
A Organization of the Appendices

In this appendix, we provide additional simulation results and complete proofs of all the results
in the main text. In Appendix B, we provide additional simulation results. In Appendix C, we
introduce standard notation and tools which we use throughout the remainder of the appendices. In
Appendix D, we give a proof of our main result Theorem 1. In Appendix E, we apply VC theory to
handle low-dimensional concentration and prove the generalization guarantees for linear regression
and classification. In Appendix F, we prove Theorem 4. In Appendix G, we establish a norm bound
for interpolators and apply our generalization bound of Section 5 to show consistency.

B Additional Numerical Simulations

This section presents additional numerical simulations on synthetic data to confirm our theory and
test it beyond the case of Gaussian covariates. All code is available from https://github.com/
zhoulijia/moreau-envelope.3

B.1 Linear Regression

We fit linear models to minimize the square loss with `1 and `2 penalty. For simplicity, we ignore
the intercept term in this section, but we will consider models with intercept in the context of linear
classification. We can obtain many data distributions by combining the different options below:

Feature Distribution. The marginal distribution of x is always given by x = ⌃1/2z, where z is a
random vector with i.i.d. coordinates that have mean 0 and variance 1.

Figure 2: Probability density plot for the continuous distributions of z that we consider.

The coordinate distributions of z that we consider in the simulations include

• Gaussian
– the standard Gaussian distribution has density p(z) = 1p

2⇡
e�

1
2 z

2

• Uniform
– the uniform distribution between 0 and 1 has mean 0 and variance 1

12 . After normalization, it
becomes the uniform distribution between �

p
3 and

p
3. It’s symmetric, bounded from above

and below, and therefore sub-Gaussian
• Laplace

– Laplace distribution with scale parameter b has density p(z) = 1
2be

� |z|
b and variance 2b2, so we

should choose b = 1p
2

3The ridge path is computed using SVD implemented by np.linalg.svd. The LASSO path is com-
puted using coordinate descent implemented by sklearn.linear_model.lasso_path, and `1 and `2 margin
classifiers are fitted using sklearn.svm.LinearSVC with the default squared hinge loss option.
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– it is symmetric, unbounded, and has fatter tails compared to Gaussian (sub-exponential)

We also consider discrete distributions

• Rademacher
– the discrete distribution with equal chance of being �1 or 1. It is easy to see that it has mean 0

and unit variance.
• Poisson

– Poisson distribution with rate parameter 1 is supported on the non-negative integers (skewed
and bounded from below) and has density Pr(z̃ = k) = e

�1

k! . Its mean and variance are both
equal to 1, and so we take z = z̃ � 1 to normalize

and heavy-tailed distributions

• Student’s t-distribution
– t-distribution with 5 degrees of freedom has density p(z̃) = 8

3
p
5⇡

⇣
1+ z̃2

5

⌘3

– It has variance 5
3 and so we let z =

q
3
5 z̃. It is symmetric, unbounded and has finite fourth

moment. However, moments of order 5 or higher do not exist.
• Weibull

– Weibull distribution with scale parameter � = 1 and shape parameter k = 0.5 has density
p(z̃) = e

�
p

z̃

2
p
z̃

{z̃�0}. It has mean 2 and variance 20 and so we take z̃ = z�2p
20

• Log-Normal
– the distribution of eZ , where Z follows the standard Gaussian distribution. It has mean

p
e and

variance e(e� 1), and so we can choose z = e
Z�

p
e

p
e(e�1)

Covariance Matrix and Scaling. For simplicity, we choose ⌃ to be diagonal and consider

• Isotropic features ⌃ = Id in the proportional scaling (n = 300, d = 350)

• Junk features in the over-parameterized scaling (n = 300, d = 3000)

⌃kk =

⇢
1 if k = 1, 2, 3
0.052 otherwise

• Non-benign features in the over-parameterized scaling (n = 300, d = 3000)

⌃kk =

⇢
1 if k = 1, 2, 3
1
k2 otherwise

The junk features setting is known to satisfy the benign overfitting conditions (Zhou et al. 2020;
Bartlett et al. 2020), by which the minimal `2-norm interpolator is consistent. In contrast, Bartlett
et al. (2020) also shows that overfitting is not benign in the second case, but the theory from Zhou
et al. (2021) shows that the optimally-tuned ridge regression can be consistent.

Conditional Distribution of y. Let

w⇤ = (1.5, 0, ..., 0)

⇠ ⇠ N (0, 0.5)

and consider

• a well-specified linear model:
y = hw⇤, xi+ ⇠

16



• a mis-specified model:

y = hw⇤, xi| {z }
linear signal

+ |x1| · cosx2| {z }
non-linear term

+ x3 · ⇠| {z }
heteroscedasticity

The second model does not satisfy the classical assumptions for linear regression because the Bayes
predictor

E[y|x] = hw⇤, xi+ |x1| · cosx2

is non-linear and the variance of the residual also depends on x4. Even though statistical inference
can be challenging for models like this, we can hope to learn a model that competes with the optimal
linear predictor (which is not necessarily the same as w⇤) in terms of prediction error.

B.1.1 Speculative Risk Bounds for Non-Gaussian Features

Though our theory is restricted to Gaussian features, we conjecture that it can be extended to a more
general class of distributions using Rademacher complexity and we use numerical simulations to
confirm our conjecture.

Ridge Regression

1. Isotropic features: similar to Lemma 10 in Zhou et al. (2021), we can choose C� in
corollary 2 by the simple Cauchy-Schwarz bound

hQw, xi  kQwk2 · kxk2 ⇡

p

dkQwk2

resulting in the following bound

Lf (w)  (1 + o(1))

 q
L̂f (w) +

r
d

n
· kQwk2

!2

(18)

2. Junk and non-benign features: choosing C� in corollary 2 according to Lemma 1 yields

Lf (w)  (1 + o(1))

 q
L̂f (w) + kwk2

r
Tr(⌃?)

n

!2

(19)

In all of the experiments, we use a constant close to 1 to replace the 1+o(1) factor in our generalization
bounds. Note that (19) can be interpreted in terms of Rademacher complexity:

E
x1,...,xn⇠D

s⇠Unif({±1}n)

"
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kwk2B

�����
1

n
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�����

#
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· E
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s⇠Unif({±1}n)

"�����
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i=1

siQ
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�����
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#

 B ·
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Tr(⌃?)

n

The last inequality holds generally for any distribution with Ex⇠D[xxT ] = ⌃ by Cauchy-Schwarz
inequality. In our examples, x = ⌃1/2z and z is scaled to satisfy E[zzT ] = Id. Therefore, we will
use equation (18) and (19) even for non-Gaussian data.

Equations (18) and (19) are qualitatively similar with subtle technical differences. Compared with
equation (19), the bound (18) uses the smaller norm kQwk2 and figure 2 of Koehler et al. (2021)
demonstrates that this projection is crucial for tight bounds in the isotropic setting. On the other
hand, equation (19) incorporates the covariance splitting technique (Bartlett et al. 2020) because large
eigenvalues of ⌃ can be killed off in ⌃? by projection Q while Tr(Id) = d in the isotropic case. It is
shown in our corollary 3 that this bound without the projection is already tight enough to establish
the consistency of minimal-`2 norm interpolator in the junk feature setting. Hence, we expect (19) to
be tight throughout the ridge path. In contrast, the theory in Zhou et al. (2021) predicts that (19) is
tight for the non-benign setting only up to the point where the ridge estimate has norm as large as the
optimal linear predictor. We believe using the local Gaussian width theory introduced in Section 7
(i.e. an optimal choice of C�(w)) can get tight bound throughout the ridge path in this setting, but we
do not have experiments in this appendix to confirm it.
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In the theoretical analysis of Zhou et al. (2021), they further write kQwk2 as a function of
kwk2, kw⇤

k2 and the excess risk kw�w⇤
k
2
⌃ in the isotropic case, then solve the equation in terms of

kw � w⇤
k
2
⌃ to get a norm-based generalization bound as a function of kwk2 when L̂f (w) = 0 (see

their theorem 6). Since the solution for general non-zero L̂f (w) can have a quite tedious expression,
for the purpose of numerically checking the applicability and tightness of this approach, we will use
simpler equation (18) in the experiments.

LASSO Regression Similar to the section above, we use the analogy to Rademacher complexity
to extend our theory to the `1 case. Since we can no longer bound the `1 norm of a sum using the
Cauchy-Schwarz inequality, it is easier to directly work with the empirical Rademacher complexity
(which also should be similar to the expected Rademacher complexity in the settings that we consider)

kwk1
n

· E
s⇠Unif({±1}n)

"�����

nX

i=1

siQ
Txi

�����
1

#

and we can estimate the expected norm by

1

B

BX

k=1

�����

nX

i=1

sk,iQ
Txi

�����
1

for a large value of B and s1, ..., sB sampled independently from Unif({±1}n). In our implementa-
tion, s1, ..., sB are fresh samples each time the risk bound is computed. To summarize, we use the
following expression for the calculation of risk bound:

1. Isotropic features:
 q

L̂f (w) + kQwk1 ·
1

nB

BX

k=1

�����

nX

i=1

sk,ixi

�����
1

!2

(20)

2. Junk and non-benign features:
 q

L̂f (w) + kwk1 ·
1

nB

BX

k=1

�����

nX

i=1

sk,iQ
Txi

�����
1

!2

(21)

which are analogous to (18) and (19).

We note that it is important to use the Rademacher complexity to extend to non-Gaussian features in
the `1 case, rather than a bound similar to kwk1 E kxk1p

n
. Empirically, the latter is too small to provide

a valid upper bound on the test loss. This is because kxk1 is deterministic for distributions like the
Rademacher distribution, while the random signs in the definition of Rademacher complexity allows
a tail behavior more similar to Gaussian and so we can regain a log factor in the norm component.

B.1.2 Experimental Results

For both ridge and LASSO regression, risk curves measured in the square loss are shown in three
figures corresponding to the different data covariances. Within each figure, there are 16 subplots
corresponding to the different combinations of one of the eight feature distributions and label
generating process (well-specified vs mis-specified) as defined at the beginning of the section.
Therefore, there are 96 subplots in total. Discussion of the experimental outcome can be found in the
caption of each figure.

Similar to the situation in the rest of the experiments, the training error is close to 0 with sufficiently
small regularization, and the confidence bands are wider with heavy-tailed distributions. Also, the
null risk and the Bayes risk are different across different feature distributions when there is model
misspecification (see the calculation in the next subsection for more details).

Ridge Regression. The plots for isotropic, junk and non-benign features in the ridge regression
setting can be found in figures 3, 4 and 5, respectively. Generally speaking, the experiments confirm
the tightness and wide applicability of our generalization guarantees. The specific feature distribution
and model misspecification do not seem to affect the shape of test error curve.
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LASSO Regression. The plots for isotropic, junk, and non-benign features in the LASSO regression
setting can be found in Figures 6 to 8. The risk bounds in the `1 case are not as tight as in the `2
case because they are only expected to be tight in certain parts of the entire regularization path.
As mentioned earlier, we can get sharp bounds for the entire path using local Gaussian width, but
it requires a more fine-grained analysis than (20) and (21). Similar results and experiments were
obtained by G. Wang et al. (2021) and Donhauser et al. (2022).

B.1.3 Note on Computing the Optimal Linear Predictor and Population Risk

Since we are considering quite high-dimensional settings and we need many repeated experiments
for different regularization strengths, we generally want to avoid drawing a large test set to estimate
the prediction error when it is possible. In the case of square loss, we can always write the population
loss (using the Mahalanobis norm notation (22)) as

Lf (w) = Lf (w̃) + kw � w̃k2⌃

where w̃ is the optimal linear predictor satisfying the first order condition:

E[x(xT w̃ � y)] = 0.

Linear Model. In the well-specified case, by the independence between x and ⇠, the above becomes

⌃w̃ = ⌃w⇤ =) w̃ = w⇤.

Therefore, we have Lf (w̃) = E[(y � hw⇤, xi)2] = �2.

Mis-specified Model. To determine the optimal linear predictor in this case, we want to set

⌃w̃ = E[xy]
= E[x(hw⇤, xi+ |x1| · cosx2)]

= ⌃w⇤ + E[x1 · |x1|]E[cosx2]e1 + E[|x1|]E[x2 cosx2]e2

and so
w̃ = w⇤ + E[x1 · |x1|]E[cosx2]⌃

�1e1 + E[|x1|]E[x2 cosx2]⌃
�1e2.

At the same time, it is routine to check that the optimal error is given by

Lf (w̃) = E[y2]� hE[xy],⌃�1 E[xy]i.

It remains to compute the null risk

E[y2] = E[(hw⇤, xi+ |x1| · cosx2 + x3⇠)
2]

= E[(hw⇤, xi+ |x1| · cosx2)
2] + ⌃33�

2

= hw⇤,⌃w⇤
i+ E[x2

1]E[cos2 x2] + 2E[hw⇤, xi(|x1| · cosx2)] + ⌃33�
2

= hw⇤,⌃w⇤
i+ E[x2

1]E[cos2 x2] + 2 (E[x1 · |x1|]E[cosx2]w
⇤
1 + E[|x1|]E[x2 cosx2]w

⇤
2) + ⌃33�

2

and

hE[xy],⌃�1 E[xy]i = h⌃w⇤ + E[|x1| cos(x2)x], w
⇤ + ⌃�1 E[|x1| cos(x2)x]i

= h⌃w⇤, w⇤
i+ 2hw⇤,E[|x1| cos(x2)x]i+ hE[|x1| cos(x2)x],⌃

�1 E[|x1| cos(x2)x]i.

Therefore, we have

Lf (w̃) = E[x2
1]E[cos2 x2] + ⌃33�

2
� E[x1 · |x1|]

2 E[cosx2]
2⌃�1

11 � E[|x1|]
2 E[x2 cos(x2)]

2⌃�1
22

It remains to compute quantities like E[|x|],E[x · |x|],E[cosx],E[x cosx] for each of the eight feature
distributions. Since they are one dimensional quantities, we can afford to draw a very large number
of samples to estimate them.
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Figure 3: Ridge regression with isotropic data (n = 300, d = 350). As proved by theorem 7 in
Zhou et al. (2021), the risk bound (18) follows the test error curve closely. This is true even in the
non-Gaussian and mis-specified settings. Note that we do not have benign-overfitting because we
are in the proportional scaling regime with d close to n, and the population risk of the minimal-`2
norm interpolator is even worse than the null-risk (more significantly so with misspecification). The
optimally-tuned ridge regression has risk better than the null risk, but it is still far from the Bayes
risk because the consistency result of optimally-tuned ridge regression in Zhou et al. (2021) assumes
Tr(⌃)/n ! 0.
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Figure 4: Ridge regression with junk features (n = 300, d = 3000). In the junk features setting, as
predicted in section 6, the test error curve is essentially flat once the regularization is small enough
to fit the signal, and we get nearly optimal population risk as long as we do not over-regularize the
predictor. The test error curve can be expected to be more flat with increasing d. This phenomenon is
also consistent across different feature distributions and label generating processes. Our bound (19)
closely tracks the performance of ridge regression along the entire regularization path.
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Figure 5: Ridge regression with non-benign features (n = 300, d = 3000). In the non-benign
features setting, as proved by corollary 3 in Zhou et al. (2021), the optimally-tuned ridge regression
achieves nearly optimal prediction risk. Our risk bound is tight up to the point up to the point
where the test error starts to increase. As expected, the minimal norm interpolator fails to achieve
consistency even though we are in the overparameterized regime. Note that bound (19) is dramatically
more pessimistic in the under-regularized part of the ridge path. Once again, the data distribution and
model misspecification has no effect on the shape of the test error curve and risk bound.
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Figure 6: LASSO regression with isotropic data (n = 300, d = 350). Contrary to the inconsistency of
optimally-tuned ridge regression in this setting, the regularized LASSO estimator can achieve nearly
optimal population risk thanks to sparsity. The risk bound (20) appears to be valid and sufficient for
the consistency of optimal LASSO in the distributions that we consider, though it is not very tight
for interpolation. Recall that the minimal-`1 norm interpolator suffers from an exponentially slow
convergence rate when d = n↵ (G. Wang et al. 2021) and observe that the population risk of the
minimal-`1 norm interpolator is again worse than the null-risk.
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Figure 7: LASSO regression with junk features (n = 300, d = 3000). Similar to the isotropic setting,
the regularized LASSO can achieve nearly optimal prediction risk and the risk bound (21) is sufficient
to explain this phenomenon. Once again, the data distribution and model misspecification appear
to have no effect on the shape of the test error curve. It is theoretically possible to use a nearly
identical risk bound to show the consistency of minimal-`1 norm interpolator when n is large and d
is super-exponential in n (Koehler et al. 2021), but as we can see, n = 300 and d = 3000 is not quite
large enough yet. On the other hand, overfitting is more benign than what (21) predicts, suggesting a
better analysis may yield a weaker condition required for consistency.
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Figure 8: LASSO regression with non-benign features (n = 300, d = 3000). Though the population
risk and the associated risk bound of regularized LASSO can be quite close to the Bayes risk,
overfitting with minimal-`1 norm interpolator does not appear to be benign (and there is no existing
theoretical result suggesting that consistency is possible with a larger n or d). In particular, its `1 norm
increases much more quickly than the junk-features case. Though the (21) is not tight throughout
the entire regularization path, it is still a valid upper bound on the test error across different feature
distributions and label generating processes.
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B.2 Linear Classification

Similarly, we fit linear models to minimize the squared hinge loss with `2 and `1 penalty. We can
consider the same feature distributions and data covariance structure as in the preceding section.
For faster computation (because margin classifiers can be slower to compute than regressors), we
take k = 1, and n = 100, d = 120 in the proportional scaling and n = 100, d = 2000 in the
overparameterized scaling. The label y is generated by the following model:

⌘ = hw⇤, xi+ b⇤, Pr(y = 1 |x) = 1� Pr(y = �1 |x) = g(⌘)

where g : R ! [0, 1] is the logistic link function. Since we use the squared hinge loss for learning
(which is not the negative log-likelihood function), the linear model that we learn is not necessarily
well-calibrated and so this can also be considered as a mis-specified setting. Therefore, we will only
consider one label generating process in the classification context. Finally, by our Moreau envelope
theory, we can use completely the same risk bounds from (18) to (21) for `2 and `1 margin classifiers.

B.2.1 Experimental Results

The plots for `2 and `1 margin classifiers can be found in Figures 9 and 10. Each figure contain three
subplots, and each subplot corresponds to one of the data covariance and contains the risk curves
measured in squared hinge loss for the eight feature distributions.

`2-Margin Classifiers. As in the regression case, overfitting is not benign when the features are
isotropic and the population risk of `2 max-margin classifier can be worse than the null risk. The risk
bounds tightly control the test errors across different feature distributions. The difference between
risk bound and the actual test error is larger when the feature distribution is heavy-tailed, but the
confidence interval is also wider due to the relatively small sample size.

In the junk feature setting, the under-regularized part of the regularization path is essentially flat for
all feature distributions. Overall, the experimental result is very similar to Figure 4, as predicted by
our theory in section 6. The non-benign case is also similar to Figure 5 except that the U-shape curve
is quite narrower near the optimal amount of regularization.

`1-Margin Classifiers. In each of the subplots, the risk bound is tight only up to a certain point
before the `1 norm starts to increase quite a lot, leading to loose bound near interpolation. However,
the risk bound is tight enough to establish consistency of optimally-tuned predictor in the junk and
non-benign features setting. Again, the population risk of `1 max-margin classifier can be worse than
the null risk even in the junk features setting. Observe that different distributions do not seem to
change the shape of generalization curve, and there is an interesting multiple descent phenomenon in
the non-benign feature case, which has already been discovered in previous literature (Li and Wei
2021; Liang et al. 2020; Chen et al. 2021).

B.2.2 Note on Computing the Population Risk with Gaussian Features

When the feature distribution is Gaussian, we can estimate

Lf (w, b) = E
⇥
max(0, 1� y(hw, xi+ b))2

⇤

without drawing a new high-dimensional dataset from D. First, we can write x = ⌃1/2z. Note that
conditioning on ⌘ is the same as conditioning on hw⇤, xi = h⌃1/2w⇤, zi ⇠ N (0, kw⇤

k
2
⌃) and the

conditional distribution of z is
⌘ � b⇤

kw⇤k2⌃
⌃1/2w⇤ + Pz

where P = I � (⌃1/2
w

⇤)(⌃1/2
w

⇤)T

kw⇤k2
⌃

and so the conditional distribution of hw, xi+ b is
⌧
w,⌃1/2

✓
⌘ � b⇤

kw⇤k2⌃
⌃1/2w⇤ + Pz

◆�
+ b

= b+
hw,⌃w⇤

i

kw⇤k2⌃
(⌘ � b⇤) + hP⌃1/2w, zi ⇠ N

�
µ(⌘), �2

�
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Figure 9: `2 margin classification: isotropic, junk and non-benign features.
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Figure 10: `1 margin classification: isotropic, junk and non-benign features.
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where µ(⌘) = b+ hw,⌃w
⇤i

kw⇤k2
⌃

(⌘ � b⇤) and

�2 = wT (⌃1/2P⌃1/2)w = wT⌃w �
hw,⌃w⇤

i
2

kw⇤k2⌃
.

Since x is independent of y conditioned on ⌘, we have that

L(w, b) = E
⇥
E
⇥
max(0, 1� y(hw, xi+ b))2 | ⌘

⇤⇤

= E
⇥
g(⌘) ·max(0, 1� µ(⌘)� �z)2 + (1� g(⌘)) ·max(0, 1 + µ(⌘) + �z)2

⇤

We can then estimate the population error by drawing samples from a two-dimensional distribution.

B.2.3 Note on Computing the Optimal Linear Predictor

The linear predictor that minimizes the population squared hinge loss generally does not have a
simple closed-form expression, but we can run SGD on the population objective in order to find the
optimal linear predictor w̃, b̃. For simplicity, we choose

w⇤ = (5, 0, ..., 0) and b⇤ = 3.

In this case, we can simplify the optimization problem to an one-dimensional problem by observing
that w̃i = 0 for i 6= 1. Indeed, we can check the first order condition holds

@

@wi

Lf (w̃, b̃) = �2E
h
ymax(0, 1� y(hw̃, xi+ b̃))xi

i

= �2E
h
ymax(0, 1� y(w̃1x1 + b̃))

i
E [xi] = 0

because y is independent of xi with i 6= 1. Therefore, we can just generate {xi,1, yi} from D and
perform one-pass SGD (e.g. theorem 6.1 of Bubeck 2015) to find w̃1, b̃. In the experiments, we find
choosing the initial step size to be 0.1 works well.

C Preliminaries

General Notation. Following the tradition in statistics, we denote X = (x1, ..., xn)T 2 Rn⇥d

as the design matrix. In the proof section, we slightly abuse the notation of ⌘i to mean Xw⇤
i

and ⇠
to mean the n-dimensional random vector whose i-th component satisfies yi = g(⌘1,i, ..., ⌘k,i, ⇠i).
Note that we can write X = Z⌃1/2 where Z is a random matrix with i.i.d. standard normal entries.

We use the standard notation
kxk⌃ :=

p
hx,⌃xi (22)

to denote the Mahalonobis norm with respect to positive semidefinite matrix ⌃.

Additional Covariance Split Notation. Because we will need to refer to the two parts of �(w)
often, in the remainder of the appendix we introduce the further notation w? = Qw, wk = (I �Q)w
for the ⌃-projection of w onto the span of w⇤

1 , . . . , w
⇤
k
, and

r(w) := k⌃1/2Qwk = kQwk⌃

for the Mahalanobis norm in the orthogonal space. We also will use the notation Xk = XQ and
X? = X(I �Q) for the corresponding projections of the design matrix X , which are independent
of each other.

Concentration of Lipschitz functions. Recall that a function f : Rn
! R is L-Lipschitz with

respect to the norm k·k if it holds for all x, y 2 Rn that |f(x) � f(y)|  Lkx � yk. We use the
concentration of Lipschitz functions of a Gaussian.
Theorem 5 (van Handel 2014, Theorem 3.25). If f is L-Lipschitz with respect to the Euclidean norm
and Z ⇠ N (0, In), then

Pr(|f(Z)� E f(Z)| � t)  2e�t
2
/2L2

. (23)
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The following straightforward concentration result is Lemma 2 of Koehler et al. (2021).
Lemma 3. Suppose that Z ⇠ N (0, In). Then

Pr(
��kZk2 �

p
n
�� � t)  4e�t

2
/4. (24)

We will use the following to help relate our problem to the surrogate distribution in our proof of
Theorem 1.
Lemma 4. Fix any integer k < d and any k vectors w⇤

1 , ..., w
⇤
k

in Rd such that ⌃1/2w⇤
1 , ...,⌃

1/2w⇤
k

are orthonormal. Denoting

P = Id �
kX

i=1

(⌃1/2w⇤
i
)(⌃1/2w⇤

i
)T , (25)

the distribution of X conditional on Xw⇤
1 = ⌘1, ..., Xw⇤

k
= ⌘k is the same as that of

kX

i=1

⌘i(⌃w
⇤
i
)T + ZP⌃1/2. (26)

Proof. We can write X = Z⌃1/2. The key observation is that ZP , Z⌃1/2w⇤
1 , ..., Z⌃

1/2w⇤
k

are
independent. To see why this is the case, we can vectorize each term:

0

B@

vec(ZP )
vec(Z⌃1/2w⇤

1)
...

vec(Z⌃1/2w⇤
k
)

1

CA =

0

B@

P ⌦ In
(⌃1/2w⇤

1)
T
⌦ In

...
(⌃1/2w⇤

k
)T ⌦ In

1

CA vec(Z)

From the above representation, we see that the joint distribution is multivariate Gaussian and the
covariance matrix is

0

B@

P ⌦ In
(⌃1/2w⇤

1)
T
⌦ In

...
(⌃1/2w⇤

k
)T ⌦ In

1

CA

0

B@

P ⌦ In
(⌃1/2w⇤

1)
T
⌦ In

...
(⌃1/2w⇤

k
)T ⌦ In

1

CA

T

= diag (P ⌦ In, In, ..., In)

Therefore, the distribution of ZP remains unchanged after conditioning on Z⌃1/2w⇤
1 , ..., Z⌃

1/2w⇤
k
,

and we can write

Z = Z

 
kX

i=1

(⌃1/2w⇤
i
)(⌃1/2w⇤

i
)T
!

+ ZP

=
kX

i=1

⌘i(⌃
1/2w⇤

i
)T + ZP.

The proof is concluded by the fact that X = Z⌃1/2.

A key ingredient of our technique is the Gaussian minimax theorem.
Theorem 6 ((Convex) Gaussian Minmax Theorem; Thrampoulidis et al. 2015; Gordon 1985). Let
Z : n⇥ d be a matrix with i.i.d. N(0, 1) entries and suppose G ⇠ N (0, In) and H ⇠ N (0, Id) are
independent of Z and each other. Let Sw, Su be compact sets and  : Sw ⇥ Su ! R be an arbitrary
continuous function. Define the Primary Optimization (PO) problem

�(Z) := min
w2Sw

max
u2Su

hu, Zwi+  (w, u) (27)

and the Auxiliary Optimization (AO) problem

�(G,H) := min
w2Sw

max
u2Su

kwk2hG, ui+ kuk2hH,wi+  (w, u). (28)

Under these assumptions, Pr(�(Z) < c)  2Pr(�(G,H)  c) for any c 2 R.

Furthermore, if we suppose that Sw, Su are convex sets and  (w, u) is convex in w and concave in u,
then Pr(�(Z) > c)  2Pr(�(G,H) � c).
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D Proof of Theorem 1

First, let’s try to formulate the generalization problem as a PO:
Lemma 5. For any deterministic function F : Rd

⇥ R ! R+, define the primary optimization (PO)
problem conditioned on ⌘1, ..., ⌘k, ⇠ as

� := sup
(w,b)2Rd+1

u2Rn

inf
�2Rn

h�, Z(P⌃1/2w)i+  (w, b, u,� | ⌘1, ..., ⌘k, ⇠) (29)

where P is defined by (25) in Lemma 4 and

 (w, b, u,� | ⌘1, ..., ⌘k, ⇠) =F (w, b) + h�,
kX

i=1

⌘ihw,⌃w
⇤
i
i � ui

�
1

n

nX

i=1

f(ui + b, g(⌘1,i, ..., ⌘k,i, ⇠i)).

(30)

Then it holds that for any t 2 R

Pr

 
sup

(w,b)2Rd+1

F (w, b)� L̂f (w, b) > t
��� ⌘1, ..., ⌘k, ⇠

!
= Pr (� > t) (31)

and the probability over � is taken only over the randomness of Z.

Proof. By introducing a variable u = Xw, we have

sup
(w,b)2Rd+1

F (w, b)� L̂f (w, b)

= sup
(w,b)2Rd+1

F (w, b)�
1

n

nX

i=1

f(hw, xii+ b, yi)

= sup
(w,b)2Rd+1

,u2Rn

u=Xw

F (w, b)�
1

n

nX

i=1

f(ui + b, g(⌘1,i, ..., ⌘k,i, ⇠i))

= sup
(w,b)2Rd+1,u2Rn

inf
�2Rn

h�, Xw � ui+ F (w, b)�
1

n

nX

i=1

f(ui + b, g(⌘1,i, ..., ⌘k,i, ⇠i))

and so by independence of ⇠ and X and Lemma 4, it holds that for any t 2 R

Pr

 
sup

(w,b)2Rd+1

F (w, b)� L̂f (w, b) > t
��� ⌘1, ..., ⌘k, ⇠

!

=Pr

0

B@ sup
(w,b)2Rd+1

u2Rn

inf
�2Rn

h�,

 
kX

i=1

⌘i(⌃w
⇤
i
)T + ZP⌃1/2

!
w � ui+ F (w, b)�

1

n

nX

i=1

f(ui + b, g(⌘1,i, ..., ⌘k,i, ⇠i)) > t

1

CA

=Pr

0

B@ sup
(w,b)2Rd+1

u2Rn

inf
�2Rn

h�, ZP⌃1/2wi+  (w, b, u,� | ⌘1, ..., ⌘k, ⇠) > t

1

CA

=Pr (� > t) .

Note that this probability is a random variable measurable with respect to the random vectors ⌘1, ..., ⌘k
and ⇠.

Next, let’s use a truncation argument similar to the one in Koehler et al. (2021) and then apply GMT.
Proving the following two lemmas is an exercise in real analysis, which we include for completeness.

31



Lemma 6. Let f : Rd
! R be an arbitrary function and S

d

r
= {x 2 Rd : kxk2  r}, then for any

set K, it holds that
lim
r!1

sup
w2K\Sd

r

f(w) = sup
w2K

f(w). (32)

If f is a random function, then for any t 2 R

Pr

✓
sup
w2K

f(w) > t

◆
= lim

r!1
Pr

 
sup

w2K\Sd
r

f(w) > t

!
. (33)

Proof. We consider two cases:

1. Suppose that sup
w2K f(w) = 1. Then for any M > 0, there exists xM 2 K such that

f(xM ) > M . Hence for any r > kxMk2, it holds that

sup
w2K\Sd

r

f(w) > M =) lim inf
r!1

sup
w2K\Sd

r

f(w) � M

As the choice of M is arbitrary, we have limr!1 sup
w2K\Sd

r
f(w) = 1 as desired.

2. Suppose that sup
w2K f(w) = M < 1. Then for any ✏ > 0, there exists x✏ 2 K such that

f(x✏) > M � ✏. Hence for any r > kx✏k2, it holds that

sup
w2K\Sd

r

f(w) > M � ✏ =) lim inf
r!1

sup
w2K\Sd

r

f(w) � M � ✏

As the choice of ✏ is arbitrary, we have lim infr!1 sup
w2K\Sd

r
f(w) � M . On the other

hand, it must be the case (by definition of supremum) that

sup
w2K\Sd

r

f(w)  M =) lim sup
r!1

sup
w2K\Sd

r

f(w)  M

Consequently, the limit of sup
w2K\Sd

r
f(w) exists and equals M .

Finally, by the fact that the supremum is increasing in r and the continuity of probability measure,
we have

Pr

✓
sup
w2K

f(w) > t

◆
= Pr

 
lim
r!1

sup
w2K\Sd

r

f(w) > t

!

= Pr

0

@
[

r2N

\

R�r

sup
w2K

T
Sd
R

f(w) > t

1

A

= lim
r!1

Pr

0

@
\

R�r

sup
w2K

T
Sd
R

f(w) > t

1

A

= lim
r!1

Pr

 
sup

w2K\Sd
r

f(w) > t

!
.

Lemma 7. Let K be a compact set and f, g be continuous real-valued functions on Rd. Then it holds
that

lim
r!1

sup
w2K

inf
0�r

�f(w) + g(w) = sup
w2K:f(w)�0

g(w). (34)

If f and g are random functions, then for any t 2 R

Pr

 
sup

w2K:f(w)�0
g(w) � t

!
= lim

r!1
Pr

✓
sup
w2K

inf
0�r

�f(w) + g(w) � t

◆
. (35)

Proof. We consider two cases:
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1. The limiting problem is infeasible: 8w 2 K, f(w) < 0. Then by compactness and the
continuity of f , there exists µ < 0 such that for all w 2 K

f(w) < µ =) sup
w2K

inf
0�r

�f(w) + g(w)  rµ+ sup
w2K

g(w).

By compactness and the continuity of g again, we have sup
w2K g(w) < 1 and so

lim
r!1

sup
w2K

inf
0�r

�f(w) + g(w) = �1

as desired.

2. The limiting problem is feasible: 9w0 2 K, f(w0) � 0. In this case, let

wr = argmax
w2K

inf
0�r

�f(w) + g(w)

= argmax
w2K

r · f(w) {f(w)0} + g(w)

be an arbitrary maximizer for each r. Note that a maximizer necessarily exists in K by
compactness of K and the continuity of f and g. By compactness of K again, the sequence
{wr} at positive integer values of r has a subsequential limit: 9rn ! 1 and w1 2 K such
that wrn ! w1.

For the sake of contradiction, assume that f(w1) < 0, then by continuity, there exists
µ < 0 such that for all sufficiently large n

f(wrn) < µ =) sup
w2K

inf
0�rn

�f(w)+g(w) = rn ·f(wrn)+g(wrn)  rnµ+ sup
w2K

g(w)

which is unbounded from below as n ! 1. On the other hand, we have

sup
w2K

inf
0�rn

�f(w) + g(w) � g(w0)

and so we have reached a contradiction; thus f(w1) � 0. Observe that

sup
w2K

inf
0�rn

�f(w) + g(w) = rn · f(wrn) {f(wrn )0} + g(wrn)  g(wrn)

and so by continuity of g

lim sup
n!1

sup
w2K

inf
0�rn

�f(w) + g(w)  g(w1)  sup
w2K:f(w)�0

g(w).

The lim inf direction follows immediately from the definition, and so the limit exists and
equals sup

w2K:f(w)�0 g(w). We can conclude that

lim
r!1

sup
w2K

inf
0�r

�f(w) + g(w) = sup
w2K:f(w)�0

g(w)

because it is a monotonic sequence.

Finally, by the fact that the supremum is decreasing in r and the continuity of probability measure,
we have

Pr

 
sup

w2K:f(w)�0
g(w) � t

!
= Pr

✓
lim
r!1

sup
w2K

inf
0�r

�f(w) + g(w) � t

◆

= Pr

✓
\r sup

w2K
inf

0�r

�f(w) + g(w) � t

◆

= lim
r!1

Pr

✓
sup
w2K

inf
0�r

�f(w) + g(w) � t

◆
.

We are now ready to apply the GMT:
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Lemma 8. Let F be a continuous function. Consider the auxiliary problem

 := sup
(w,b)2Rd+1

,u2Rn

hH,P⌃1/2
wi�kGkP⌃1/2

wk2+
Pk

i=1hw,⌃w
⇤
i i⌘i�uk

2

F (w, b)�
1

n

nX

i=1

f(ui+b, g(⌘1,i, ..., ⌘k,i, ⇠i)).

It holds that for any t 2 R and � defined as in Lemma 5 that

Pr(� > t)  2Pr( � t). (36)

Proof. Define the truncated problems

�r := sup
(w,b,u)2Sd+n+1

r

inf
�2Rn

h�, Z(P⌃1/2w)i+  (w, b, u,� | ⌘1, ..., ⌘k, ⇠) (37)

and
�r,s := sup

(w,b,u)2Sd+n+1
r

inf
k�k2s

h�, Z(P⌃1/2w)i+  (w, b, u,� | ⌘1, ..., ⌘k, ⇠). (38)

By definition, we have �r  �r,s and so

Pr(�r > t)  Pr(�r,s > t).

The corresponding auxiliary problems are

 r,s := sup
(w,b,u)2Sd+n+1

r

inf
k�k2s

k�k2hH,P⌃1/2wi+ kP⌃1/2wk2hG,�i+  (w, b, u,� | ⌘1, ..., ⌘k, ⇠)

= sup
(w,b,u)2Sd+n+1

r

inf
k�k2s

k�k2hH,P⌃1/2wi+ hGkP⌃1/2wk2 +
kX

i=1

⌘ihw,⌃w
⇤
i
i � u,�i

+ F (w, b)�
1

n

nX

i=1

f(ui + b, g(⌘1,i, ..., ⌘k,i, ⇠i))

= sup
(w,b,u)2Sd+n+1

r

inf
0�s

�

 
hH,P⌃1/2wi �

�����GkP⌃1/2wk2 +
kX

i=1

⌘ihw,⌃w
⇤
i
i � u

�����
2

!

+ F (w, b)�
1

n

nX

i=1

f(ui + b, g(⌘1,i, ..., ⌘k,i, ⇠i))

and

 r := sup
(w,b,u)2Sd+n+1

r

hH,P⌃1/2
wi�kGkP⌃1/2

wk2+
Pk

i=1hw,⌃w
⇤
i i⌘i�uk

2

F (w, b)�
1

n

nX

i=1

f(ui+b, g(⌘1,i, ..., ⌘k,i, ⇠i)).

By definition, it holds that  r   and so

Pr( r � t)  Pr( � t).

Thus

Pr(� > t) = lim
r!1

Pr(�r > t)

 lim
r!1

lim
s!1

Pr(�r,s > t) by Lemma 6

 2 lim
r!1

lim
s!1

Pr( r,s � t) by Theorem 6

= 2 lim
r!1

Pr( r � t) by Lemma 7

 2Pr( � t).

Lemma 9. Let  be as in Lemma 8. Under the assumptions (6) and (7) in Theorem 1, it holds with
probability at least 1� �/2 that

  sup
(w,b)2Rd+1

F (w, b)� Lf�(w, b) + ✏�,�(�(w), b) +
�C�(w)2

n
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and if assumption (6) holds uniformly over all � 2 R+, then

  sup
(w,b)2Rd+1

F (w, b)� sup
�2R+


Lf�(w, b)� ✏�,�(�(w), b)�

�C�(w)2

n

�

where the randomness is taken over H,G, ⌘1, ..., ⌘k and ⇠.

Proof. First, let’s simplify the auxiliary problem. Changing variables to subtract Gi

��P⌃1/2w
��
2
+

P
k

l=1hw,⌃w
⇤
l
i⌘l,i from each of the former ui, we have that

 = sup
(w,b,u)2Rd+n+1

kuk2hH,P⌃1/2
wi

F (w, b)�
1

n

nX

i=1

f

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b+ ui, g(⌘1,i, ..., ⌘k,i, ⇠i)

!

= sup
(w,b)2Rd+1

F (w, b)� inf
u2Rns.t.

kuk2h⌃1/2
PH,wi

1

n

nX

i=1

f

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b+ ui, g(⌘1,i, ..., ⌘k,i, ⇠i)

!

We can analyze the second term. If h⌃1/2PH,wi < 0 then the constraint on u is not satisfiable and
so the infimum is 1. Otherwise, by duality

inf
u2Rns.t.

kuk2h⌃1/2
PH,wi

nX

i=1

f

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b+ ui, g(⌘1,i, ..., ⌘k,i, ⇠i)

!

= inf
u2Rn

sup
��0

�(kuk22 � h⌃1/2PH,wi2) +
nX

i=1

f

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b+ ui, g(⌘1,i, ..., ⌘k,i, ⇠i)

!

=sup
��0

��h⌃1/2PH,wi2 + inf
u2Rn

nX

i=1

f

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b+ ui, g(⌘1,i, ..., ⌘k,i, ⇠i)

!
+ �u2

i

=sup
��0

��h⌃1/2PH,wi2 +
nX

i=1

inf
u2R

f

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b+ u, g(⌘1,i, ..., ⌘k,i, ⇠i)

!
+ �u2

=sup
��0

nX

i=1

f�

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b, g(⌘1,i, ..., ⌘k,i, ⇠i)

!
� �h⌃1/2PH,wi2,

recalling Definition 1. For simplicity of notation, write

x̃i = (⌘1,i, ..., ⌘k,i, Gi) ⇠ N (0, Ik+1);

then the joint distribution of (x̃i, yi) is exactly the same as the surrogate distribution D̃ given by (5).
Moreover, we can check that

P⌃1/2w =

 
Id �

kX

i=1

(⌃1/2w⇤
i
)(⌃1/2w⇤

i
)T
!
⌃1/2w

= ⌃1/2

 
Id �

kX

i=1

w⇤
i
(w⇤

i
)T⌃

!
w

= ⌃1/2Qw

and

⌃1/2PH = ⌃1/2

 
Id �

kX

i=1

(⌃1/2w⇤
i
)(⌃1/2w⇤

i
)T
!
H

=

 
Id �

kX

i=1

(⌃w⇤
i
)(w⇤

i
)T
!
⌃1/2H = QT⌃1/2H
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where Q is given by equation (4). Then using the definition of � from (4), we can write

GikP⌃
1/2wk2 +

kX

l=1

hw,⌃w⇤
l
i⌘l,i = h�(w), x̃ii,

giving that

1

n

nX

i=1

f�

 
GikP⌃

1/2wk2 +
kX

l=1

hw,⌃w⇤
l
i⌘l,i + b, g(⌘1,i, . . . , ⌘k,i, ⇠i)

!
=

1

n

nX

i=1

f�(h�(w), x̃ii+b, yi).

By our assumption (6) and the observation in Lemma 4 that the joint distribution of (h�(w), x̃i, y) is
the same as that of (hw, xi, y), we have

1

n

nX

i=1

f�(h�(w), x̃ii+ b, yi) � E
(x̃,ỹ)⇠D̃

[f�(h�(w), x̃i+ b, ỹ)]� ✏�,�(�(w), b)

= Lf�(w, b)� ✏�,�(�(w), b)

with probability at least 1� �/4.

In addition, noting that ⌃1/2H ⇠ N (0,⌃), our assumption (7) implies that with probability at least
1� �/4,

h⌃1/2PH,wi = hQTx,wi = hQw, xi  C�(w).
The proof concludes by a union bound and plugging the above estimates into the expression for
 .

Finally, we can prove our main theorem, restated here for convenience:
Theorem 1. Suppose � 2 R+ satisfies that for any � 2 (0, 1), there exists a continuous function
✏�,� : Rk+1

! R such that with probability at least 1� �/4 over independent draws (x̃i, ỹi) from
the surrogate distribution D̃ defined in (5), we have uniformly over all (w̃, b̃) 2 Rk+2 that

1

n

nX

i=1

f�(hw̃, x̃ii+ b̃, ỹi) � E
(x̃,ỹ)⇠D̃

[f�(hw̃, x̃i+ b̃, ỹ)]� ✏�,�(w̃, b̃). (6)

Further, assume that for any � 2 (0, 1), there exists a continuous function C� : Rd
! [0,1] such

that with probability at least 1� �/4 over x ⇠ N (0,⌃), uniformly over all w 2 Rd,
hQw, xi  C�(w). (7)

Then it holds with probability at least 1� � that uniformly over all (w, b) 2 Rd+1, we have

Lf�(w, b)  L̂f (w, b) + ✏�,�(�(w), b) +
�C�(w)2

n
. (8)

If we additionally assume that (6) holds uniformly for all � 2 R+, then (8) does as well.

Proof. By Lemma 5 and Lemma 8, we have

Pr

 
sup

(w,b)2Rd+1

F (w, b)� L̂f (w, b) > t
��� ⌘1, ..., ⌘k, ⇠

!
 2Pr( � t).

By the tower law and choosing

F (w, b) = Lf�(w, b)� ✏�,�(�(w), b)�
�C�(w)2

n
in Lemma 9, we get that

Pr

 
sup

(w,b)2Rd+1

Lf�(w, b)� ✏�,�(�(w), b)�
�C�(w)2

n
� L̂f (w, b) > 0

!
 �.

as desired. If assumption (6) holds uniformly over � 2 R+, then we can choose

F (w, b) = sup
�2R+

Lf�(w, b)� ✏�,�(�(w), b)�
�C�(w)2

n
.

It is straightforward to check that F is continuous and the same proof goes through.
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Remark 3. Since the dimension of x̃ is small, we can typically expect (6) to hold for reasonable
settings with a sufficiently large sample size. Note that this is our only assumption on f, g and ⇠,
and this is required to avoid pathological learning problems. A useful aspect of the assumption (6)
is that it only requires one-sided concentration of the training loss. As emphasized by many works
in statistical learning theory (e.g. Lecué and Mendelson 2013; Mendelson 2014; Koltchinskii and
Mendelson 2015; Mendelson 2017), lower bounds on the training loss are both more convenient to
establish and hold in more generic settings than upper bounds do. In this paper, we will largely apply
results from VC theory to handle the low-dimensional problem; the results we appeal to are indeed
one-sided and can handle relatively heavy-tailed noise (Vapnik 1982).

E Proof for VC theory and Section 5

E.1 Low-Dimensional Concentration

Recall the following definition of VC-dimension from Shalev-Shwartz and Ben-David (2014).
Definition 4. Let H be a class of functions from X to {0, 1} and let C = {c1, ..., cm} ⇢ X . The
restriction of H to C is

HC = {(h(c1), ..., h(cm)) : h 2 H}.

A hypothesis class H shatters a finite set C ⇢ X if |HC | = 2|C|. The VC-dimension of H is the
maximal size of a set that can be shattered by H. If H can shatter sets of arbitrary large size, we say
H has infinite VC-dimension.

Also, we have the following well-known result for the class of nonhomogenous halfspaces in Rd

(Theorem 9.3 of Shalev-Shwartz and Ben-David 2014):
Theorem 7. The class {x 7! sign(hw, xi+ b) : w 2 Rd, b 2 R} has VC-dimension d+ 1.

We will make use of the following result from Vapnik (1982):
Theorem 2 (Special case of Assertion 4 of Vapnik (1982), Chapter 7.8; see also Theorem 7.6). Let
K ⇢ Rd and B ⇢ R. Suppose that a distribution D over (x, y) 2 Rd

⇥ R satisfies that for some
⌧ > 0, it holds uniformly over all (w, b) 2 K ⇥ B that

�
E f(hw, xi+ b, y)4]

�1/4

E f(hw, xi+ b, y)
 ⌧. (9)

Also suppose the class of functions {(x, y) 7! {f(hw, xi+ b, y) > t} : w 2 K, b 2 B, t 2 R} has
VC-dimension at most h. Then for any n > h, with probability at least 1 � � over the choice of
((x1, y1), . . . , (xn, yn)) ⇠ D

n, it holds uniformly over all w 2 K, b 2 B that

1

n

nX

i=1

f(hw, xii+ b, yi) �

 
1� 8⌧

r
h(log(2n/h) + 1) + log(12/�)

n

!
E f(hw, xi+ b, y).

Combining with theorem 1, we obtain the following corollary.
Corollary 1. Under the model assumptions (2), suppose that C� satisfies condition (7). Also suppose
that for some fixed � � 0, K ✓ Rd, and B ✓ R, the surrogate distribution D̃ satisfies assumption (9)
under f� uniformly over �(K)⇥B, and that the class {(x, y) 7! {f�(hw̃,�(x)i+ b̃, y) > t} : w̃ 2

�(K), b̃ 2 B, t 2 R} has VC-dimension at most h. Then with probability at least 1� �, uniformly
over all (w, b) 2 K ⇥ B

 
1� 8⌧

r
h(log(2n/h) + 1) + log(48/�)

n

!
Lf�(w, b)  L̂f (w, b) +

�C�(w)2

n
.

Furthermore, if assumption (9) holds uniformly for all {f� : � 2 R�0} and the class {(x, y) 7!

{f�(hw̃,�(x)i + b̃, y) > t} : (w̃, b̃) 2 �(K) ⇥ B, t 2 R,� 2 R�0} has VC-dimension at most h,
then the same conclusion holds uniformly over �.
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Proof. By theorem 2, we can take

✏�,�(w̃, b̃) =

(
8⌧
q

h(log(2n/h)+1)+log(48/�)
n

E(x̃,ỹ)⇠D̃[f�(hw̃, x̃i+ b̃, ỹ)] if (w̃, b̃) 2 �(K)⇥ B

1 otherwise

and the desired conclusion follows by the observation that

E
(x̃,ỹ)⇠D̃

[f�(h�(w), x̃i+ b, ỹ)] = Lf�(w, b).

The last conclusion (uniformity over �) follows by going through the proof of Theorem 2, since it is
based on reduction to uniform control of indicators.

E.2 Linear Regression

First, we provide a VC-dimension bound for the square loss class.
Lemma 10. Suppose f is the square loss, then the VC-dimension of the class

{(x, y) 7! {f�(hw̃,�(x)i+ b̃, y) > t} : (w̃, b̃) 2 Rk+2, t 2 R,� 2 R�0}

is O(k).

Proof. Since the square loss is non-negative, we only need to consider t � 0. Recall that f� = �

1+�
f

for the square loss and so

f�(hw̃,�(x)i+ b̃, y) > t () (hw̃,�(x)i+ b̃� y)2 >
(1 + �)t

�

which happens if
⌧✓

w̃
�1

◆
,

✓
�(x)
y

◆�
+

 
b̃�

r
(1 + �)t

�

!
> 0 or

⌧✓
�w̃
1

◆
,

✓
�(x)
y

◆�
�

 
b̃+

r
(1 + �)t

�

!
> 0.

In particular, if this concept class can shatter m points, so can the class of the union of two non-
homogenous halfspaces in Rk+2. The desired conclusion follows by the well-known fact that the
VC-dimension of the union of two halfspaces is O(k). For example, by combining Theorem 7 with
Lemma 3.23 of Blumer et al. (1989), the VC-dimension cannot be larger than 4 log 6 · (k + 3).

Specializing our generalization theory to the square loss, we have:

Corollary 2. Suppose f is the square loss and the surrogate distribution D̃ satisfies assumption (9)
uniformly over (w, b) 2 Rk+1, then with probability at least 1� �, uniformly over all w, b we have

 
1� 8⌧

r
k(log(2n/k) + 1) + log(48/�)

n

!
Lf (w, b) 

✓q
L̂f (w, b) + C�(w)/

p
n

◆2

.

Proof. Note that if condition (9) holds under f , then it also holds under all {f� : � � 0} because
f� = �

1+�
f . Moreover, we check the assumption on VC-dimension of Corollary 1 in Lemma 10.

From this, we get uniformly over �, w, b that

�

1 + �

 
1� 8⌧

r
k(log(2n/k) + 1) + log(48/�)

n

!
Lf (w, b)  L̂f (w, b) +

�C�(w)2

n
.

Multiplying through by (1 + �)/�, we can rewrites the above as
 
1� 8⌧

r
k(log(2n/k) + 1) + log(48/�)

n

!
Lf (w, b) 

✓
1 +

1

�

◆
L̂f (w, b) + (1 + �)

C�(w)2

n
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and optimizing over � gives
 
1� 8⌧

r
k(log(2n/k) + 1) + log(48/�)

n

!
Lf (w, b)

 L̂f (w, b) +
C�(w)2

n
+ inf

��0

1

�
L̂f (w, b) + �

C�(w)2

n

= L̂f (w, b) +
C�(w)2

n
+ 2

r
L̂f (w, b)

C�(w)2

n
=

✓q
L̂f (w, b) + C�(w)/

p
n

◆2

.

Finally, as an illustrative example, we consider the misspecified model mentioned in the main text
where the true regression function is a polynomial. In this case, we show explicitly how to get an
expression for ⌧ in (9) using Gaussian hypercontractivity. The following theorem is the Gaussian
space analogue of Theorem 9.21 in O’Donnell (2014) and can be proved using the same argument by
Theorem 11.23 and replacing the Fourier basis on {�1, 1}n with the Hermite polynomials on Rn.
Theorem 8 (O’Donnell 2014). Let f : Rd

! R be a polynomial of degree at most k. Then for any
q � 2, it holds that

E
z⇠N (0,Id)

[|f(z)|q]1/q  (q � 1)k/2 E
z⇠N (0,Id)

[|f(z)|2]1/2. (39)

Theorem 9. Suppose that in (2), we have

y = m(⌘1, ..., ⌘k) + s(⌘1, ..., ⌘k) · ⇠

where m, s are both polynomials of degree at most l and ⇠ has finite eighth moment, then

E[(hw, xi+ b� y)8]1/8

E[(hw, xi+ b� y)2]1/2


p

2 ·
p

7
l

✓
E[⇠8]1/8

E[⇠2]1/2

◆
. (40)

Proof. By triangular inequality in the `p space and independence between x and ⇠

E[(hw, xi+ b� y)8]1/8  E[(hw, xi+ b�m(⌘1, ..., ⌘k))
8]1/8 + E[(s(⌘1, ..., ⌘k) · ⇠)8]1/8

= E[(hw, xi+ b�m(⌘1, ..., ⌘k))
8]1/8 + E[s(⌘1, ..., ⌘k)8]1/8 · E[⇠8]1/8

Since hw, xi, ⌘1, ..., ⌘k are jointly Gaussian, we can apply Theorem 8 and upper bound the above by
p

7
l
⇣
E[(hw, xi+ b�m(⌘1, ..., ⌘k))

2]1/2 + E[s(⌘1, ..., ⌘k)2]1/2 · E[⇠8]1/8
⌘



p

7
l

✓
E[⇠8]1/8

E[⇠2]1/2

◆⇣
E[(hw, xi+ b�m(⌘1, ..., ⌘k))

2]1/2 + E[s(⌘1, ..., ⌘k)2]1/2 · E[⇠2]1/2
⌘



p

7
l

✓
E[⇠8]1/8

E[⇠2]1/2

◆
p

2 ·
p
E[(hw, xi+ b�m(⌘1, ..., ⌘k))2] + E[s(⌘1, ..., ⌘k)2] · E[⇠2]

where we use E[⇠8]1/8 � E[⇠2]1/2 in the second inequality and
p
a+

p
b 

p
2(a+ b) in the last

inequality. The desired conclusion follows by observing

E[(hw, xi+ b� y)2] = E[(hw, xi+ b�m(⌘1, ..., ⌘k))
2] + E[s(⌘1, ..., ⌘k)2] · E[⇠2]

because x and ⇠ are independent.

Remark 4. The assumption that ⇠ has finite eighth moment can be significantly relaxed because
there is a version of Theorem 2 in Vapnik (1982) that replaces the exponent of 4 by 1 + ✏. However,
allowing heavier tails of ⇠ comes at the cost of a larger constant in front of ⌧ or a slower convergence
rate with respect to n in the low-dimensional concentration term.

E.3 Linear Classification

Lemma 11. Suppose f is the squared hinge loss, then the VC-dimension of the class

{(x, y) 7! {f�(hw̃,�(x)i+ b̃, y) > t} : (w̃, b̃) 2 Rk+2, t 2 R,� 2 R�0}

is no larger than k + 3.
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Proof. Since the squared hinge loss is non-negative, we only need to consider t � 0. Recall that
f� = �

1+�
f and so

f�(hw̃,�(x)i+ b̃, y) > t () (1� y(hw̃,�(x)i+ b̃))2+ >
(1 + �)t

�

() 1� y(hw̃,�(x)i+ b̃) >

r
(1 + �)t

�

()

⌧✓
w̃
b̃

◆
,

✓
�y�(x)
�y

◆�
+

 
1�

r
(1 + �)t

�

!
> 0.

In particular, if this class can shatter m points, so can the class of nonhomogenous halfspaces in
Rk+2. But theorem 7 shows that it cannot shatter more than k + 4 points, and so the VC-dimension
cannot be larger than k + 3.

By the same proof as Corollary 2, we have

Corollary 4. Suppose f is the squared hinge loss and the surrogate distribution D̃ satisfies assumption
(9) uniformly over (w, b) 2 Rk+1, then with probability at least 1 � �, uniformly over all w, b we
have

 
1� 8⌧

r
k(log(2n/k) + 1) + log(48/�)

n

!
Lf (w, b) 

✓q
L̂f (w, b) + C�(w)/

p
n

◆2

.

For illustration, we show how to check hypercontractivity (9) under some example generative
assumptions on y. In the first and simpler example, suppose that there is an arbitrary constant ⌘ > 0
such that

min{Pr(y = 1 | x),Pr(y = �1 | x)} � ⌘

almost surely. This assumption is satisfied, for example, if the data is generated by an arbitrary
function of ⌘1, . . . , ⌘k combined with Random Classification Noise (see e.g. Blum et al. (2003)), i.e.
the label is flipped with some probability. Then if ŷ = hw, xi+ b is the prediction, we have

Emax(0, 1� yŷ)2 � ⌘ E(1 + |ŷ|)2 � ⌘(1 + E[ŷ2]),
and on the other hand we always have

Emax(0, 1� yŷ)8  E(1 + |ŷ|)8  28(1 + E[ŷ8])  216(1 + E[ŷ2]4)  216(1 + E[ŷ2])4

where the second-to-last inequality follows from the fact that ŷ is marginally Gaussian and using
standard formula for the moments of a Gaussian. It follows that

E[max(0, 1� yŷ)8]1/8

E[max(0, 1� yŷ)2]1/2


4
p
⌘

which verifies (9) in this setting.

We now consider a more general situation and show that if there is a non-negligible portion of x’s
such that that y is noisy, hypercontractivity is still guaranteed to hold. Let A⌘ be the event that
min{Pr(y = 1 | x),Pr(y = �1 | x)} � ⌘. Then

Emax(0, 1� yŷ)2 � E[ (A⌘)max(0, 1� yŷ)2] � ⌘ E[ (A⌘)(1 + |ŷ|)2]

� ⌘Q(Pr(A⌘))E[(1 + |ŷ|)2]

where Q is defined below. In the last step, we considered the worst case event A⌘ for given Pr(A⌘),
which corresponds to chopping the tails off of ŷ; considering this example, we see the inequality
holds where where Q : (0, 1] ! (0, 1] is an explicit function

Q(p) := min

8
<

:

R
zp

�zp
|x|e�x

2
/2dx

2
,

R
zp

�zp
x2e�x

2
/2dx

p
2⇡

9
=

; (41)

and zp is defined such that Prg⇠N(0,1)[|g| > zp] = p. Repeating the argument above yields the
following result:
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Theorem 10. Suppose that under (2), there exists ⌘ > 0 such that p⌘ := Pr(min{Pr(y = 1 |

x),Pr(y = �1 | x)} � ⌘) > 0. Then for any w, b we have that for ŷ = hw, xi+ b,

E[max(0, 1� yŷ)8]1/8

E[max(0, 1� yŷ)2]1/2


4p
⌘Q(p⌘)

For another example, if y follows a logistic regression model E[y | x] = tanh(�w⇤
1 · x) with

normalization hw⇤
1 ,⌃w

⇤
1i = 1, then by Theorem 10 with e.g. ⌘ = 1/2, we verify (9) with ⌧ a

constant depending only on �. The result also holds for more general models like E[y | x] =
tanh(f(⌘1, . . . , ⌘k)) as long as f is not always very large.

E.3.1 Squared Hinge Loss and Zero-One Loss

In the previous section, we discussed how our generalization bound controls the population squared
hinge loss, one of the standard losses used in classification. In the context of benign overfitting, this
is the canonical loss to look at because it is implicitly optimized by the max-margin predictor, also
known as Hard SVM (see Theorem 3, as well as Shamir 2022).

On the other hand, it is also very natural to look at the zero-one loss of a classifier. In general, the
squared hinge loss and zero-one loss are different loss functions, and their population global optima
will differ. Nevertheless, in many cases the minimizer of the squared hinge loss will also have good
zero-one loss. We discuss a few situations where this occurs below.

General Bound on Zero-One Loss from Margin Loss. First of all, the following bound comparing
the zero-one loss and margin loss always holds — the analogous bound for the (non-squared) hinge
loss is very standard and the same argument applies to squared hinge loss:
Theorem 11 (Classical, see e.g. Shalev-Shwartz and Ben-David 2014). For any w, b, we have that

Pr(sgn(hw, xi+ b) 6= y)  Lf (w, b)

where f is the squared hinge loss.

Proof. Observe that if sgn(ŷ) 6= y, then

f̂(ŷ, y) = max(0, 1� yŷ)2 � 1.

Taking the expectation over ŷ = hw, xi+ b and y gives the result.

In particular, when we are in the realizable setting, where there exists a halfspace with positive margin
with zero-one loss equal to zero, then as long as we can find a near-minimizer of the squared hinge
test loss, Theorem 11 will guarantee near-optimal zero-one loss.

Improved Comparison in a Noisy Setting. It is clear from the proof that Theorem 11, while
very general, is not always tight. For example, T. Zhang (2004b) and Bartlett et al. (2006) give
improved bounds which are very useful in the case that the minimizer of the squared hinge loss over
all measurable functions is contained in the class. This includes the realizable case considered above;
on the other hand, it will not generally be the case that the class of linear functions includes the
minimizer over all measurable functions when there is label noise. We now describe a noisy situation
where minimizing the squared hinge test loss will also minimize the zero-one test loss.

For simplicity, we consider the special case of our general setup where the response y is binary
(classification) and also k = 1, so it follows a single-index model, or equivalently

y = g(⌘1, ⇠) (42)

where ⌘1 = hw⇤
1 , xi and ⇠ is independent of the covariate x. Note that in the following discussion,

we use the additional covariance splitting notation introduced in Appendix C.

The following lemma shows that any near-minimizer of the loss Lf will have r(w) = kw?
k⌃ ⇡ 0,

i.e. such w will be essentially along the direction of the ground truth w⇤
1 .
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Lemma 12. Suppose (x, y) ⇠ D follows a single-index model (42), and suppose the loss functional
f(ŷ, y) is of the form

f(ŷ, y) = `(yŷ) (43)
for some convex function `. Then for any w, b we have

Lf (w, b)� Lf (w
k, b) = E[`(y(hwk, xi+ b) + gkw?

k⌃)]� E[`(y(hwk, xi+ b))]

where g is a standard Gaussian random variable independent of everything else, and so by Jensen’s
inequality, we have

Lf (w, b) � Lf (w
k, b).

Furthermore, suppose ` is not the constant function, then the equality holds iff kw?
k⌃ = 0.

Proof. Let wk = (I �Q)w and w? = Qw. Expanding the definition, we have

Lf (w, b)� Lf (w
k, b) = E[`(y(hwk, xi+ hw?, xi+ b))]� E[`(y(hwk, xi+ b))].

By the definition of Q, hw⇤
1 ,⌃w

?
i = 0 and so hw?, xi is independent of hw⇤

1 , xi and hwk, xi.
Hence, it also independent of y due to (42). Let g ⇠ N (0, 1) be a standard Gaussian random variable
independent of x, then it follows that

Lf (w, b)� Lf (w
k, b) = E[`(y(hwk, xi+ b+ gkw?

k⌃))]� E[`(y(hwk, xi+ b))].

Moreover, since y is {±1} valued and independent of g, gy is equal in law to g conditioned on y and

Lf (w, b)� Lf (w
k, b) = E[`(y(hwk, xi+ b) + gkw?

k⌃)]� E[`(y(hwk, xi+ b))].

The nonnegativity of this expression now follows from Jensen’s inequality, since ` is assumed to be
convex, and if ` is assumed to be non-constant then the equality holds iff kw?

k⌃ = 0.

Since ` is only assumed to be convex, this includes the logistic loss, squared hinge loss, hinge loss,
and squared loss (in the classification setting). The previous lemma directly implies that kw?

k⌃ ! 0
for any w which approaches the optimal squared hinge loss. This means that w will align with the
true direction w⇤

1 ; we now show that in the zero bias case, this leads to the near-optima of the squared
hinge loss having optimal zero-one loss. Note that this may not be the case in more general settings,
as even if w is aligned with w⇤

1 , the relative size of w and the bias b also needs to match the ground
truth in order to truly minimize the zero-one loss.
Theorem 12. Suppose that f(ŷ, y) is the squared hinge loss, so `(z) = max(0, 1 � z)2 in the
notation of (43). Suppose with probability 1, it holds that

⌘1 · E
⇠

[g(⌘1, ⇠)] > 0. (44)

Then every global optima of the squared hinge loss with zero bias term, Lf (w, 0), is of the form
w = ↵w⇤

1 with ↵ > 0. Furthermore, for any w we have the inequality

Lf (w, 0) � Lf (w
k, 0) � inf

w

Lf (w, 0)

and so we have that for any sequence wn that Lf (wn, 0) ! infw Lf (w, 0), it holds that

Pr[sgn(hwn, xi) 6= y] ! Pr[sgn(hw⇤
1 , xi) 6= y].

Proof. By Lemma 12, it suffices to consider w along the direction w⇤
1 and show that the optimal w

cannot point in the direction opposite to w⇤
1 . To this end, observe that

@`

@z
= 2(z � 1) {z  1}

and by the chain rule, using that Lf (↵w⇤
1 , 0) = E[`(y↵hw⇤

1 , xi)], we have

@

@↵
Lf (↵w

⇤
1 , 0) = 2E[(y↵hw⇤

1 , xi � 1) {y↵hw⇤
1 , xi  1}yhw⇤

1 , xi].

Evaluating this at ↵ = 0 gives
@

@↵
Lf (↵w

⇤
1 , 0)

���
↵=0

= �2E[yhw⇤
1 , xi].
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Applying the law of total expectation, we have shown

@

@↵
Lf (↵w

⇤
1 , 0)

���
↵=0

= �2E[E[y | x]hw⇤
1 , xi] < 0

under the assumption of the Lemma. It is easy to see that Lf (↵w⇤
1 , 0) is convex in ↵, which concludes

the proof of the first part. We can also have final conclusion because Lf (wn, 0) � Lf (w
k
n, 0) !

0 implies kw?
n
k⌃ ! 0 by Lemma 12, and lim infn!1hwn, w⇤

1i > 0 by the first part of the
theorem.

The condition (44) is mild and easy to check for standard generative models like logistic regression,
where we have that E[y | x] = tanh(�hw⇤

1 , xi) and so E⇠[⌘1y | x] > 0 by Chebyshev’s correlation
inequality (using that tanh is an increasing function). Finally, we note that the last conclusion of
Theorem 12 means that near-minimizers of the test loss Lf (w, 0) are near-minimizers of the zero
one loss, under the further well-specified assumption that sgn(hw⇤

1 , xi) achieves the Bayes-optimal
classification rate (i.e. minimum of zero-one loss over all functions).

E.4 Sharpness of Improved Lipschitz Contraction

In this section, we show that the Lipschitz contraction bound (11) for 1-Lipschitz loss functions f ,

(1� o(1))Lf (w)  L̂f (w) +

r
C�(w)2

n

has sharp constants in the case of the L1 loss f(ŷ, y) := |y � ŷ|. This shows that the only way
to tighten the bound further is to consider one with a different functional form (e.g. the Moreau
envelope bound with the Huber test loss). In particular, the Moreau envelope version of the bound is
significantly more useful when looking at interpolators.

Data Distribution. We will show tightness in the setting of the junk features model. Let’s consider

x ⇠ N (0,⌃), y ⇠ N (0,�2)

where the response y is independent of the covariate x and the covariance ⌃ is given by

⌃ =


1 0
0 �n

dJ
IdJ

�
.

In addition, following Zhou et al. (2020), we consider the asymptotics where first, for fixed n, we
take dJ ! 1, and then we take n ! 1 with �n =

p
n.

Predictor. The w which demonstrates tightness is of the form

w = (r, w⇠1)

where r > 0 is a parameter and w⇠1 is constructed based on the training data (xi, yi)ni=1 to minimize
kw⇠1k2 given the constraint

hw⇠1, xi,⇠1i = � · sgn(yi � rxi,1).

Tightness. Since w⇠1 plays no role in a new prediction4, we have

lim
dJ!1

Lf (w) = E |y � rx1|

and as n ! 1

L̂f (w) =
1

n

nX

i=1

|yi � rxi,1 � hw⇠1, xi,⇠1i| =
1

n

nX

i=1

|yi � rxi,1 � � · sgn(yi � rxi,1)|

=
1

n

nX

i=1

||yi � rxi,1|� �| ⇡ E |y � rx1|� �

4This is because w⇠1 lies in the span of xi,⇠1, but a new sample from x⇠1 will be almost surely orthogonal
to all xi,⇠1 in the training set as dJ ! 1.
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because Pr(|y � rx1| < �) ! 0 as r ! 1 and 1
n

P
n

i=1 |yi � rxi,1| ! E |y � rx1| by the law of
large numbers. Therefore, the actual generalization gap for w will be

lim
r!1

lim
n!1

lim
dJ!1

Lf (w)� L̂f (w) = �. (45)

On the other hand, following the analysis from Zhou et al. (2020, Appendix B), we have5

lim
dJ!1

kwk22 = r2 +
�2n

�n
,

and by taking C�(w) as in Lemma 1 and using Tr⌃ = 1 + �n, the bound (11) gives

Lf (w)� L̂f (w)  kwk2

r
1 + �n

n
. (46)

Since kwk2 ⇡ �
q

n

�n
and

q
1+�n

n
⇡

q
�n
n

, the value of the bound converges to � as n ! 1.

F Proof of Theorem 4

Theorem 4. Let K,B be bounded convex sets, and let f(ŷ, y) be convex in ŷ. Suppose that ⌧ is such
that with probability at least 1� �, for (x̃, ỹ)n

i=1 sampled i.i.d. from D̃ we have

min
w̃2�(K),b02B

max
��0

"
1

n

nX

i=1

f�(hw̃, x̃i+ b0, yi)�
�

n
max

w02��1(w̃)\K
hx,Qw0i

2

#
 ⌧. (17)

Then with probability at least 1� 2�, minw2K,b2B L̂f (w, b)  ⌧ .

Proof. We can write the training error as a minmax problem by introducing a variable ŷ = Xw and
using Lagrange multipliers to write the minimum of the training loss (Primary Optimization) as

� := min
w2K,b02B,ŷ

max
�

1

n

nX

i=1

f(ŷi, yi) + h�, ŷ �Xkwk
�X?w?

� b0i.

Note that here we are using the additional covariance splitting notation introduced in Appendix C,
and we interpret the subtraction of b0 as entrywise (equivalently, as subtracting the vector b0~1).

Similarly, define the Auxiliary Optimization problem (which will be related to the Primary Opti-
mization below) as a random variable depending on independent random vectors g ⇠ N (0, In) and
h ⇠ N (0, Id) as

 := min
w2K,b02B,ŷ

max
�

1

n

nX

i=1

f(ŷi, yi)+ h�, ŷ�Xkwk
� b0i�h�, gikw?

k⌃? �hh,Q⌃1/2w?
ik�k

and truncated versions of both problems

�s := min
w2K,b02B,ŷ

max
k�ks

1

n

nX

i=1

f(ŷi, yi) + h�, ŷ �Xkwk
�X?w?

� b0i

and

 s := min
w2K,b02B,ŷ

max
k�ks

1

n

nX

i=1

f(ŷi, yi)+h�, ŷ�Xkwk
�b0i�h�, gikw?

k⌃?�hh,Q⌃1/2w?
ik�k

By definition, we have  s   and by applying Lemma 7 and Theorem 6 we have that Pr(� > t) 
lims!1 Pr(�s > t)  2 lims!1 Pr( s > t)  2Pr( > t).

5Again, this is because the vectors x1,⇠1, . . . , xn,⇠1 will asymptotically be orthogonal to each other and
have norm

p
�n and we use each of them to fit a label of size �.
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It remains to prove a high probability upper bound on the Auxiliary Optimization  . Observe that we
can rewrite

 = min
w2K,b02B,ŷ

max
�

1

n

nX

i=1

f(yi, ŷi) + h�, ŷ �Xkwk
� gkw?

k⌃? � b0i � hh, (⌃?)1/2w?
ik�k

and then solving the optimization over � gives

 = min
w2K,b02B,ŷ:kŷ�Xkwk�gkw?k⌃?�b0kh(⌃?)1/2h,w?i

1

n

nX

i=1

f(yi, ŷi)

= min
w2K,b02B,ŷ:kŷ�Xkwk�gkw?k⌃?�b0k|h(⌃?)1/2h,w?i|

1

n

nX

i=1

f(yi, ŷi)

where the last equality is by observing that if h⌃?h,w?
i, we can flip the sign of w? to get a feasible

point of the constraint with the absolute value and with the same objective value. Next, applying
Lemma 7 we can rewrite this as

 = lim
r!1

min
w2K,b02B,ŷ

max
�2[0,r]

1

n

nX

i=1

f(yi, ŷi) + �

✓
1

n
kŷ �Xkwk

� gkw?
k⌃? � b0k

2
�

1

n
h(⌃?)1/2h,w?

i
2

◆

= lim
r!1

min
w2K,b02B

max
�2[0,r]

1

n

nX

i=1

f�(yi, (X
kwk)i + gikw

?
k⌃? + b0)� �

1

n
h(⌃?)1/2h,w?

i
2

 min
w2K,b02B

max
��0

1

n

nX

i=1

f�(yi, (X
kwk)i + gikw

?
k⌃? + b0)� �

1

n
h(⌃?)1/2h,w?

i
2

where in the second equality we used the definition of the Moreau envelope and the minimax theorem
(Sion 1958) to move the minimum over ŷ inside the max.

Next, observing that the first term only depends on �(w) we can write this equivalently as

min
�(w):w2K

b02B

max
��0

"
1

n

nX

i=1

f�(yi, (X
kwk)i + gikw

?
k⌃? + b0)� �

1

n
max

u2K:�(u)=�(w)
h(⌃?)1/2h, u?

i
2

#

which proves the conclusion, using that (Xkwk)i+gikw?
k⌃? +b0 is equivalent in law to hw̃, x̃i+b0

where w̃ = �(w).

F.1 Geometric Interpretation

In this section, we elaborate on the discussion from Section 7 to explain how the result Theorem 4 is
a dual result which witnesses tightness of Theorem 1, and to give a geometric interpretation of both
results by connecting them to summary functional  (w, b) defined in (49). A couple of new results
are also established in this subsection, but they are not used in the rest of the paper.

Recall that the main result of this paper, Theorem 1, establishes an upper bound on the test error of an
arbitrary predictor w in terms of the training error L̂f (w, b) and complexity functional C�(w). How
can we choose the complexity functional C�(w) to optimize the bound? In this section, we show that
when analyzing the Constrained Empirical Risk Minimizer over (w, b) 2 K ⇥ B with K,B bounded
convex sets

(ŵ, b̂) = arg min
w2K,b2B

L̂f (w, b)

choosing C�(w) based on the local Gaussian width of the projected set QK will result in an essentially
tight generalization bound. (Recall from Definition 4 that Q is the projection orthogonal to the space
w⇤

1 , . . . , w
⇤
k

which the true regression function in the GLM depends upon.)

The characterization of the performance of constrained ERM we present connects to and builds
upon ideas and themes explored previously in a long line of work in the M-estimation literature.
For instance, the previous work of Thrampoulidis et al. (2018) (see also references within and our
Section 2) gives a similar asymptotic characterization for the performance of constrained/regularized
ERM. Compared with that work, here we focus on non-asymptotic results, which apply outside
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of the proportional scaling limit, and we establish a connection between this characterization and
generalization bounds (which apply to all predictors, not just the ERM). Another difference to that
result is that ours applies to generative models of the data beyond just linear regression, in particular
GLMs, a setting which has been considered in other works in the CGMT literature (e.g. Montanari
et al. 2019; Liang and Sur 2020; Thrampoulidis et al. 2020). In the special case of regression with the
squared loss, we recover the nonasymptotic local Gaussian width theory of Zhou et al. (2021).

Informal Summary. Before stating the formal results, we start with an informal discussion sum-
marizing the key results and their geometric interpretation. First, we observe that the conclusion of
our main result (Theorem 1) can be naturally rearranged as a lower bound on the training loss:

max
��0


Lf�(w, b)�

�C(w)2

n

�
 L̂f (w, b), (47)

where for this informal overview we write C(w) = C�(w) to omit the dependence on the failure
probability, and also ignore the small error term ✏�,�. A key observation at this point is that the test
error Lf�(w, b) depends on w only through its projection �(w) from Definition 4: in other words,
via its projection onto the span of w⇤

1 , . . . , w
⇤
k

and its Mahalanobis norm in the orthogonal space
k⌃1/2Qwk. It is natural to choose C(w) depending only on �(w).

Hence a natural choice of C(w) is the (local) Gaussian width

C(w) := E
x⇠N (0,⌃)

sup
v2K�(w)

hQv, xi (48)

where the localized set K�(w) is defined as

K�(w) := {v 2 K : vk = wk, r(v)  r(w)}

and the notation indicates that this set only depends on w through �(w), equivalently wk and r(w).
With this choice of C(w), we define the summary functional

 (w, b) =  (�(w), b) := max
��0


Lf�(w, b)�

�C(w)2

n

�
(49)

to be the left hand side of (47) (where the notation  (�(w), b) is used to indicate that  depends on
w only through �(w)). We will obtain two major conclusions:

1. Formalizing the previous discussion, the conclusion of Theorem 13 is that with some small
finite sample corrections, this choice of C(w) satisfies the assumption of Theorem 1 and so
 (w, b) indeed lower bounds the training error L̂f (w, b) as in (47).

2. The conclusion of Theorem 4 is that the lower bound in (47) with this C(w) is tight for the
constrained ERM. In other words, with high probability

min
w2K,b2B

L̂f (w, b) ⇡ min
w2K,b2B

 (w, b)

where the right-hand-side is deterministic (and the right hand side optimization depends on
w only through the low-dimensional vector �(w)). This is established by upper bounding
the training error via an application of the Convex Gaussian Minmax Theorem.

Combining the two conclusions, we see that when we apply our generalization bound (Theorem 1)
with a sufficiently tight choice of C(w) based on the local gaussian width and the optimal enve-
lope parameter �, it will predict the actual generalization error of the constrained ERM. So our
generalization bound is tight in a pretty general situation; in particular, when the constrained ERM
is consistent under proportional scaling (the setting most commonly considered in the asymptotic
CGMT literature).

To clarify the geometric interpretation of this result, we also show in Lemma 14 that with this choice
of C(w), the left hand side of (47) will be convex in w and b; hence, for a fixed upper bound on the
training error there is a corresponding sublevel set of the convex function which consists of the points
whose training error satisfy the constraint, and as the upper bound shrinks this set will narrow around
the minimum of the convex function.
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Formal Results. First, we formalize the idea that  (w, b) is a lower bound on the training error
L̂f (w, b). As in the general Theorem 1, we take the one-sided concentration of the low-dimensional
surrogate problem as an assumption to state a general result, since the precise details of that con-
centration estimate will depend on the exact setting. To give a finite sample result, we define a
straightforward approximation C�,⇢(w) of the local gaussian width functional (48) which is defined
based on a ⇢-net approximation of �(K), and includes the dependence on the failure probability �;
since �(K) is a low-dimensional set living in Rk+2, the contribution of this correction (just like the
contribution from the error term in the low-dimensional concentration assumption (6)) will become
negligible if we consider an asymptotic setting n ! 1 with k fixed.
Lemma 13. Let K ⇢ Rd and B ⇢ R. Suppose that we have assumption (6) from Theorem 1 with
error parameter ✏�,�(w̃, b̃) uniformly over envelope parameter � � 0. Let ⇢ > 0 be arbitrary, and
let S be a proper ⇢-covering in Euclidean norm of the set {�(w) : w 2 K} so that for every w 2 K

there exists w0 with �(w0) 2 S such that

k�(w)� �(w0)k2 < ⇢.

and define (where as above, w0 denotes the element in the covering corresponding to w)

C�,⇢(w) := E
x⇠N (0,⌃)

"
sup

v2K�(w0),⇢

hQv, xi

#
+ (r(w0) + ⇢)

p
2 log(16|S|/�)

where
K�(w),⇢ := {v 2 K : kvk � wk

k⌃ < ⇢, r(v)  r(w) + ⇢}.

Then:

1. With probability at least 1� �/4, we have for all w 2 K that

hQw, xi  C�,⇢(w),

i.e. the assumption (7) of Theorem 1 is satisfied.

2. As an immediate consequence of Theorem 1, we have with probability at least 1� � that

sup
��0


Lf�(w, b)� ✏�,�(�(w), b)� �

C�,⇢(w)2

n

�
 L̂f (w, b)

uniformly over w 2 K, b 2 B.

Proof. We only need to check the first conclusion, since the second one follows immediately by
Theorem 1. First, observe from expanding the definitions that

kwk
� (w0)kk2⌃ + (r(w)� r(w0))2 = k�(w)� �(w0)k22 < ⇢

so that w 2 K�(w0),⇢. Next, observe by applying Gaussian concentration (Theorem 5) and the union
bound over S that with probability at least 1� �/4, for x ⇠ N (0,⌃) and every w0 with �(w0) 2 S

we have that

sup
v2K�(w0),⇢

hQv, xi  E
x⇠N (0,⌃)

"
sup

v2K�(w0),⇢

hQv, xi

#
+ (r(w0) + ⇢)

p
2 log(16|S|/�)

where we use that the supremum is (r(w0) + ⇢)-Lipschitz because every v 2 K�(w),⇢ satisfies
k⌃1/2Qvk = r(v)  r(w0) + ⇢, and the supremum of Lipschitz functions is Lipschitz with the same
constant. Since we showed that w 2 K�(w0),⇢, we then have that

hQw, xi  C�,⇢(w)

as desired.

We now discuss how Theorem 4 formalizes the idea that the training error of ERM is the minimum of
 (w, b). To understand the statement, take w0, b0 to be minimizers of  (w, b). We observe that there
exists such minimizers so that

C(w) = E
x⇠N (0,⌃)

sup
v2K�(w)

hQv, xi = E
x⇠N (0,⌃)

sup
�(v)=�(w)

hQv, xi,
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i.e. so that the optimizing v satisfies r(v) = r(w), otherwise we can replace w by v without reducing
 . Given this observation, we have that the quantity (17) will concentrate about  (w0, b0) and the
best choice of w0, b0 to make is the minimizer of this quantity, so that we set ⌧ to be

⌧ ⇡ min
w02K,b02B

 (w0, b0)

and this upper bounds the training error of constrained ERM as discussed in the informal overview.
Again, see Theorem 4 for the formal version of this.

Finally, we formalize the claim that the summary functional  (w, b) defined in (49) is convex. This
is not used in the proofs of the main results above, but (as explained earlier) makes the geometric
interpretation of the result clearer, and generalizes the convexity of analogous summary functionals
observed in previous work for the well-specified regression setting, including Thrampoulidis et al.
2018; Zhou et al. 2021. We note that this convexity will be approximate for the finite-sample version
sup

��0

h
Lf�(w, b)� ✏�,�(�(w), b)� �C�,⇢(w)2

n

i
in the conclusion of Theorem 13, because of the

finite-sample error terms like ✏�,�. In some settings, the finite-sample version of the functional can
also be made to be convex: see Zhou et al. 2021 for the case of regression with squared loss.
Lemma 14. Given that the loss f(y, ŷ) is convex in ŷ and K,B are convex sets, the functional
C(w) = C(�(w)) defined in (48) is concave as a function of �(w) and  (w, b) =  (�(w), b)
defined in (49) is convex as a function of (�(w), b).

Proof. First we show C(w) is concave as a function of �(w). Recall from (48) that

C(w) = E
x⇠N (0,⌃)

sup
v2K�(w)

hQv, xi

where
K�(w) = {v 2 K : vk = wk, r(v)  r(w)}.

It suffices to prove that for any x, the function

F (w) = F (�(w)) := sup
v2K�(w)

hQv, xi

is concave in �(w). If �(w) = ↵�(w1) + (1 � ↵)�(w2), v1 is a maximizer of F (w1) and v2 is a
maximizer of F (w2) then

r(↵v1 + (1� ↵)v2)  ↵r(v1) + (1� ↵)r(v2)  ↵r(w1) + (1� ↵)r(w2) = r(w)

so ↵v1 + (1� ↵)v2 2 K�(w) and so

F (w) � hQ(↵v1 + (1� ↵)v2), vi = ↵F (w1) + (1� ↵)F (w2)

which proves the concavity.

Next we prove convexity of  . By expanding the definition of the Moreau envelope, we see that

 (w, b) = max
��0


Lf�(w, b)�

�C(w)2

n

�

= max
��0


Emin

u

f(y, u) + �(u� hw, xi � b)2 �
�C(w)2

n

�

= max
��0


min
g

E f(y, hw, xi+ b+ g(x, y)) + �g(x, y)2 �
�C(w)2

n

�

= min
g:
p

E g(x,y)2C(w)/
p
n

E f(y, hw, xi+ b+ g(x, y))

and we claim the final expression is convex in w and b. This follows from Lemma 15 because the
objective E f(y, hw, xi+ b+ g(x, y)) is jointly convex in �(w), g, b, and the minimization is over
the constraint

p
E g(x, y)2 � C(w)/

p
n  0 which is a jointly convex constraint.

The following lemma is a version of a standard fact in convex analysis, see e.g. Section 3.2.5 of Boyd
et al. 2004.
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Lemma 15. Suppose that real-valued functions f(x, y) and g(x, y) are both jointly convex in
(x, y) 2 X ⇥ Y where X ,Y are convex sets. Then

h(x) := inf
y2Y:f(x,y)0

g(x, y)

is a convex function on X .

Proof. Suppose that x = ↵x1 + (1 � ↵)x2 and y1, y2 are arbitrary points such that both
f(x1, y1), f(x2, y2)  0. By joint convexity, we have that

f(↵x1 + (1� ↵)x2,↵y1 + (1� ↵)y2)  ↵f(x1, y1) + (1� ↵)f(x2, y2)  0

and so
h(x)  g(↵x1 + (1� ↵)x2,↵y1 + (1� ↵)y2)  ↵g(x1, y1) + (1� ↵)g(x2, y2).

Taking the infimum over all such y1, y2 such f(x1, y1), f(x2, y2)  0 proves that
h(x)  ↵h(x1) + (1� ↵)h(x2)

which shows the convexity.

A simple example. To sketch how the summary functional  works and connect to the previous
literature, we consider a simple example (Ordinary Least Squares). To start with, we consider a well-
specified model with y = hw⇤, xi+⇠ where ⇠ is noise independent of x with variance �2 and bounded
eighth moment. Then the summary functional for f the squared loss and taking C(w) ⇡ kQwk⌃

p
d

is (using Lemma 20)

 (w, b) = (
p
L(w, b)� kQwk⌃

p
d/n)2 = (

q
�2 + kw � w⇤k2⌃ + b2 � kQwk⌃

p
d/n)2.

Note kw � w⇤
k
2
⌃ = kwk

� w⇤
k
2
⌃ + kQwk2⌃ by the Pythagorean Theorem. To minimize  , it is

optimal to take wk = w⇤ and b = 0 which leaves choosing r(w) = kQwk⌃ to minimize

(
p
�2 + r(w)2 � r(w)

p
d/n)2

and this in turn is minimized at r(w) = �2(d/n)/(1� d/n), which will be the excess test loss of the
constrained ERM. Note that to make the calculation easy, we considered a well-specified model and
the summary functional reduced to the same one as in Zhou et al. 2021 once we solved the optimization
over �, and the calculation can be made rigorous and nonasymptotic following the arguments there;
see also Thrampoulidis et al. 2018 and references for related asymptotic results. In this example, it
can be checked that the calculation generalizes in a straightforward way to misspecified models under
our general assumptions, if we let w⇤ to be the minimizer of the population squared loss (i.e. the
oracle predictor.) and defining the excess test loss to be the gap compared to w⇤.

G `2 Benign Overfitting

In this section, we give the proofs of the result for benign overfitting under the `2 condition. We
continue to make use of the additional covariance split notation introduced in Appendix C.

G.1 Properties of Sqrt-Lipschitz Functions

In this section, we establish some elementary properties of the squares of Lipschitz functions. This is
a natural class to consider since in particular, the squared loss and squared hinge loss both fall into
this class of functions. We say a function f : R ! R�0 is L-sqrt-Lipschitz if

p
f is L-Lipschitz.

Since
1

2
f(x)�1/2f 0(x) =

d

dx

p
f(x)

we can equivalently say that a function f is L-sqrt-Lipschitz if

|f 0(x)|  2L
p

f(x)

for all x. Based on this characterization, one can observe that any H-smooth and nonnegative function
is
p
H-sqrt-Lipschitz; this is proved in Lemma 2.1 of Srebro et al. 2010 although not using this

terminology. We proceed to establish some useful properties of sqrt-Lipschitz functions. First, we
show that L-sqrt-Lipschitz functions form a convex set.

49



Lemma 16. If f is L-sqrt-Lipschitz convex and g is L-sqrt-Lipschitz convex then so is (1�↵)f +↵g
for any ↵ 2 [0, 1].

Proof. Observe that

|(1� ↵)f 0(x) + ↵g0(x)|  (1� ↵)|f 0(x)|+ ↵|g0(x)|  2L[(1� ↵)
p
f(x) + ↵

p
g(x)]

 2L
p

(1� ↵)f(x) + ↵g(x)

where the second step is the assumption that f and g are L-sqrt-Lipschitz and the last step uses the
concavity of the square-root function.

Next, the following lemma formalizes the idea that sqrt-Lipschitz functions satisfy a local and
scale-sensitive version of the Lipschitz property.
Lemma 17. Suppose that f(x) is convex and L-sqrt-Lipschitz. Then for any ✏ > 0,

f(x+ h) � (1� ✏)f(x)� L2h2/✏.

Proof. Observe that

f(x+ h) � f(x) + f 0(x)h � f(x)� 2L
p
f(x)|h| � f(x)� ✏f(x)� L2h2/✏

where the first inequality is by convexity, the second inequality is by the L-sqrt-Lipschitz property,
and the third inequality is the AM-GM inequality.

This leads to a corresponding local Lipschitz property of the training loss.
Lemma 18. Let ✏ 2 (0, 1) be arbitrary, let w0 2 Rd and b0 2 R. Suppose that nonnegative loss
function f(ŷ, y) is convex and L-sqrt-Lipschitz in ŷ. The following inequality holds determinsitically
for any x1, . . . , xn 2 Rd, y1, . . . , yn 2 R, w 2 Rd, and b 2 R:

(1� ✏)L̂f (w, b)  L̂f (w0, b0) +
2L2

✏n

nX

i=1

hw � w0, xii
2 + 2(b� b0)

2/✏

Proof. By applying Lemma 17, we have that

f(hw0, xii+ b0, yi) � (1� ✏)f(hw, xii+ b, yi)� L2(hw � w0, xii+ (b� b0))
2/✏

and then applying the inequality (a+ b)2  2a2 + 2b2 gives

f(hw0, xii+ b0, yi) � (1� ✏)f(hw, xii+ b, yi)� 2L2
hw � w0, xii

2
� 2(b� b0)

2/✏.

Summing this inequality over i from 1 to n and rearranging gives the conclusion.

G.2 Norm Bounds

Lemma 2. Suppose that f(ŷ, y) is either squared loss or squared hinge loss. Let (w], b]) 2 Rd+1

be an arbitrary vector satisfying Qw] = 0 and with probability at least 1� �/4,

L̂f (w
], b])  Lf (w

], b]) + ⇢1(w
], b]) (13)

for some ⇢1(w], b]) > 0. Then for any ⇢2 2 (0, 1), provided ⌃? = QT⌃Q satisfies

R(⌃?) = ⌦

✓
n log2(4/�)

⇢2

◆
, (14)

we have that with probability at least 1 � � that minkwkB Lf (w, b]) = 0 for B > 0 defined by
B2 = kw]

k
2
2 + (1 + ⇢2)

n

Tr(⌃?) (Lf (w], b]) + ⇢1).
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Proof. By Theorem 4 it suffices to show that with probability at least 1� �/2,

min
w02K,b02B

max
��0

"
�

1 + �

1

n

nX

i=1

f(yi, (X
kwk

0)i + b0 + gikw
?
0 k⌃?)�

�

n
hQx,w?

0 i
2

#
= 0.

Using Lemma 20, it suffices to show with probability at least 1� �/2 that there exists w0, b0 such
that

1

n

nX

i=1

f(yi, (X
kwk

0)i + b0 + gikw
?
0 k⌃?) 

1

n
hQx,w?

0 i
2.

Decompose w0 = wk
0 + w?

0 where w?
0 = Qw0; then using Lemma 18, we have that for any ✏ > 0

(1� ✏)L̂f (w, b0)  L̂f (w
k, b0) +

2

✏n

nX

i=1

g2
i
kw?

0 k
2
⌃?

so it suffices to show that with probability 1� �/2, there exists w0, b0 and ✏ > 0 with

1

1� ✏
L̂f (w

k, b0) +
2

✏(1� ✏)n

nX
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g2
i
kw?

0 k
2
⌃? 

1

n
hQx,w?

0 i
2.

We consider w?
0 = ↵ Qx

kQxk for some constant ↵ > 0 to be determined later. Observe that Qx is equal
in law to (⌃?)1/2H for H ⇠ N (0, Id) with H independent of Xk and y1, . . . , yn. Plugging this in,
what we want to show is

1

1� ✏
L̂f (w

k, b0) +
2

✏(1� ✏)n
↵2
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g2
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2
2
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2
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n
k(⌃?)1/2Hk

2
2. (50)

By the union bound, the following occur together with probability at least 1� �/2 for some absolute
constant C > 0:

1. Using the first part of Lemma 19, we have

k(⌃?)1/2Hk
2
2 �

 
1� C

log(4/�)p
R(⌃?)

!
Tr(⌃)

2. Using the last part of Lemma 19, we have

k⌃?Hk
2
2

k(⌃?)1/2Hk
2
2

 C log(4/�)
Tr((⌃?)2)

(Tr⌃)2

3. Using subexponential Bernstein’s inequality (Theorem 2.8.1 of Vershynin 2018), requiring
n = ⌦(log(1/�)),

1

n

X

i

g2
i
 2.

4. Using (13),
L̂f (w

], b])  Lf (w
], b]) + ⇢1.

Taking wk
0 = w] and b0 = b], we therefore have
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where in the last step we used the definition of R(⌃?) and on the other hand we have
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2
2

n
�

 
1� C

log(4/�)p
R(⌃?)

!
↵2 Tr(⌃?)

n

which means we have the desired (50) provided
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Taking ✏ = ⇢2/10, this can be guaranteed if

R(⌃?) = ⌦

✓
n log2(4/�)

⇢2

◆
.

Below are some supporting lemmas used in the proof.
Lemma 19 (Lemma 10 of Koehler et al. 2021). For any covariance matrix ⌃ and H ⇠ N (0, Id), it
holds that with probability at least 1� �,

1�
k⌃1/2Hk

2
2

Tr(⌃)
. log(4/�)p

R(⌃)
(51)

and
k⌃Hk

2
2 . log(4/�) Tr(⌃2). (52)

Therefore, provided that R(⌃) & log(4/�)2, it holds that
✓

k⌃Hk2

k⌃1/2Hk2

◆2

. log(4/�)
Tr(⌃2)

Tr(⌃)
. (53)

Lemma 20. Suppose that a, b > 0. Then if a/b > 1, we have

max
��0


�

1 + �
a� �b

�
= (

p
a�

p

b)2,

and if a/b  1 then

max
��0


�

1 + �
a� �b

�
= 0.

Proof. Observe that the objective can be rewritten as

g(�) := a�
1

1 + �
a� �b

and the derivative of this expression with respect to � is

g0(�) =
1

(1 + �)2
a� b.

Therefore the unique critical point of g on the domain (�1,1) is at 1 + � =
p
a/b. This is the

global maximum of g on this domain because g goes to �1 as � ! �1 and as � ! 1. At this
point, we have that

g(�) = a�

p

ab� (
p
a/b� 1)b = a+ b� 2

p

ab = (
p
a�

p

b)2.

If a/b > 1 this is the global maximum on [0,1). Otherwise, the maximum is at the boundary at
� = 0.
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G.3 Consistency

Lemma 1. In the setting of Theorem 1, letting ⌃? = QT⌃Q, the following C�(w) will satisfy (7):
C�(w) = kwk2

hp
Tr(⌃?) + 2

p
k⌃?kop log(8/�)

i
.

Proof. First, we have by Jensen’s inequality that

E
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q
E kQxk22 =
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Applying Theorem 5 gives that with probability at least 1� �/4,
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Lemma 21. In the setting of Lemma 1, suppose that the loss f is the squared loss or squared hinge
loss, and correspondingly ✏�,�(w) = �

1+�
✏�(w). Then with probability at least 1� �,
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Proof. This follows by combining Lemma 1, Corollary 2, and Corollary 4.

Theorem 3. Let (ŵ, b̂) = argmin
w2Rd,b2R : L̂f (w,b)=0 kŵk2 be the minimum-`2 norm predictor with

zero training error. In the setting of Lemma 2, we have
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where ⇢3 > 0 is defined by 1+ ⇢3 = (1+ ⇢2)
h
1 + 2

q
log(2/�)
r(⌃?)

i2
and we recall ⇢1(w], b]) from (13).

Proof. It suffices to prove the inequality for fixed w], b]: the conclusion follows automatically from
the right-continuity of the CDF of Lf (ŵ, b̂).

From Lemma 2 we have with probability at least 1� �/2
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and from Lemma 21 we have for any w, b that with probability at least 1� �/2
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and so for ŵ, b̂ we have
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which proves the result (recalling the definition of r(⌃?)).
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Corollary 3. Suppose that Dn is a sequence of data distributions following our model assumptions (2),
with kn such that y = g(⌘1, . . . , ⌘kn , ⇠), and projection operator Qn defined as in (4). Suppose f is
either the squared loss or the squared hinge loss, and define (w]

n
, b]

n
) = argminw,b Lf,n(w, b) where

Lf,n(w, b) is the population loss over distribution Dn with loss f . Suppose that the hypercontractivity
assumption (9) holds with some fixed ⌧ > 0 for all Dn. Define ⌃n := EDn [xx

T ] and ⌃?
n

=
QT

n
⌃nQn. Suppose that as n ! 1, we have

n

R(⌃?
n
)
! 0,

kw]

n
k
2
2 Tr(⌃

?
n
)

n
! 0,

kn
n

! 0. (15)

Then we have the following convergence in probability, as n ! 1:

Lf,n(ŵn, b̂n)

Lf,n(w
]

n, b
]

n)
! 1, (16)

where (ŵn, b̂n) = argmin
w2Rd,b2R:L̂f (w,b)=0 kwk2 is the minimum-norm interpolator, and L̂f,n is

the training error based on n i.i.d. samples from the distribution Dn.

Proof. The first assumption in (15) directly implies that we can choose a sequence ⇢2,n ! 0 where
⇢2,n is the parameter in (14). Recalling the general fact that r(⌃?)2 � R(⌃?) (Bartlett et al. 2020),
we see that the same assumption implies 1/r(⌃?) ! 0 which implies ⇢3,n ! 0 where ⇢3,n is as
defined in Theorem 3.

Combining this with (the proof of) Corollary 1 and using the assumption kn/n ! 0 allows us to han-
dle the ✏�(�(ŵ), b̂) term, guaranteeing it is negligible compared to the population loss Lf,n(ŵn, b̂n).

To see why we can take ⇢1 ! 0, we use Chebyshev’s inequality after observing

Var(L̂f,n(w
]

n
, b]

n
)) =

1

n
Var(f(hw], xi+ b, y)) . 1

n
(E f(hw], xi+ b, y))2

where we used independence and the hypercontractivity assumption.
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