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Abstract

Co-speech gesture is crucial for human-machine interaction and digital enter-
tainment. While previous works mostly map speech audio to human skeletons
(e.g., 2D keypoints), directly generating speakers’ gestures in the image domain
remains unsolved. In this work, we formally define and study this challenging
problem of audio-driven co-speech gesture video generation, i.e., using a unified
framework to generate speaker image sequence driven by speech audio. Our key
insight is that the co-speech gestures can be decomposed into common motion
patterns and subtle rhythmic dynamics. To this end, we propose a novel framework,
Audio-driveN Gesture vIdeo gEneration (ANGIE), to effectively capture the
reusable co-speech gesture patterns as well as fine-grained rhythmic movements.
To achieve high-fidelity image sequence generation, we leverage an unsupervised
motion representation instead of a structural human body prior (e.g., 2D skeletons).
Specifically, 1) we propose a vector quantized motion extractor (VQ-Motion
Extractor) to summarize common co-speech gesture patterns from implicit motion
representation to codebooks. 2) Moreover, a co-speech gesture GPT with motion
refinement (Co-Speech GPT) is devised to complement the subtle prosodic motion
details. Extensive experiments demonstrate that our framework renders realistic
and vivid co-speech gesture video. Demo video and more resources can be found
in: https://alvinliu0.github.io/projects/ANGIE

1 Introduction

During daily conversation among humans, speakers naturally emit co-speech gestures to complement
the verbal channels and express their thoughts [17, 35, 56]. Such non-verbal behaviors ease speech
comprehension [10, 58] and bridge the communicator’s gap for better credibility [7, 54]. Therefore,
equipping the social robot with conversation skills constitutes a crucial step to human-machine
interaction. To achieve it, researchers delve into the task of co-speech gesture generation [21, 39, 62],
where audio-coherent human gesture sequences are synthesized in the form of structural human
representation (e.g., skeletons). However, such representation contains no appearance information of
the target speaker, which is crucial for human perception. As demonstrated in audio-driven talking
head synthesis [34, 65], generating real-world subjects in the image domain is highly desirable. To
this end, we explore the problem of audio-driven co-speech gesture video generation, i.e., using a
unified framework to generate speaker image sequence driven by speech audio (illustrated in Fig. 1).

Conventional methods require exhaustive human efforts to pre-define the speech-gesture pairs and
connection rules for coherent result [11, 12]. With the development of deep learning, neural networks
are leveraged to learn the mapping from encoded audio feature to human skeletons in a data-driven
manner [21, 39, 62]. Notably, one category of approaches relies on small-scale MoCap datasets
in co-speech setting [16, 18, 48], which contributes to specific models with limited capacity and
robustness. To capture more general speech-gesture correlations, another category of methods builds
large training corpus by exploiting off-the-shelf pose estimators [9, 15] to label enormous online
videos as pseudo ground truth [21, 63]. However, the inaccurate pose annotations induce error
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Figure 1: Illustration of Problem Setting. In this paper, we focus on audio-driven co-speech gesture
video generation. Given an image with speech audio, we generate aligned speaker image sequence.

accumulation in the training phase, which makes the generated results unnatural. Besides, most
previous works ignore the problem of co-speech gesture video generation. Only few works [21, 39]
animate in the image domain as an independent post-processing step, which borrows from the existing
pose-to-image generators [5, 13] to train on the target person’s images. How to design a unified
framework to generate speaker image sequence driven by speech audio remains unsolved.

To effectively learn the mapping from audio to co-speech gesture video, we pinpoint two important
observations from current studies: 1) hand-crafted structural human priors like 2D/3D skeletons would
eliminate articulated human body region information. Such a zeroth-order motion representation fails
to formulate first-order motion like local affine transformation in image animation [44]. Besides, the
error in structural prior labeling impairs cross-modal audio-to-gesture learning [33]. 2) Motivated
by previous linguistic studies [27, 47], the co-speech gestures could be decomposed into common
motion patterns and rhythmic dynamics, where the former ones refer to large-scale motion templates
(e.g., periodically put hands up and down), while the latter ones play a refinement role to complement
subtle prosodic movements and synchronize with speech audio (e.g., finger flickers).

We take inspiration from the above observations and propose a novel framework Audio-driveN
Gesture vIdeo gEneration (ANGIE) to generate co-speech gesture video. The key insight is to
summarize common co-speech gesture patterns from motion representation to quantized codebooks
and further refine subtle rhythmic details by motion residuals for fine-grained results. In particular,
two modules are designed, namely VQ-Motion Extractor and Co-Speech GPT. In VQ-Motion
Extractor, we utilize an unsupervised motion representation to depict the articulated human body
and first-order gestures [45]. The codebooks are established to quantize the reusable common
co-speech gesture patterns from unsupervised motion representation. To guarantee the validity of
gesture patterns, we propose a cholesky decomposition based quantization scheme to relax the motion
component constraint. The position-irrelevant motion pattern is extracted as final quantization target
to represent the relative motion. In this way, the quantized codebooks naturally contain rich common
gesture pattern information. With the quantized motion code sequence, in Co-Speech GPT we use
a GPT-like [40] structure to predict discrete motion patterns from speech audio. Finally, a motion
refinement network is used to complement subtle rhythmic details for fine-grained results.

To summarize, our main contributions are three-fold: 1) We explore a challenging problem of audio-
driven co-speech gesture video generation. To the best of our knowledge, we are the first to generate
co-speech gesture in image domain with a unified framework without any structural human body
prior. 2) We propose the VQ-Motion Extractor to quantize the motion representation into common
gesture patterns and the Co-Speech GPT to refine subtle rhythmic movement details. The codebooks
naturally contain reusable motion pattern information. 3) Extensive experiments demonstrate that the
proposed framework ANGIE renders realistic and vivid co-speech gesture video generation results.

2 Related Work

Co-Speech Gesture Generation. Synthesizing co-speech gesture has gained research interest in
vision [3, 21, 29], graphics [4, 60, 62] and robotics [23, 25, 63] domains. Recent researches resort
to deep neural networks to learn the speech-gesture mapping in a data-driven manner, with major
focuses on below perspectives: 1) Dataset. One strand of methods use small-scale MoCap datasets to
learn specific models [16, 18, 30, 42, 48, 51, 55], while another strand of works exploit off-the-shelf
estimator to label enormous videos as structural prior [1–3, 21, 33, 39, 61–63]. The dataset scale
v.s. pose annotation accuracy often acts as a trade-off in this task: A large amount of speech-gesture
pairs facilitate the training of more general models with better capacity and robustness, yet error
accumulation in annotations induces unnatural results. 2) Framework architecture. CNN-based [21],
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Figure 2:Overview of the Audio-driveN Gesture vIdeo gEneration (ANGIE) framework. In
VQ-Motion Extractor, the cholesky decomposition with position-irrelevant design transforms the
shift-translation� and covarianceC to relative motion pattern representation of� � and� L , which
are further quantized by codebooks to extract the common motion patterns. Given the driving
audio and starting gesture codes, the Co-Speech GPT predicts the future motion �elds. A Motion
Re�nement network further learns motion residuals to complement the subtle rhythmic dynamics.

RNN-based [62] and Transformer-based [6] frameworks show promising results. To further improve
the diversity of generated gestures and grasp the �ne-grained cross-modal associations, components
like adversarial loss [21], VAE sampling [30, 59] and hierarchical encoder-decoder design [33] are
proposed. 3) Input modality. Some approaches treat single modality of speech audio [2, 19, 21–
23, 30, 39] or text transcription [3, 6, 25, 63] as input to drive the co-speech gesture, while some
others use both modalities as stimuli for generation [1, 33, 62]. To ease the learning of implicit
cross-modal mapping from speech to gesture and create more stable results, recent works involve
auxiliary input modality such as speaker style [2], pose mode [59] and motion template [39].

In this work, we take a step further in the above three aspects: 1) For the dataset, we collect a new
co-speech gesture dataset inimagedomain, where an unsupervised motion representation is used to
model articulated human body and bypass the inaccuracy from structural prior annotations. 2) For
the architecture, a vector quantized (VQ) network with novel discretization scheme is proposed to
extract valid relative motion patterns. We further devise a motion re�nement network to complement
subtle rhythmic dynamics. 3) For the input modality, we explicitly decouple the common motion
pattern from co-speech gestures, which serves a similar role as motion template [39] to provide
auxiliary input. However, our discrete codebook design is more suitable for �nite gesture patterns than
continuous representation, which is also proven in recent cross-modal generation tasks [36, 41, 46].
Furthermore, we propose a novel vector quantization network with cholesky decomposition scheme
to extract the valid motion patterns. We improve the quantization scheme to encode the relative
motion representation that is position (absolute location) irrelevant. A motion re�nement network is
further devised to complement subtle rhythmic dynamics. Notably, our approach gives an idea on
how to deal with the constraints in vector quantization and how to complement sequential results
with missing details. Such design could prospectively provide insights for relevant domains like
constrained vector quantization problem, cross-modal learning [32] and video generation tasks [46].

Video/Audio-Driven Video Generation. Traditional video-driven approaches for image animation
can be categorized into supervised and unsupervised, where the supervised methods typically involve
structural human body prior such as landmarks [8, 64] and 3D parametric models [20, 50], while the
unsupervised approaches design self-supervised tasks to animate unlabeled images [43–45, 57]. To
facilitate broader applications, researchers explore audio-driven video generation, where one of the
most relevant tasks is talking face generation [14, 38]. Different from the strong correlations between
audio and mouth shape, the mapping from audio to complicated co-speech motion is multi-modal and
harder to learn. Most co-speech gesture studies synthesize human skeletons as �nal results (e.g.,2D
keypoints), while only few works [21, 39] generate co-speech images in apost-processingmanner.
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3 Our Approach

We presentANGIE that generates audio-driven co-speech gesture in image domain, where the
speakers' image sequence is driven by speech audio as shown in Fig. 1. The whole pipeline is
illustrated in Fig. 2. To make the content self-contained and narration clearer, we �rst introduce the
preliminaries and problem setting in Sec. 3.1. Then, we present theVQ-Motion Extractor which
extracts common co-speech gesture patterns as quantized codebooks in Sec. 3.2. Finally, we elaborate
theCo-Speech GPTto complement subtle rhythmic dynamics for �ne-grained results in Sec. 3.3.

3.1 Preliminaries and Problem Setting

Unsupervised Motion Representation.To achieve high-�delity image animation, we take inspiration
from MRAA [45] that uses an unsupervised motion representation to drive articulated objects. MRAA
�rst estimates a coarse motion representation from the source and driving frames, then predicts dense
pixel-wise �ow for image generation. Speci�cally, an encoder-decoder keypoint predictor produces
K different heatmapsH 1; H 2; : : : ; H K , whereK is region number andH k denotes thek-th image
region. Afterwards, each heatmap is normalized by softmax operation,i.e,

P
z2Z H k (z) = 1 , where

z is the image pixel location andZ is the set of all pixels. The key insight behind MRAA is to
represent each region's motion by af�ne transformation with a shift-translation component. The
shift-translation component� k 2 R2 and the distributionCk of thek-th part can be calculated as:

� k =
X

z2Z

H k (z)z; Ck =
X

z2Z

H k (z)(z � � k )(z � � k )T ; (1)

whereT is matrix transpose,Ck 2 R2� 2 measures the covariance of heatmap value. It naturally
depicts the size and shape of an articulated region. To represent the af�ne transformationAk 2 R2� 2

of thek-th region, we apply singular value decomposition (SVD) toCk and deriveAk as:

Ck = Uk � k (V k )T ; Ak = Uk � k
1
2 ; (2)

where unitary matricesUk , V k and diagonal matrix� k are the SVD result of covariance matrixCk .
The representationM extracted by motion estimator is the concatenation of[� ; C; A] 2 RK � (2+4+4)

for K distinct regions, an image generation module with dense pixel-wise �ow predictor synthesizes
the �nal generation results. In this work, the motion representationM and image generation module
G generally follow MRAA. We suggest the readers referring to [45] for more details.

Problem Setting for Co-Speech Gesture Image Generation.We collect training data of massively-
available speaking videos with clear co-speech gestures for natural self-reconstruction supervision.
Speci�cally, given an(N + 1) -frame video clipV = f I (0) ; : : : ; I (N ) g, the goal of our framework

at the training stage is to predict the motion representationcM (1: N ) based on the �rst image frame
I (0) and video's accompanying audio sequencea = f a(1) ; : : : ; a(N ) g. Further, the image generation
moduleG reconstructs the video framesbI (1: N ) . At the inference stage, an arbitrary reference image
with speech audio clip is provided to generate subsequent image frames. According to the observation
in Sec. 1, we decompose the co-speech gestures into common motion patterns and subtle rhythmic
dynamics. The overall training setting can be formulated as:

bI (1: N ) = G(I (0) ; cM (1: N ) (a)) ; cM (1: N ) = cM pattern
(1: N ) + cM rhythmic

(1: N ) ; (3)

whereM pattern denotes the gesture pattern (Sec. 3.2) andM rhythmic is rhythmic movement (Sec. 3.3).

3.2 Vector Quantized Motion Pattern Extractor

To decompose the co-speech gestures, we propose to �rstly extract the common motion patterns.
However, three problems remain: 1) The gesture sequences are different from each other. While some
motion sequences share the same action pattern, the dynamic details may vary a lot. How to extract
the major motion pattern despite the in�uence from minor prosodic movements? 2) The covariance
matrixC is symmetric positive de�nite (Eq. 1), which further constrains the range of af�ne matrix
A. How to preserve such characteristic for valid gesture patterns? 3) Since the unsupervised motion
representation is extracted in the image pixel space, it is affected by the absolute location of each
articulated region. How to represent the position-irrelevant motion pattern information?
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Vector Quantized Motion Pattern Learning. Our solution to the �rst problem is to quantize the
common motion pattern into a codebook. Since the gesture pattern is �nite, it could be summarized
to discrete codebook entries. Besides, each codebook entry refers to a certain type of gesture pattern,
which matches our goal to extract the common and reusable co-speech gesture patterns.

A naiveway is to quantize the motion representationM separately as shift-translation� , covariance
matrix C and af�ne transformationA. Speci�cally, for a T-frame co-speech gesture sequence
I (1: T ) , we transform it into[� ; C; A](1: T ) 2 RT � K � (2+4+4) , where[� ; C; A] = M denotes motion
representation ofK regions as in Sec. 3.1. We �rst build three codebooksD� = f d �;m gM

m =1 ,
DC = f dC;m gM

m =1 andDA = f dA;m gM
m =1 for each motion component respectively, whereM is

codebook size.d �;m , dC;m anddA;m 2 R` are them-th entry of`-channel for each codebook. Then,
three separate encodersE � , EC andEA are utilized to encode the corresponding context information
into latent features ofe� = f e�;i gT 0

i =1 , eC = f eC;i gT 0

i =1 andeA = f eA;i gT 0

i =1 2 RT 0� ` , whereT0 is
the temporal dimension and` is the channel dimension. Notably, we denote thei -th temporal feature
of each motion component ase�;i , eC;i andeA;i . The feature encoding process can be formulated as:

E � (� (1: T ) ) = e� ; EC (C(1: T ) ) = eC ; EA (A (1: T ) ) = eA : (4)

Following the pipeline of VQ-VAE [53], we individually quantizee� , eC andeA by substituting
each temporal featuree�;i , eC;i andeA;i to the nearest codebook entryd �;m , dC;m anddA;m as:

eq
� = arg min

d � 2D �

jje� � d � jj

| {z }
quantize shift-translation�

; eq
C = arg min

d C 2D C

jjeC � dC jj

| {z }
quantize covariance matrixC

; eq
A = arg min

d A 2D A

jjeA � dA jj

| {z }
quantize af�ne transformationA

; (5)

whereeq
� = f eq

�;i gT 0

i =1 , eq
C = f eq

C;i gT 0

i =1 andeq
A = f eq

A;i gT 0

i =1 2 RT 0� ` are the quantized code
sequence of lengthT0 for each motion component. Thei -th quantized code of each motion component
is denoted aseq

�;i , eq
C;i andeq

A;i , respectively. Finally, three separate decodersD � , DC andDA are
leveraged to reconstruct the motion representations of each component as:

b� (1: T ) = D � (eq
� ); bC(1: T ) = DC (eq

C ); bA (1: T ) = DA (eq
A ): (6)

Such discrete representation also ease the audio-to-gesture learning (Sec. 3.3): Previous methods
predict continuous output as aharder regressionproblem. While we only need to predict features
nearer to the correct codebook entry, which in essence resembles aneasier classi�cationproblem.

Quantization Design for Valid Motion Representation.To extract valid gesture patterns, we have
to preserve certain characteristics of motion representation. Especially, the covariance matrixC
should be symmetric positive de�nite (Eq. 1), and the af�ne transformationA is determined byC
through SVD (Eq. 2). Therefore, instead of naively quantize each component in Eq. 5, we propose to
only quantize the shift-translation� and covariance matrixC, while derive the af�ne transformation
A with SVD. The only constraint is to guarantee that the covariance matrixC is symmetric positive
de�nite. To satisfy such requirement, we use theunique cholesky decomposition theorem[52]:

Theorem 1. For any real symmetric positive de�nite matrixC 2 Sn
++ , there exists a unique lower

triangular matrixL with positive diagonal entries, such thatC = LL T .

In this way, we turn to quantize the lower triangular matrixL =
�

l1 0
l2 l3

�
, where the constraint is

much simpler asl1; l3 > 0. The updated quantization scheme with cholesky decomposition is:

eq
� = arg min

d � 2D �

jje� � d � jj

| {z }
quantize shift-translation�

; eq
L = arg min

d L 2D L

jjeL � dL jj

| {z }
quantize the lower triangular matrixL

; (7)

whereeL , eq
L , DL anddL denote the encoded feature, quantized feature, codebook and codebook

entry for factorial covarianceL, respectively. A simple transformation ofl1;3 = ReLU(l1;3) + �
guarantees the diagonal entries to be positive, where� is a small positive number. The motion
componentC andA can be further obtained byLL T and SVD calculation, respectively.

Position-Irrelevant Motion Pattern. Another problem arises when we inspect the value of the
motion representation: SinceM is extracted in the image pixel space, the object location will affect
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the element inM . For example, if a person poses the same gesture at different image regions, the
motion component differs yet the underlying motion pattern remains the same. Thus we focus on a
image location invariant motion pattern representation. In particular, due to the linear additiveness,
the relative shift-translation� between adjacent frames can be represented as� � j = � j � � j � 1, and
the relative change of the lower triangular matrix is� L j = L j � L j � 1 for anyj = 2 ; : : : ; N . Note
that with the uniqueness of cholesky decomposition,(L + � L ) corresponds to the sole covariance
matrixC = ( L + � L )(L + � L )T , which further determines af�ne matrixA by SVD. In this way,
the term� L is suf�cient to represent any relative af�ne transformation between two frames. We
accordingly update the quantization scheme with position-irrelevant motion pattern representation as:

eq
� � = arg min

d � � 2D � �

jje� � � d � � jj

| {z }
quantize relative shift-translation� �

; eq
� L = arg min

d � L 2D � L

jje� L � d � L jj

| {z }
quantize relative lower triangular matrix change� L

; (8)

whereef � �; � L g, eq
f � �; � L g, Df � �; � L g andd f � �; � L g are the encoded feature, quantized feature,

codebook and entry for the relative shift-translation� � and factorial covariance� L , respectively.

Overall Quantized Motion Pattern Learning. With the position-irrelevant motion pattern, the
codebook naturally contains reusable common co-speech gesture patternsM pattern. The encoders
E � � , E � L and the decodersD � � , D � � are jointly learned with the codebooksD� � andD� L via:

L VQ = jj c� � � � � jj + jjsg[e� � ] � eq
� � jj + � 1jje� � � sg[eq

� � ]jj+

jj d� L � � L jj + jjsg[e� L ] � eq
� L jj + � 2jje� L � sg[eq

� L ]jj ; (9)

wheresg denotes the stop gradient operation,� 1 and� 2 are two weight balancing coef�cients.

3.3 Co-Speech Gesture GPT with Motion Re�nement

Co-Speech Gesture GPT Network.With the position-irrelevant motion pattern of valid quantization
design, each co-speech gesture clip can be transformed into discrete representation. We then learn a co-
speech gesture GPT network to map from speech audioa(1: T ) to quantized code sequenceseq

� �; (1: T 0)

andeq
� L; (1: T 0) . Speci�cally, we extract audio featuresaonset

(1: T 0) with onset strength information, which
is more suitable for cross-modal pattern learning [46, 49]. Then, a feature embedding layer with
positional embedding is leveraged to obtain the tokens for audio onset features, quantized relative
shift-translation and qunatized relative factorial covariance. Further, we encode cross-attention
information with a series of transformer layers. Finally, followed by a linear transformation with
softmax activation, theM -dimensional output denotes the probability of each quantization code at
that time step. The whole co-speech gesture GPT is trained with cross-entropy lossL CE. Such design
enables us to predict and sample future quantization codeeq

� � andeq
� L with speech audio.

Motion Re�nement by Learning Residuals. Now that we can reconstruct the relative shift-
translationc� � and factorial covariance changed� L by VQ-VAE decoding. Given� 1 andL 1 extracted
from the initial image frameI (1) , the absolute shift-translation and factorial covariance for thej -th

frame can be calculated asc� j = � 1 +
P j

i =2
d� � i andcL j = L 1 +

P j
i =2

d� L i , respectively. However,
since the quantized codebook is designed to only represent the large-scale common motion pattern
information, while �ne-grained rhythmic details are omitted. Therefore, we propose to re�ne the
co-speech movements by learning residual terms. Concretely, we extract the audio mfcc features
amfcc

(1: T ) to encode more contextual audio cues for prosodic dynamics learning. Then a bi-directional
LSTM is used to predict the per-frame motion representation residualsR to the main motion pattern

resultb� (1: T ) andbL (1: T ) , i.e., cM rhythmic
(1: T ) =

h
R(b� (1: T ) ; amfcc

(1: T ) ); R( bL (1: T ) ; amfcc
(1: T ) )

i
. By adding residual

terms, the overall co-speech gesture GPT with motion re�nement learning can be formulated as:

L Residual= jjM (1: T ) � cM (1: T ) (a)jj ; where cM (1: T ) (a) = cM pattern
(1: T ) (aonset) + cM rhythmic

(1: T ) (amfcc): (10)

In this way, we capture both major gesture patterns and subtle rhythmic dynamics for vivid results.
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Table 1:The quantitative results on PATS Image Dataset.We compare the proposedAudio-driveN
Gesture vIdeo gEneration (ANGIE ) against recent SOTA methods [21, 33, 39, 62] and ground truth
on four speakers' subsets. For FGD the lower the better, and the higher the better for other metrics.

Oliver Seth Kubinec Jon

Methods FGD BC Div. FGD BC Div. FGD BC Div. FGD BC Div.
GT 0.00 0.76 54.6 0.00 0.71 49.3 0.00 0.84 38.9 0.00 0.73 62.8

S2G [21] 8.57 0.59 46.1 5.75 0.62 38.2 4.76 0.67 31.6 6.07 0.51 47.3
HA2G [33] 3.28 0.75 49.2 4.06 0.72 40.1 2.98 0.79 32.3 3.74 0.64 50.2
SDT [39] 1.04 0.61 52.9 1.97 0.58 46.7 1.15 0.77 36.1 1.63 0.60 57.4
TriCon [62] 3.63 0.53 48.3 3.79 0.52 40.3 3.27 0.77 35.7 3.98 0.61 49.7

ANGIE 0.88 0.72 53.5 1.83 0.69 46.7 1.10 0.81 36.5 1.57 0.65 60.9

4 Experiments

4.1 Experimental Settings

Dataset and Preprocessing.Pose, Audio, Transcript, Style (PATS) is a large-scale dataset of 25
speakers with aligned pose, audio and transcripts [1, 2, 21]. The training corpus contains 251 hours
of data with around 84,000 intervals of mean length 10.7s. Notably, the PATS dataset contains three
modalities of audio log-mel spectrograms, speech transcripts and per-frame skeletons labeled with
OpenPose [9]. To bypass the error accumulation in pose annotation and facilitate co-speech gesture
image generation task, we extend PATS with more features: 1) preprocessed image frames and 2)
onset strength audio features which are more suitable for co-speech gesture pattern learning.

We conduct the experiments on four speakers' co-speech video subsets, including Oliver, Seth,
Kubinec and Jon. Concretely, 2D skeletons of the image frames are obtained by OpenPose [9] for
baseline methods training. The frames are cropped to make the speaker locate at the image center.
Since the time span of a meaningful co-speech gesture unit sequence ranges from 4s to 14s [27, 47],
we trim invalid videos and �nally obtain 1306, 990, 1294 and 1284 clips for four subsets, respectively.
The overall mean clip length is 9.8s. We randomly split the segments into 90% for training and 10%
for evaluation. The image frames are sampled at 25 fps and further resized to256� 256.

Comparison Methods.We compare with recent SOTA works: 1)Speech to Gesture(S2G) [21], a
GAN-based pipeline that maps audio to 2D keypoints with a U-Net; 2)Hierarchical Audio to Gesture
(HA2G) [33] which captures the hierarchical associations between multi-level audio features and tree-
like human skeletons; 3)Speech Drives Template(SDT) [39] which relieves the one-to-many mapping
ambiguity by a set of continuous gesture template vectors; 4)Trimodal Context(TriCon) [62], a
representative framework that considers the trimodal context of audio, text and speaker identity. Note
that all methods could drive 2D human skeletons with speech audio. We train baselines on the PATS
image dataset and tune the hyper-parameters by grid search for the best evaluation result. In particular,
we also show direct evaluations on theGround Truth(GT) skeletons for clearer comparison.

Implementation Details. We sampleT = 96 frame clips with stride32 for training. 1) For the VQ-
Motion Extractor: the co-speech gesture pattern codebook sizeM for both relative shift-translation
� � and factorial covariance change� L are set to512. The encodersE � � , E � L and the decoders
D � � , D � � are based on 1D-convolution structure. The channel dimension` of each codebook entry
d � � , d � L as well as the encoded latent featurese� � , e� L are512, while the temporal dimension
T0 is set asT=8 = 12 to encode contextual features with downsampling rate of8. The� is set as
1 � 10� 5 to guarantee the positiveness of diagonal entries in factorial covarianceL . The commit loss
trade-offs inL VQ are empirically set as� 1 = � 2 = 0 :1. We optimize the gesture pattern VQ-VAE
with Adam optimizer [28] of learning rate3 � 10� 5. 2) For the Co-Speech GPT: the Transformer
channel dimension is768, and the attention layer is implemented in12heads with dropout probability
of 0:1. The onset strength audio featuresaonset2 R426 are extracted by Librosa, while the audio mfcc
featuresamfcc 2 R28� 12 are computed with the window size of10ms. During the GPT training, the
eq

� �; (1:11) , eq
� L; (1:11) are used as input whileeq

� �; (2:12) , eq
� L; (2:12) serve as supervision labels. 3) For

the motion representationM and image generatorG: we implement as MRAA [45] to useK = 20
regions. The motion estimator is pretrained for knowledge distillation. The overall framework is
implemented in PyTorch [37] and trained on one 16G Tesla V100 GPU for three days.
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Table 2:User study results on co-speech gesture generation quality.The rating scale is 1-5, with
the larger the better. We compare theRealness, SynchronyandDiversityto baselines [21, 33, 39, 62].

Methods GT S2G [21] HA2G [33] SDT [39] TriCon [62] ANGIE (Ours)

Realness 4.29 3.27 3.92 4.01 3.74 4.08
Synchrony 4.36 3.48 4.01 3.97 3.85 4.11
Diversity 3.97 2.49 3.31 3.88 3.02 3.95

Figure 3:Image sequence results of ANGIE. We show the co-speech gesture image generation
results of Kubinec, Seth and Jon, respectively. More qualitative results can be found in demo video.

4.2 Quantitative Evaluation

Evaluation Metrics. We adopt 1)Fréchet Gesture Distance(FGD) [62] to evaluate the distance
between the real and synthetic gesture distribution. We train an auto-encoder on the PATS image
dataset and use the encoder to compute fréchet distance between the real and synthetic gesture in
feature space. We also use the 2)Beat Consistency Score(BC) and 3)Diversity(Div.) [31, 33] to
account for the speech-motion alignment and the diversity among generated gestures. Speci�cally,
BC is computed as the average temporal distance between each audio beat and its closest gesture beat,
and Diversity indicates the difference of multiple audios' corresponding gestures in the latent space.
Note that since all metrics are skeleton-based, we downgrade our method to operate on skeleton data
for fair comparison,i.e., we use VQ-VAE w/o cholesky scheme to create 2D skeletons for evaluation.

Evaluation Results.The results are reported in Table 1. It can be seen that the proposed ANGIE
achieves the best evaluation results on most metrics. Since our method summarizes reusable co-
speech gesture patterns into quantized codebooks and complements subtle rhythmic dynamics, we
can cover richer gesture patterns and create diverse results. Note that HA2G [33] tends to generate
over-expressive gestures with multi-level audio features, which makes their results on BC even better
than the ground truth in some cases. Despite of this, we perform comparable to ground truth on BC
metric with stable motion results, showing that we can generate audio-aligned gestures. Besides, we
can �nd that both SDT [39] and ours perform better on FGD and Diversity metrics than other methods
due to the explicit modeling of co-speech gesture patterns. However, since the gesture pattern is �nite
and discrete, our quantized codebook design is more suitable than continuous representation.

4.3 Qualitative Analysis

User Study.We further conduct a user study to re�ect the quality of audio-driven gestures. Concretely,
we sample 25 audio clips from the PATS image test set for all methods to generate skeleton results,
then involve 18 participants for user study. The Mean Opinion Scores protocol is adopted, which
requires the participants to rate three aspects: (1)Realness; (2) Synchrony; (3) Diversity. The rating
scale is 1 to 5, with 1 being the poorest and 5 being the best. The results are reported in Table 2, where
our method performs the best on all three aspects. Notably, with the help of motion pattern codebook,
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