
Supplementary Material for
Towards Efficient 3D Object Detection with

Knowledge Distillation

Jihan Yang1 Shaoshuai Shi2 Runyu Ding1 Zhe Wang3 Xiaojuan Qi1
1The University of Hong Kong 2Max Planck Institute for Informatics 3SenseTime Research

{jhyang, ryding, xjqi}@eee.hku.hk, {shaoshuaics, wzlewis16}@gmail.com

Outline
In this supplementary file, we provide more details and experiments not elaborated in our main paper
due to page length limits:

• Sec. S1: Implementation details and hyper-parameters of our 3D detection KD benchmark.

• Sec. S2: Additional experimental results on synergy results of TGI, per-class results, error
bar results, and focal loss attempts.

• Sec. S3: More analysis, including latency comparisons on different accelerators, operation-
level optimizations and detectors, and qualitative analysis of CPR.

• Sec. S4: Generality of our method on 3D semantic segmentation.

• Sec. S5: Discussion on other detectors such as sparse detection architectures and other input
representations.

• Sec. S6: Limitation analysis.

S1 Implementation Details for Our Benchmark

In this section, we describe the implementation of previous 2D KD methods in 3D object detec-
tion. Notice that most 2D detection KD methods are built on anchor-based detectors (e.g. Faster-
RCNN [17]) and model compressed teacher-student pairs, so we modify them to adapt to anchor-free
detectors and handle input resolution compression. On the other hand, we also provide detailed
hyper-parameter values to help reproduce our results. Besides, we will also open-source our bench-
mark suit upon acceptance. Most of the experiments are trained with 8 NVIDIA 1080Ti, while a few
experiments are trained with 8 NVIDIA V100 or 8 NVIDIA A100. Full set results on Waymo are
trained with 16 NVIDIA 1080Ti or V100.

Logit KD. As for logit KD methods (i.e. vanilla KD [9] and GID-L [6]), vanilla KD use all ones
mcls to fully mimic all teacher outputs and set the mask mcls to be all one. As for GID-L, the original
anchor-wise region selection manner cannot be extended to input resolution compressed students,
since the interpolation cannot handle the resolution mismatch of regression predictions preg from
teacher and student models. In this regard, we refer to the ablation studies of the original paper and
use ground truth boxes as critical region selection criteria. Specifically, we set the non-zero spatial
positions in the assigned classification target heatmap to one in mcls. The loss weight α1 and α2 of
LKD

cls and LKD
reg are set to 15.0 and 0.2, respectively. Notice that the loss weight α2 of regression term

LKD
reg in Eq. (4) will be set to 0 for input resolution compressed students.

As for our PP logit KD, the threshold of confidence PP is set to 0.3 by default and the rank K for
rank PP is set to 500. Although the three variants of PP logit KD show similar performance, we use
Gaussian PP by default since it does not need hyper-parameters adjustment when adopted by different
teacher-student pairs.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Feature KD. For the implementation of different feature KD methods with Eq. (3), we only employ
convolutional block ϕ for width compressed students to align the number of channels between fs
and f t and only hire spatial interpolation κ for input compressed students. Besides, for methods
that utilize RoI Align ψ to extract object-level features, we will not use the interpolation κ to
avoid introducing extra interpolation errors. As for the implementation of each method, we directly
align student and teacher full features without mask mfeat and RoI Align ψ in FitNet [18]. As for
Mimic [11], we use the more sophisticated RoI Align ψ instead of the original spatial pyramid
pooling to extract features for each GT, and construct imitation on the object-level features between
teacher and student. As for FG [23], to extend its anchor-based critical region selection, we directly
set the non-zero regions in the assigned classification target heatmap as the critical regions in mfeat,
the other implementations are the same as FitNet. As for GID-F [6], we use teacher predictions after
Non-Maximum Suppression (NMS) as critical regions and set their corresponding spatial positions
in mfeat to one. Besides, we utilize RoI Align ψ to extract object-level features to calculate feature
distillation loss and also apply the relation loss among different object features as the description
in the original paper. The loss weight α3 of feature KD loss LKD

feat is set to 100 for input compressed
students or 200 for width compressed students, respectively. The loss weight of the relation loss of
GID-F is set to 0.1.

Label KD. There is only one work for label KD which has been described in the main paper. Notice
that we do not hire NMS for teacher predictions for label assignment empirically. The score threshold
τ to filter high-quality teacher predictions is set to 0.6 by default.

Among different 2D KD methods, we notice that FG [23], Mimic [11] and GID [6] highlight the
critical region selection on feature KD or logit KD to tackle the imbalance between foreground and
background regions in object detection. There are mainly two foreground-region imitation strategies:
one is using RoI Align ψ to extract object-wise features with teacher prediction or GT boxes as
guidance (e.g. Mimic [11] and GID-F [6]); the other is assigning a one-hot mask mfeat or mcls to
calculate imitation loss on some critical regions (e.g. FG [23] and GID-L [6]). We empirically
find that RoI Align is more suitable for input compression setups since it avoids the interpolation
errors when aligning spatial resolutions while the mask-based strategy is more flexible and general
as it allows position-wise imitation. Comparing different critical region selection techniques, we
empirically show that a key factor to make KD methods work well on 3D detection is to focus on only
a few positions. For example, our proposed PP logit KD focus on only around 1

5 ∼ 1
20 positions of

the positions selected by traditional 2D KD methods. This is caused by the fact that a spatial position
in the 3D BEV features can represent a 0.8m× 0.8m× 6m pillar in the 3D geometry space, which
is informative and can cover even a single pedestrian. In this regard, the critical region selection
techniques are supposed to focus on fewer informative positions in the 3D detection setting.

S2 Additional Experimental Results

In this section, we provide some additional experimental results as a supplement to our main paper.
This part consists of the full synergy results of TGI on six teacher-student pairs, per-class performance
and error bar results.

S2.1 Synergy Results of TGI

Table S1: Synergy results of TGI and feature KD on Waymo with six teacher-student pairs. Perfor-
mance are measured in LEVEL 2 mAPH. Teacher results are masked by gray.

Detector No
Distill

Feature
KD

Label
KD

PP Logit
KD TGI PP Logit KD

+ Feature KD
PP Logit KD

+ TGI
Label KD

+ Feature KD
Label KD

+ TGI
CP-Pillar 59.09 - - - - - - - -
CP-Pillar-v0.4 57.55 58.57 58.10 58.21 59.03 58.18 59.24 58.35 59.19
CP-Pillar-v0.48 56.27 57.26 57.54 56.89 57.91 57.11 58.20 57.43 58.34
CP-Pillar-v0.64 52.81 53.83 53.78 54.32 54.30 54.14 55.55 54.24 55.59

CP-Voxel 64.29 - - - - - - - -
CP-Voxel-S 62.23 63.35 63.31 64.16 63.48 63.58 64.18 62.62 63.50
CP-Voxel-XS 61.16 62.48 61.81 62.76 62.43 62.90 63.41 62.34 62.85
CP-Voxel-XXS 56.26 57.92 57.02 57.68 57.61 58.19 58.83 57.06 57.71

The poor synergy effect of feature KD is the main motivation for us to design TGI. Due to the page
limitation, we only present its experimental results on CP-Voxel-XXS as an example. Here, we

2



compare the synergy results of feature KD and TGI on six teacher-student pairs to further show the
promising performance of our TGI. As shown in Table S1, the results obtained by combining TGI
and label KD or PP logit KD consistently outperform the synergy results of feature KD on all 12
scenarios, manifesting that TGI collaborates better with other KD techniques. Furthermore, our TGI
itself achieves comparable results or even surpasses feature KD among six teacher-student pairs.
These experimental results strongly demonstrate that our proposed TGI can be a powerful substitute
for feature KD to transfer the feature extraction ability from the teacher model.

S2.2 Per-class Performance
Table S2: Per-class performance on full Waymo dataset for our six distilled efficient student models.
Performance are measured in mAP/mAPH. Teacher results are masked by gray. Best results are
indicated by bold.

Detector Vehicle Pedestrian Cyclist
LEVEL 1 LEVEL 2 LEVEL 1 LEVEL 2 LEVEL 1 LEVEL 2

CP-Pillar 72.75/72.24 64.48/64.02 74.01/64.06 65.74/56.76 67.84/66.37 65.34/63.92
CP-Pillar-v0.4 + Ours 73.01/72.46 64.85/64.36 75.00/64.24 66.86/57.13 67.18/65.76 64.69/63.32
CP-Pillar-v0.48 + Ours 72.42/71.85 64.42/63.89 74.38/63.74 66.26/56.62 66.19/64.76 63.72/62.34
CP-Pillar-v0.64 + Ours 71.37/70.77 63.30/62.75 71.45/61.05 63.22/53.86 63.87/62.39 61.48/60.05

CP-Voxel 74.31/73.75 66.35/65.84 76.19/70.10 68.44/62.82 71.76/70.63 69.16/68.07
CP-Voxel-S + Ours 74.28/73.72 66.17/65.66 76.72/70.68 68.96/63.37 71.97/70.81 69.36/68.24
CP-Voxel-XS + Ours 73.62/73.05 65.53/65.01 75.50/69.29 67.67/61.96 71.30/70.09 68.69/67.52
CP-Voxel-XXS + Ours 69.20/68.55 61.15/60.57 71.76/64.95 63.71/57.53 68.51/67.18 65.98/64.70

We report the per-category performance of our efficient detectors on full Waymo Open Dataset [21]
in Table S2. As illustrated in Table S2, comparing CP-Pillar-v0.64 and CP-Pillar, the performance
gap mainly lies in pedestrians and cyclists (around 3% gap), while vehicle suffers around 1.5% gap.
This might be caused by the fact that coarser input resolution penalizes the performance of small
objects such as pedestrians and cyclists more severely. As for voxel-based detector CP-Voxel-XXS,
we notice that its performance gap from teacher distributes more evenly on different categories
than CP-Pillar-v0.64, as the model width compression does not have special penalization on any
categories.

S2.3 Error Bar

Table S3: Repeat results of our different models on Waymo . We report the reproduced results with
5 rounds as well as their averaged results and standard variance. The performance is measured in
LEVEL 2 mAPH.

Detector Round 1 Round 2 Round 3 Round 4 Round 5 Average Standard Variance
CP-Pillar 59.09 59.13 59.13 59.14 59.01 59.10 0.05
CP-Pillar-v0.64 52.81 52.75 52.85 52.85 53.25 52.90 0.20
CP-Pillar-v0.64 + Ours 55.75 55.82 56.02 55.75 55.73 55.81 0.12

Here, to show the robustness of our experimental results, we reproduce knowledge distillation on
CP-Pillar-v0.64 five times and report the average and standard derivation of performance. As shown
in Table S3, the performance of our distilled CP-Pillar-v0.64 is more stable than the student without
distillation, which indicates that our improved KD pipeline can boost performance stably.

S2.4 Focal Loss Results

As focal loss [13] is a widely-used solution for the foreground and background region imbalance issue,
it is intuitive to also employ it as the distillation loss. In this regard, here we provide an experimental
comparison between focal loss and our proposed PP logit KD for logit KD. As shown in Table S4,
PP logit KD is around 0.7% and 8.2% higher than focal loss on CP-Voxel-XS and CP-Pillar-v0.64,
respectively. As for CP-Pillar-v0.64, since the capability difference between teacher and student are
large, focal loss even suffers performance degradation compared to vanilla KD, while our PP logit
KD consistently brings performance boost. The reason for the inferior performance of focal loss
for distillation is that it will emphasize regions that are most different among teacher and student
pairs but not most information-rich areas. Those large prediction difference areas could be caused by

3



the capability gap between teacher and student and thus renders focal loss a suboptimal strategy for
student learning.

Table S4: Results of leveraging focal loss as logit distillation loss on Waymo. Teacher models are
marked in gray.

Detector No Distill KD [9] Focal loss PP Logit KD
CP-Voxel 64.29 - - -
CP-Voxel-XS 62.23 62.81 63.48 64.16

CP-Pillar 59.09 - - -
CP-Pillar-v0.64 52.81 50.78 46.11 54.32

S3 More Analysis

In this section, we provide some investigations on the influence of accelerator types and operation-
level optimizations on the measured latency as well as the qualitative analysis of our proposed
CPR.

S3.1 Latency Analysis

(a) FPS for different voxel-based detectors (b) FPS for different pillar-based detectors
Figure S1: Comparison on the FPS with different hardware devices and operation-level optimizations
for different detectors.

Table S5: Information of the inference machine.
Type GPU CPU
Personal Computer NVIDIA GTX-1060 Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
Server#1 NVIDIA GTX-1080Ti Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz
Server#2 NVIDIA A100 AMD EPYC 7742 64-Core

Inference time, latency or FPS directly measure the execution speed of a model on a given hardware
configuration, and have been widely adopted to assess the model efficiency in 3D detection. However,
different papers [28, 27, 7] measure the latency based on different machines, hindering the fair
comparisons and standardization among different approaches. Besides, we empirically show that
the operation-level optimization has a large impact on the latency measurement and even influences
the conclusion. In this regard, we investigate how different hardware devices and operation-level
optimizations (i.e. sparse convolution [8]) affect the latency measurement in terms of FPS. The basic
information of our tested machines is shown in Table S5, including one personal computer and two
servers.

Influence of Hardware Devices. As shown in Figure S1 (a) and (b), detectors run faster on more
powerful GPU consistently for both voxel-based and pillar-based detectors, which demonstrate the
great influence of hardware devices. In addition, we notice that some compressed detectors meet
negative optimization (i.e. model needing fewer computations has larger latency) on the latest GPU
architecture NVIDIA-A100 (see CP-Voxel-XS vs. CP-Voxel-XXS and CP-Pillar vs. CP-Pillar-v0.4),
which has not been observed on GTX-1060 and GTX-1080Ti. This might be caused by the different
underlying implementation strategies at the hardware level. This also verifies that latency-orientated
efficient detector designs largely depend on the type of hardware devices.

4



Operation-level Optimization. Sparse convolution network [8] is a major component in existing
voxel-based detectors to efficiently extract voxel-wise features from voxelized point clouds. As they
are not fully-optimized toward hardware, it occupies a large percentage of latency for voxel-based
detectors using A popular implementation Spconv 1, although the GLOPs are not that high. Here,
we also investigate how different implementations of the sparse convolution influence the measured
latency. As shown in Figure S1 (a), voxel-based detectors implemented with Spconv2.x is much
faster than their counterparts with Spconv1.x (Spconv2.x is the optimized version of Spconv1.x).
Moreover, the operation-level optimization can even have a larger impact than the hardware devices
(see NVIDIA 1080Ti with Spconv1.x and NVIDIA 1060 with Spconv2.x). In addition, although
the width-level compressed students of CP-Voxel require significantly fewer flops, parameters and
activations compared to CP-Voxel, they cannot obtain obvious speed up on the latency with Spconv1.x,
which indicates that non-parametric computations (i.e. computation not directly related to learnable
parameters) occupy most of the latency for voxel-based detectors using Spconv1.x. As a consequence,
based on NVIDIA 1060, CP-Voxel with Spconv2.x runs faster than CP-Pillar, while runs slower
than CP-Pillar when using Spconv 1.x. This demonstrates that testing model latency on different
operation-level optimizations can draw totally different conclusions when comparing the efficiency
of different detectors in terms of latency.

Besides the above two factors, we also observe that even hardware status (e.g. temperature) could
influence the final obtained latency, indicating that the latency is hard to stably reproduce on the same
machine and cannot serve as a standard measurement on model efficiency. In this regard, we focus
on the parametric measurement such as flops and activations in the main paper, as they will not be
influenced by the above hardware, software or environment level factors.

S3.2 Qualitative Analysis of CPR
Table S6: More model compression results. Teacher models are marked in gray. See text for details.

Architecture Efficiency LEVEL 2
mAPH CPRDetector Width Depth Params Flops Acts Latency Mem.

PFE BFE Head PFE BFE (M) (G) (M) (ms) (G)

CP-Pillar

1.00 1.00 1.00 1.00 1.00 5.2 333.9 303.0 157.9 5.2 59.09 -
(a) 1.00 0.50 1.00 1.00 1.00 1.5 130.1 203.1 97.1 3.6 55.35 0.58
(b) 1.00 0.25 0.25 1.00 1.00 0.3 23.8 91.2 51.9 2.3 46.16 0.59
(c) 1.00 1.00 1.00 1.00 0.50 2.2 258.5 234.1 118.5 4.3 55.24 0.52
(d) 1.00 1.00 1.00 1.00 0.33 1.4 234.6 210.0 107.8 4.0 47.97 0.42

CP-Voxel

1.00 1.00 1.00 1.00 1.00 7.8 114.7 101.9 125.7 2.8 64.29 -
(a) 0.50 0.50 0.50 1.00 1.00 1.9 28.8 51.2 75.1 1.7 59.47 0.64
(b) 0.50 0.25 0.25 1.00 1.00 1.0 12.0 33.1 70.4 1.3 56.26 0.67
(c) 1.00 1.00 1.00 0.50 0.50 3.0 63.9 65.2 73.0 1.9 60.95 0.61
(d) 1.00 1.00 1.00 0.33 0.33 1.8 47.9 52.2 59.0 1.6 55.78 0.57

When designing efficient student models, we propose CPR to quantitatively measure the trade offs
between efficiency and performance of a compressed student model. Here, we take some examples
to qualitatively analyze the correlation between the CPR, the model efficiency as well as the model
accuracy. As shown in Table S6, comparing CP-Pillar (a) and (c), they achieve similar performance,
but CP-Pillar (a) requires only half of flops and fewer parameters, activations, latency and training
memory. This indicates that CP-Pillar (a) achieves better trade offs between accuracy and efficiency,
which can be reflected on its higher CPR. Similar conclusions can be drawn by comparing CP-
Pillar (b) and (d), CP-Voxel (a) and (c), as well as CP-Voxel (b) and (d). These qualitative results
demonstrate the good correlation between CPR and the compromise between accuracy and efficiency
for a given compressed model.

S4 Generality on 3D Semantic Segmentation

In this work, the above experiments are all built on 3D object detection, which is a sparse prediction
task. However, we argue that our sparse distillation manner (i.e. pivotal position logit KD) can also
generalize to dense prediction tasks such as 3D semantic segmentation. As the student model has
dense GTs supervision in training, dense distillation loss on massive uninformative points and regions,
such as road points, might be redundant and can overwhelm the overall distillation loss. Instead, our

1https://github.com/traveller59/spconv

5



sparse distillation might help the student focus on more important areas by using teacher prediction
as regularization.

Here, we follow the design principle of PP logit KD and adapt it to handle the dense semantic
segmentation task. We apply distillation loss on points with predictions that are correct but less
confident than the teacher. Our simple design is motivated by three intuitions: (i) Points that
are correctly predicted with lower confidence are often some challenging cases that the model is
struggling but also has the capability to handle. By harvesting knowledge from a high-performing
teacher model, the student can learn to match the confidence level of the teacher which provides more
information than the one-hot GT. (ii) Points that are correctly predicted with higher confidence are
often easy samples that have very close prediction confidence to the teacher model. Considering that
these samples are already handled well by the model, they have low chance to benefit from distillation
but might cause redundancies. (iii) Points that are incorrectly predicted by the student are often cases
that might be out of the ability of student models. Specifically, we have the confidence of student
predictions confs, the confidence of teacher predictions conft and a pre-defined threshold τ . We will
only apply distillation loss for student predictions that are correct and have confs + τ < conft.

We also provide experimental results for our design on the 3D semantic segmentation dataset
ScanNet [5]. Here, we use a small version of MinkowskiNet [4] for fast verification. On the one
hand, as shown in Table S7, we try both model width and input resolution compression to obtain
efficient student models, and select MinkowskiNet14-v0.04 as the student model for KD due to its
higher CPR. On the other hand, as shown in Table S8, we compare the effectiveness of KD [9],
PP logit KD and TGI on MinkowskiNet14-v0.04, where both our proposed PP logit KD and TGI
obtain improvements. In particular, our sparse PP logit KD surpasses the dense logit KD method
with around 0.8% gains. Our statistics also show that our PP logit KD only leverages 19.03% points
for distillation at the first epoch and 3.66% points for distillation at the last epoch. These experiments
and statistics demonstrate that sparse distillation can also work on the dense prediction task.

Table S7: Model width and input resolution compression results of MinkowskiNet14 on ScanNet.
The teacher model is marked in gray.

Architecture Efficiency mIoU CPRModel Width Voxel Size (m) Params (M) Flops (T) Acts (M)
MinkowskiNet14 1.0 0.02 1.7 46.2 27.9 65.77 -

MinkowskiNet14-w0.5 0.5 0.02 0.5 18.2 17.4 61.84 0.60
MinkowskiNet14-v0.04 1.0 0.04 1.7 5.7 8.9 62.82 0.78

Table S8: Knowledge distillation results of compressed MinkowskiNet14 on ScanNet.
Model Role No Distill KD [9] PP Logit KD TGI Flops (T) Acts (M)

MinkowskiNet14 Teacher 65.77 - - - 46.2 27.9
MinkowskiNet14-v0.04 Student 62.82 63.65 64.40 64.22 5.7 8.9

S5 Discussion on Other Detectors

In this work, we mainly focus on dense detectors (e.g. CenterPoint [27], PV-RCNN++ [19], SEC-
OND [25]) with the most popular pillar/voxel input representations. Here, we construct some
discussion for the knowledge distillation on the sparse detectors and other input representations to
further demonstrate the generality of our distillation manners.

S5.1 Discussion for Sparse Detectors

As the emergency of DETR [2], object detectors that directly produce sparse prediction without
post-processing become a new popular detection paradigm. Although we only try our KD manner on
dense detector in the main paper, we argue that our sparse distillation is still applicable for sparse
transformer-based detector such as DETR [2], Deformable DETR [29], Object DGCNN [24], etc.

On the one hand, sparse transformer-based detectors that directly make instance predictions actually
rely on learning to some sparser reference points and corresponding position features. For example,
each object query in Deformable DETR [29] or Object DGCNN [24] is decoded into a reference point
and neighboring points in order to focus only on those most informative positions. On the other hand,

6



although sparse detectors can directly generate sparse instance predictions, our sparse distillation
(i.e. pivotal position KD) focuses on sparser and more fine-grained position-level information
(see Figure S2). In this regard, it should still be applicable to sparse models with some specific
modifications.

Here, we take Object DGCNN [24] as an example and provide two possible sparse distillation designs.

(1) As the transformer encoder and decoder of Object DGCNN are similar to Deformable DETR, it
can be simply extended to a two-stage variant as Deformable DETR. In the two-stage variant, the
transformer encoder will regard each pixel as an object query and construct a dense scoring on it,
where top-score positions are picked as reference points. This is similar to our designed rank PP
KD which enforces the student to imitate the prediction of teacher top-rank positions. Therefore,
we can directly apply our sparse rank PP KD to those dense scoring predictions between teacher
and student. Besides, we will also carry on feature imitation on those teacher top-ranked positions
between teacher and student.

(a) Imitation mask for instance-wise KD (B) Imitation mask for pivotal position KDFigure S2: Visualization comparison of the imitation position (yellow positions) between instance-
wise KD and our PP KD on the bird’s eye view. Left: valid imitation regions for instance-wise KD.
Right: valid imitation positions for our PP KD. Our PP KD has more fine-grained imitation regions
compared to instance-wise KD. Best viewed in color.

(2) As for the one-stage variant of sparse detectors, learnable object queries will be decoded into
reference points and neighboring points, so the sparse distillation can be constructed on those points
and their corresponding BEV features. Specifically, we can first match the positive object queries of
teacher and student as query pairs by checking whether they are matched to the same GT box. Then,
we can enforce the decoded reference and neighboring points of the student to mimic their paired
teacher counterparts. Besides, we will construct imitation on BEV features of those reference and
neighboring positions between teacher and student.

S5.2 Discussion for other input representations

Apart from the most popular pillar/voxel based object detectors discussed in the main paper, there
are also point-based and range image based detectors. Therefore, we also provide the discussion
on the point-based and range-based detectors here. As the TGI and label KD are detector-agnostic
distillation manners and can be easily extended to detectors with any input representations, we only
discuss the sparse distillation – pivotal position KD here.

Point-based detector [20, 3, 26, 28] take raw point clouds as input and and employed PointNet++ [16]
to extract point features and generate point-wise object proposals. Range image based detectors
leverage the native and dense representation for 3D points captured from LiDAR [15, 12, 1, 22]. As
for the knowledge distillation on point-based and range image based detectors, since they still need
to generate dense point-wise object proposals, our sparse distillation can still directly apply to it by
selecting confident or top-ranked teacher positions for imitation (i.e. Confidence PP and Rank PP

7



in Table ??). In this regard, our distillation strategies should be generalizable to all existing input
representations.

S6 Limitations

Although our work has already investigated the compression on model width, model depth and input
resolution for designing lightweight student detectors, there are also exhausted layer-wise model
compression methods [14, 10], which have not been attempted in this work. Although missing the
compression attempts in such perspective, we argue that our paper mainly focuses on exploring the
potential of knowledge distillation to obtain efficient 3D detectors and the existing compression
attempts already fulfill our demands. Besides, we believe that the further progress and investigation
of designing efficient 3D detectors is orthogonal to our KD attempts and can cooperate with our
improved KD pipeline to obtain more efficient detectors.

References
[1] Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, and Cristian Sminchisescu.

Range conditioned dilated convolutions for scale invariant 3d object detection. arXiv preprint
arXiv:2005.09927, 2020.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[3] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 9775–9784, 2019.

[4] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3075–3084, 2019.

[5] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5828–5839, 2017.

[6] Xing Dai, Zeren Jiang, Zhao Wu, Yiping Bao, Zhicheng Wang, Si Liu, and Erjin Zhou. General
instance distillation for object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7842–7851, 2021.

[7] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li.
Voxel r-cnn: Towards high performance voxel-based 3d object detection. arXiv preprint
arXiv:2012.15712, 1(2):4, 2020.

[8] Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional networks.
arXiv preprint arXiv:1706.01307, 2017.

[9] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2(7), 2015.

[10] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for
efficient neural network pruning. In European conference on computer vision, pages 639–654.
Springer, 2020.

[11] Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking very efficient network for object
detection. In Proceedings of the ieee conference on computer vision and pattern recognition,
pages 6356–6364, 2017.

[12] Zhidong Liang, Ming Zhang, Zehan Zhang, Xian Zhao, and Shiliang Pu. Rangercnn: To-
wards fast and accurate 3d object detection with range image representation. arXiv preprint
arXiv:2009.00206, 2020.

[13] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[14] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision, pages 2736–2744, 2017.

[15] Gregory P Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, and Carl K Wellington.
Lasernet: An efficient probabilistic 3d object detector for autonomous driving. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 12677–12686,
2019.

8



[16] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information Processing
Systems, pages 5099–5108, 2017.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information processing
systems, 28, 2015.

[18] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[19] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu Guo, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. Pv-rcnn++: Point-voxel feature set abstraction with local vector representa-
tion for 3d object detection. arXiv preprint arXiv:2102.00463, 2021.

[20] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation
and detection from point cloud. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 770–779, 2019.

[21] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for
autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2446–2454, 2020.

[22] Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin Elsayed, Alex Bewley, Xiao Zhang, Cristian
Sminchisescu, and Dragomir Anguelov. Rsn: Range sparse net for efficient, accurate lidar 3d
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5725–5734, 2021.

[23] Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Distilling object detectors with fine-
grained feature imitation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4933–4942, 2019.

[24] Yue Wang and Justin M Solomon. Object dgcnn: 3d object detection using dynamic graphs.
Advances in Neural Information Processing Systems, 34:20745–20758, 2021.

[25] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10):3337, 2018.

[26] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Std: Sparse-to-dense 3d
object detector for point cloud. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1951–1960, 2019.

[27] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and track-
ing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11784–11793, 2021.

[28] Yifan Zhang, Qingyong Hu, Guoquan Xu, Yanxin Ma, Jianwei Wan, and Yulan Guo. Not all
points are equal: Learning highly efficient point-based detectors for 3d lidar point clouds. arXiv
preprint arXiv:2203.11139, 2022.

[29] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable
detr: Deformable transformers for end-to-end object detection. In International Conference on
Learning Representations, 2020.

9


	Implementation Details for Our Benchmark
	Additional Experimental Results
	Synergy Results of TGI
	Per-class Performance
	Error Bar
	Focal Loss Results

	More Analysis
	Latency Analysis
	Qualitative Analysis of CPR

	Generality on 3D Semantic Segmentation
	Discussion on Other Detectors
	Discussion for Sparse Detectors
	Discussion for other input representations

	Limitations

