and then composed at the end to produce a CBM)
can sometimes outperform jointly trained CBMs when expert interventions are introduced. In this
section we explore whether the results shown in Figure 6 would differ if one compares our model
against sequentially and independently trained Fuzzy-CBMs.

Figure A.11 shows how CEMs react to interventions compared to sequentially and independently
trained CBMs. Notice that the observed trends in these results are not so different than those seen
when comparing CEMs against jointly-trained CBMs: in concept completeness (e.g., CUB), Fuzzy-
CBMs (with the exception of Sequential-CBMs which seem to underperform) tend to react better
to correct interventions than CEM but can quickly drop their performance if these interventions are
not correct. In stark contrast, however, in concept-incomplete settings such as in CelebA, we see
that Sequential and Independent CBMs experience mild performance improvements when correct
interventions are performed, leading to CEMs outperforming these models by a large margin. These
results suggest that our observations in Section 5 hold even if one changes the training process for a
Fuzzy-CBM and highlight that CEMs are the only models in our evaluation capable of maintain high
performance both in concept-complete and concept-incomplete settings.
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Figure A.11: Effects of performing positive random concept interventions (left and center left) and
incorrect random interventions (center right and right) for different training regimes for CBMs (Joint,
Sequential, and Independent). For clarity, Hybrid is not included in this plot (see Figure 6 for those
results).

A.14 Embedding Size Ablation Study

In this section we explore the effects of the embedding sizem in CEMs and compare their performance
as m varies against that of Hybrid-CBMs and end-to-end black box models with equal capacity. For
this, we train CEMs, Hybrid-CBMs, and end-to-end black box models on CUB (with only 25%
of its concept annotations being selected) and CelebA using the same architectures and training
configurations as described in Appendix A.6. We chose to reduce the number of concept annotations
in CUB to better study how our model behaves when the raw number of activations in its bottleneck
(which is equal to (k ·m) in CEMs) is severely constrained. We show our results in Figure A.12 and
Figure A.13.

Our study shows that, for both tasks, after enough capacity is provided to CEMs (which for our
particular datasets seems to be around 8-16 activations per embedding), our models are able to
perform better or competitively against end-to-end black box models and Hybrid-CBMs. In particular,
we see that with the exception of very small embedding sizes, CEM tends to outperform Hybrid-CBM
models with equal capacity, suggesting that introducing a fully supervised bottleneck can in fact
help in both task and mean concept performance. Similarly, we see that with the exception of when
the embedding size is m = 2 in CUB, CEMs are able to perform equally as well or better than
end-to-end black box architectures with equal capacity. Furthermore, notice that even in the case

11



0 4 8 12 16 20 24 28 32
Embedding Size

70
71
72
73
74
75
76
77
78
79

Ta
sk

 A
cc

ur
ac

y 
(%

)

CEM Task Performance (25% CUB)

0 4 8 12 16 20 24 28 32
Embedding Size

95.0

95.2

95.5

95.8

96.0

96.2

96.5

96.8

M
ea

n 
C

on
ce

pt
 A

cc
ur

ac
y 

(%
)

CEM Concept Performance (25% CUB)

CEM (ours) No Concepts Hybrid­CBM

(a)

0 4 8 12 16 20 24 28 32
Embedding Size

70

75

80

85

90

95

100

Ta
sk

 A
cc

ur
ac

y 
(%

)

CEM Interventions (25% CUB)

0% Concept Groups Intervened
25% Concept Groups Intervened
50% Concept Groups Intervened

75% Concept Groups Intervened
100% Concept Groups Intervened

(b)

Figure A.12: Ablation study for m in CUB when only 25% of its concept annotations are used
during training. (a) Task and concept validation accuracy of CEMs with different embedding sizes.
For comparison, we include Hybrid-CBMs and end-to-end black box models with equal bottleneck
capacity as their CEM counterpart for each value ofm. (b) Task validation accuracy when intervening
on an increasing number of concept groups for CEMs with different embedding sizes.

where end-to-end black box models outperform CEM (as in m = 2 for CUB), the difference in
task accuracy is less than 1.5%, a hit which may not be detrimental if one takes into account the
fact that CEM produces highly-accurate concept-based explanations and it is able to significantly
surpass the performance of end-to-end black box model if interventions in its concept bottleneck are
allowed. Finally, we similarly see for both tasks that interventions have similar effects on models
after a moderately sized embedding is used, therefore suggesting there is no benefit in increasing
the embedding size significantly if one is interested in interventions. These two studies suggest that
unless the embedding size is drastically constrained (e.g., m ≤ 4), CEM’s performance is stable with
respect to the embedding size used, aiding with hyperparameter selection and allowing CEMs to be
more easily integrated into other architecture designs.
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Figure A.13: Ablation study for m in CelebA. (a) Task and concept validation accuracy of CEMs
with different embedding sizes. (b) Task validation accuracy when intervening on an increasing
number of concepts for CEMs with different embedding sizes.

A.15 Code, Licences, and Resources

Libraries For our experiments, we implemented all baselines and methods in Python 3.7 and relied
upon open-source libraries such as PyTorch 1.11 [39] (BSD license) and Skelearn [40] (BSD license).
To produce the plots seen in this paper, we made use of Matplotlib 3.5 (BSD license). We have
released all of the code required to recreate our experiments in an MIT-licensed public repository5.

Resources All of our experiments were run on a private machine with 8 Intel(R) Xeon(R) Gold
5218 CPUs (2.30GHz), 64GB of RAM, and 2 Quadro RTX 8000 Nvidia GPUs. We estimate that
approximately 240-GPU hours were required to complete all of our experiments.

5Code can be found at https://github.com/mateoespinosa/cem/
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