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Abstract

We establish upper bounds for the expected excess risk of models trained by
proper iterative algorithms which approximate the local minima. Unlike the results
built upon the strong globally strongly convexity or global growth conditions
e.g., PL-inequality, we only require the population risk to be locally strongly
convex around its local minima. Concretely, our bound under convex problems
is of order Õ(1/n). For non-convex problems with d model parameters such that
d/n is smaller than a threshold independent of n, the order of Õ(1/n) can be
maintained if the empirical risk has no spurious local minima with high probability.
Moreover, the bound for non-convex problem becomes Õ(1/

√
n) without such

assumption. Our results are derived via algorithmic stability and characterization
of the empirical risk’s landscape. Compared with the existing algorithmic stability
based results, our bounds are dimensional insensitive and without restrictions on
the algorithm’s implementation, learning rate, and the number of iterations. Our
bounds underscore that with locally strongly convex population risk, the models
trained by any proper iterative algorithm can generalize well, even for non-convex
problems, and d is large.

1 Introduction

The core problem in machine learning is obtaining a model that generalizes well on unseen test data.
The excess risk decides the model’s performance on these unseen data, and it can be decomposed
into optimization and generalization errors. The tool of algorithmic stability [9, 10] has been proven
to be a suitable tool for exploring the excess risk. Roughly speaking, the output of a stable algorithm
is robust to a slight change in the algorithm’s input, i.e., training set. The output of a stable algorithm
has been proved to have controlled excess risk in [9], and the result has been further developed
under some specific algorithms [32, 79, 14, 16, 50, 20] e.g., stochastic gradient descent [61] (SGD).
However, these results have some limitations. The results in [79, 14, 50, 47] are obtained under the
assumption of either global strong convexity or global growth conditions (PL-inequality [42]). On
the other hand, the results in [32, 20] are only applicable to a specific algorithm, i.e., SGD, and their
bounds of generalization error diverge across training which is inconsistent with the observation that
“train longer, generalize better” [34].

To improve these, we provide a unified analysis of the expected excess risk for a generic class of
iterative algorithms without any strong global conditions, i.e., global strong convexity or global
growth conditions in [79, 14, 50]. Concretely, we substitute the strong global conditions with weaker
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local strong convexity (see Section 2) of population risk around its local minima. The substitution is
based on the fact that the nice strong convexity property can be locally (though not globally) satisfied
by many important problems, e.g., PCA [30], ICA [27], and matrix completion [28]. We derive our
results via algorithmic stability and characterize the empirical risk’s landscape. For both convex and
non-convex problems, our results can be applied to any proper algorithms that approximate local
minima. Moreover, our generalization upper bounds do not diverge with the number of training steps.

Technically, we upper bound both generalization and optimization errors to control the excess risk.
We first show a fact that the locally strongly convexity around the local minima of population risk
(population local minima) can be generalized to the local minima of empirical risk (empirical local
minima), and the empirical local minima would concentrate around population local minima. Then for
convex problems, we establish the generalization upper bound of the iterates of any proper algorithm
via algorithmic stability by leveraging the facts of iterates will converge to empirical local minima,
which concentrate around population local minima. For non-convex problems, our generalization
error analysis includes three steps. 1) By applying similar arguments under the convex problem, we
upper bound the generalization error of those empirical local minima around population local minima.
2) Then, we prove that, with high probability, there are no extra empirical local minima except for
those concentrated around population local minima with guaranteed generalization capability. 3)
Finally, we extrapolate the upper bound of the generalization error to the iterates obtained by the
proper algorithm as they converge to empirical local minima.

After controlling the generalization error, the excess risk is directly implied by characterizing the
optimization error. By the proved local strong convexity of empirical risk and the convergence results
of proper algorithms, the optimization error can be controlled as in [12, 29, 64, 27, 37].

Concretely, we establish an upper bound of order Õ(1/n) (Õ(·) defined in Section 2) for the expected
excess risk of iterates obtained by any proper algorithm under convex problems. Here n is the
number of training samples. For non-convex problems with d parameters of model, we establish
an upper bound of order Õ(1/

√
n + exp(−n(c1 − d/n)) where c1 is a constant independent of

n and d. Noticeably, the exponential term in the bound can be ignored when d/n ≤ c1, then our
bound becomes Õ(1/

√
n). The bound can be applied to high-dimensional problems such that d is

in the same order of n. The result significantly improves the classical one of order O(
√

d/n) [63],
which has polynomial dependence on d. Moreover, our bound of order Õ(1/

√
n) can be improved

to Õ(1/n) if the empirical risk has no spurious local minima with high probability, which can be
satisfied for many important non-convex problems [30, 28, 1].

Our upper bounds to the excess risk underscore that, for both convex and non-convex problems
satisfying our regularity conditions, the model trained by an algorithm can generalize on test data
even when d is large. Our improvements over existing classical results are summarized as follows.

• For convex problems, our bound improves the standard upper bound of the expected excess risk in
the order of O(

√
1/n) [32] to Õ(1/n), under an extra locally strongly convex assumption.

• For non-convex problems, we relax the dimensional-dependence in the standard excess risk bound
of order O(

√
d/n) [63], under local strong convexity assumption.

• In contrast to the existing algorithmic stability based works [32, 79, 14], our results can be applied
to any algorithms that approximate local minima without restrictions on the implementation of
algorithms, learning rate, and the number of iterations.

2 Preliminaries

2.1 Notations and Assumptions

In this subsection, we collect our (mostly standard) notations and assumptions. We use ∥ · ∥ to
denote ℓ2-norm for vectors and spectral norm for matrices. Bp(w, r) is ℓp-ball with radius r
around w ∈ Rd. Let dataset {z1, · · · , zn, z

′
1, · · · , z′

n} be 2n i.i.d samples from an unknown
distribution, and S = {z1, · · · , zn} is the training set, Si = {z1, · · · , zi−1, z

′
i, zi+1, · · · , zn} and

S′ = S1. Throughout this paper, we assume without further mention that the loss function f(w, z) is
differentiable w.r.t. to parameter w for any z, 0 ≤ f(w, z) ≤ M , and the parameter space W ⊆ Rd
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is a convex compact set. Thus ∥w1 −w2∥ ≤ D for w1,w2 ∈ W and some positive constant D.
The population risk is R(w) = Ez[f(w, z)] and its empirical counterpart on the training set S
is RS(w) = n−1

∑n
i=1 f(w, zi). Let w∗

S ∈ argminw RS(w) and w∗ ∈ argminw R(w), The
projection operator PW(·) is defined as PW(v) = argminw∈W {∥w − v∥}. During our analysis,
the order of sample size n can go to infinity, and d can diverge to infinity with n. But we assume the
other quantities are universal constant independent of n. The symbol O(·) is the order of a number,
while Õ(·) hides a poly-logarithmic factor in the number of model parameters d. The following two
assumptions on loss function f(w, z) are imposed on the population risk.
Assumption 1 (Smoothness). For 0 ≤ j ≤ 2, each z and any w1,w2 ∈ W ,∥∥∥∇jf(w1,z)−∇jf(w2,z)

∥∥∥ ≤ Lj∥w1 −w2∥, (1)

where ∇jf(w, z) are respectively loss function, gradient, and Hessian at w for j = 0, 1, 2.
Assumption 2 (Non-Degenerate Local Minima). For w∗

local in the set of local minima of population
risk R(w), ∇2R(w∗

local) ⪰ λ > 0, i.e., ∇2R(w∗
local)− λId is a semi-positive definite matrix.

Assumption 1 says that the loss function should be smooth enough, which is a mild assumption and
has been adopted in [32, 81, 30]. Assumption 1 and 2 together imply that the population risk is locally
strongly convex around its local minima. The rationale behind the imposed local strong convexity is as
follows. Though the strong global conditions (e.g., global strong convexity) in [32, 79, 14, 16, 50, 20]
do not hold in many problems, the weaker locally strongly convex condition can be satisfied by
many important problems, e.g., generalized linear regression [49], robust regression [49], PCA [30],
ICA [27], and matrix completion [28]. The detailed examples of import problems that satisfy the
assumptions imposed in this paper are in Appendix F.

2.2 Stability and Generalization

Definition 1 (Proper Algorithm). The algorithm A is proper if it approximates local minima 2 of
empirical risk RS(w).

This is a rough definition of the discussed proper algorithm. The sense in which algorithms approxi-
mate local minima will be made clear in our formal theoretical results. Let A(S) be the parameters
obtained by an algorithm A, e.g., SGD, on the training set S. The performance of model on unseen
data is determined by the excess risk R(A(S)) − infw R(w), which is the gap of population risk
between the current model and the optimal one. In this paper, we explore the expected excess risk
EA,S [R(A(S))− infw R(w)] where EA,S [·] means the expectation is taken over the randomized
algorithm A and the training set S. We may neglect the subscript if there is no obfuscation. Since
RS(w

∗
S) ≤ RS(w

∗), we have the following decomposition.

EA,S [R(A(S))−R(w∗)] = EA,S [R(A(S))−RS(w
∗)] ≤ EA,S [R(A(S))−RS(w

∗
S)]

= EA,S [RS(A(S))−RS(w
∗
S)] + EA,S [R(A(S))−RS(A(S))]

≤ EA,S [RS(A(S))−RS(w
∗
S)]︸ ︷︷ ︸

Eopt

+ |EA,S [R(A(S))−RS(A(S))]|︸ ︷︷ ︸
Egen

.
(2)

The expected excess risk is upper bounded by the sum of optimization error Eopt and generalization
error Egen. Eopt is decided by the convergence rate of the algorithm A [12, 29]. The generalization
error Egen can be controlled by algorithmic stability [9] as follows.
Definition 2. An algorithm A is ϵ-uniformly stable, if

ϵstab = ES,S′

[
sup
z

|EA[f(A(S),z)− f(A(S′),z)]|
]
≤ ϵ, (3)

where S and S′ are defined at the beginning of Section 2.1.

The ϵ-uniformly stable is different from the one in [32], which does not take expectation over training
sets S and S′. The next theorem shows that the uniform stability implies the expected generalization
of the model, i.e., Egen ≤ ϵstab. The idea of Theorem 1 is similar to the ones in [9, 32, 14], and its
proof is in Appendix A.

2Please notice that local minima are all global minima for convex problem.
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Theorem 1. If A is ϵ-uniformly stable, then
Egen = |EA,S [R(A(S))−RS(A(S))]| ≤ ϵ. (4)

Please note that all the analysis in this paper is applicable to the practically infeasible empirical risk
minimization “algorithm” such that A(S) = w∗

S . However, to make our results more practical, we
suppose A as iterative algorithms in the sequel. For any given iterative algorithm A, let wt and w′

t
denote the output of the algorithm when A is iterated t steps on the training set S and S′ respectively.

3 Excess Risk under Convex Problems

In this section, we propose upper bounds of the expected excess risk for convex problems. We impose
the following convexity assumption throughout this section.
Assumption 3 (Convexity). For each z and any w1,w2 ∈ W , f(w, z) satisfies

f(w1,z)− f(w2,z) ≤ ⟨∇f(w1,z),w1 −w2⟩. (5)

3.1 Generalization Error under Convex Problems

As we have discussed, in the existing literature [32, 79, 14, 16, 50, 20], researchers have explored the
excess risk via the algorithmic stability to control the error generalization. However, the obtained
generalization upper bounds of order O(1/n) in [32, 79, 14, 50] are built upon the strong assumptions
of either global strong convexity or global growth conditions, e.g., PL-inequality [42]. On the other
hand, the generalization upper bounds in [32, 20] are only applied to SGD, and they diverge as
the number of iterations grows. For example, Theorem 3.8 in [32] establishes an upper bound
2L2

0

∑t−1
k=0 ηk/n to the algorithmic stability of SGD with learning rate ηk, which diverges when

t → ∞, as the convergence of SGD requires
∑∞

k=0 ηk = ∞ [8]. Thus the bound can not explain the
observation that the generalization error of SGD trained model converges to a constant [8, 34].

To mitigate the drawbacks in the existing literature, we propose the following new upper bound
of algorithmic stability (Theorem 2). Our bound can be applied on the top of any proper algo-
rithm defined in Definition 1, and it remains small for an arbitrary number of iterations as long
as the sample size n is large. Under convexity Assumption 3, the proper algorithm means that
E [RS(wt)−RS(w

∗
S)] → 0 as t → ∞. Our theorem is based on the following intuition. Due to the

locally strongly convex property discussed after Assumption 2, there exists (with high probability)
the unique global minimum w∗

S of RS(·) and w∗
S′ of RS′(·) that concentrate around the unique (the

uniqueness is from Assumption 2) population global minimum w∗. Then, the provable convergence
results of wt → w∗

S and w′
t → w∗

S′ imply the algorithmic stability (see Lemma 3 in Appendix).
Theorem 2. Under Assumption 1-3,

ϵstab(t) ≤
4
√
2L0(λ+ 4DL2)

λ
3
2

√
ϵ(t) +

8L0

nλ

(
L0 +

64L2
0L

2
2D

λ3

)
+

128L0L
2
1D

nλ2

(
5
√

log d+
4e log d√

n

)2

= Õ(
√

ϵ(t) + 1/n),
(6)

where ϵstab(t) = ES,S′ [supz |EA[f(wt, z)− f(w′
t, z)]|] is the stability of wt, and ϵ(t) =

E [RS(wt)−RS(w
∗
S)], w

∗
S is the global minimum of RS(·).

The proof of this theorem is in Appendix B.1. The expected generalization error of wt is upper
bounded by the right hand side of (6) due to Theorem 1. Compared with the existing result [32], the
extra term related to

√
ϵ(t) in our bound originates from our proof technique, and it seems to be

unavoidable according to [63]. Since for proper algorithms, e.g., GD and SGD, ϵ(t) → 0 as t → ∞
the leading term of the upper bound (6) is C∗ log d/n = Õ(1/n) with C∗ = 3200L0L

2
1D/λ2.

In summary, the local strong convexity (Assumption 2) enables us to establish an algorithmic stability
based generalization bound (6). The bound improves the classical result of SGD 2L2

0

∑t−1
k=0 ηk/n in

[32] as it can be applied to any proper algorithm with any learning rate and number of iterations.

3.2 Excess Risk Under Convex Problems

According to (2), we can upper bound the expected excess risk by combining the generalization upper
bound (6) with the convergence results in convex optimization.
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Theorem 3. For w∗
S ∈ argminw RS(w), and w∗ ∈ argminw R(w), under Assumption 1-3,

E [R(wt)−R(w∗)] ≤ ϵ(t) +
4
√
2L0(λ+ 4DL2)

λ
3
2

√
ϵ(t) +

8L0

nλ

(
L0 +

64L2
0L

2
2D

λ3

)
+

128L0L
2
1D

nλ2

(
5
√

log d+
4e log d√

n

)2

= Õ(
√

ϵ(t) + 1/n),

(7)

where ϵ(t) = E [RS(wt)−RS(w
∗
S)].

This theorem provides an upper bound of the expected excess risk. The bound decreases with the
number of training steps t, and is of order Õ(1/n) if t is sufficiently large.

Comparison. Under the extra local strong convexity assumption, our result significantly improves
the bound of order O(1/

√
n) in [32]. On the other hand, our bound matches (in order) the result

under strongly convex problem [63, 81]. It seems our result has a worse dependence on the strong
convex parameter λ, i.e., from 1/λ to 1/λ4. The worse dependence is acceptable as local strong
convexity is weaker than strong convexity. Moreover, our bound is not necessarily weaker compared
to the current results [63, 81] under global strongly convex problem. This is because λ in our bound
is the local strongly convex parameter restricted around the minimum point, which is larger than the
global one over the whole parameter space appears in [81]. Improving the dependence on λ without
sacrificing the order of n seems to be infeasible based on our techniques3. It might be a meaningful
topic to be explored in the future. Finally, our result has no conflict with the lower bound for general
convex problem in the order of O(

√
d/n) [25]. This is because Assumption 1 and 2 restrict our

result to a smaller class of distributions and functions, which rules out the counter-examples in [25].

To make our results concrete, we apply them to GD and SGD as examples. Note that RS(w) =
n−1

∑n
i=1 f(w, zi), the GD and SGD respectively start from w0 follow the update rules of

wt+1 = PW (wt − ηt∇RS(wt)) , (8)

and
wt+1 = PW (wt − ηt∇f(wt,zit)) , (9)

where it is randomly sampled from 1 to n. Note the convergence rate of wt updated by GD and SGD
are respectively O(1/t) [12] and Õ(1/

√
t) [64], we have the following two corollaries declare the

converged expected excess risks whose proofs appear in Appendix B.2.

Corollary 1. Under Assumption 1-3, if wt is updated by GD in (8) with ηt = 1/L1, then

R(wt)−R(w∗) ≤ Õ
(

1√
t
+

1

n

)
. (10)

Corollary 2. Under Assumption 1-3, if wt is updated by SGD in (9) with ηt = D/(L1

√
t+ 1), then

E [R(wt)−R(w∗)] ≤ Õ
(

1

t
1
4

+
1

n

)
. (11)

4 Excess Risk Under Non-Convex Problems

In this section, we present the upper bounds of the expected excess risk of iterates obtained by proper
algorithms that approximate local minima under non-convex problems.

4.1 Generalization Error Under Non-Convex Problems

In this subsection, we study the generalization error under non-convex problems. Unfortunately,
the analysis in Section 3 can not be directly generalized here due to the following reason. The
generalization error under convex problems relies on the fact that there exists the unique empirical
local minima w∗

S of RS(·) and w∗
S′ of RS′(·) that concentrate around the unique population local

minimum w∗ of R(·). Under non-convex problems, there can be many empirical and population

3The dependence can be improved to 1/λ2 with a worse order of n (from 1/n to 1/
√
n).
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local minima. The iterates obtained on S and S′ may converge to different empirical local minima
away from each other, which invalidates our methods used in convex problems.

Fortunately, we can prove that for each population local minimum, there is an empirical local
minimum concentrated around it with high probability. If the generalization upper bound for these
local minima is established, and there are no extra empirical local minima, the convergence results
of the iterates obtained by proper algorithms imply their generalization ability. Next, we prove our
results following this road map.

First, we establish the generalization upper bound for the empirical local minima around the popula-
tion local minima. According to Proposition 1 in the Appendix C.1, there are only finite population
local minima, thus the non-convex problems with local minima consists of a manifold [48] is not
considered in this paper. Let M = {w∗

1, · · · ,w∗
K} be the set of population local minima. The

number of local minima K may depend on the problem of interest. In many important non-convex
problems, K can be quite small, e.g., K = 2 for PCA [30] and K = 1 for robust regression [49].

Then, we notice that the population risk is strongly convex in B2(w
∗
k, λ/(4L2)). Similar to the

scenario under convex problems, we can verify that the empirical risk is locally strongly convex in
B2(w

∗
k, (λ/4L2)) with high probability. Next, we consider the following points

w∗
S,k = argmin

w∈B2(w
∗
k
, λ
4L2

)

RS(w), (12)

for k = 1 . . . ,K. We show that w∗
S,k is a local minimum of RS(·) with high probability and present

the generalization bound of it. Note that in Theorem 1, A can be infeasible. We construct an auxiliary
sequence wt via an infeasible algorithm.

wt+1 = PB2(w
∗
k
, λ
4L2

)

(
wt −

1

L1
∇RS(wt)

)
. (13)

Then, as wt locates in B2(w
∗
k, λ/(4L2)) in which RS(·) is strongly convex with high probability,

we can establish the algorithmic stability bound of the wt. Combining this with the convergence
result of wt to w∗

S,k implies the generalization ability of w∗
S,k. The following lemma states our

result rigorously.
Lemma 1. Under Assumption 1 and 4, for k = 1, . . . ,K, with probability at least

1− 512L2
0L

2
2

nλ4
− 128L2

1

nλ2

(
5
√

log d+
4e log d√

n

)2

, (14)

w∗
S,k

4 is a local minimum of RS(·). Moreover, for such w∗
S,k, we have

|ES [RS(w
∗
S,k)−R(w∗

S,k)]| ≤
8L0

nλ

(
L0 +

64L2
0L

2
2

λ3

)
min

{
3D,

3λ

2L2

}
+

128L0L
2
1

nλ2

(
5
√

log d+
4e log d√

n

)2

min

{
3D,

3λ

2L2

}
.

(15)

The lemma is proved in Appendix C.1.1., and it guarantees the generalization ability of those empirical
local minima located around population local minima. The expected generalization error on these
local minima is of order Õ(1/n) as in convex problems. In the sequel, we show that there are no
extra empirical local minima expected for these w∗

S,k with high probability, under the following mild
assumption, which also appears in [49, 30].
Assumption 4 (Strict saddle). There exists α, λ > 0 such that ∥∇R(w)∥ > α on the boundary of
W , and

∥∇R(w)∥ ≤ α ⇒ |σmin(∇2R(w))| ≥ λ, (16)
where σmin(∇2R(w)) is ∇2R(w)’s smallest eigenvalue.

The Assumption 4 is a generalized version of local strong convexity Assumption 2 (can be implied by
Assumption 4). A vast vary of machine learning problems satisfy this assumption, e.g., generalized
linear regression, robust regression, normal mixture model, tensor decomposition, matrix completion,
PCA, and ICA [30, 49, 81]. We refer readers to [30, 27, 28, 49] for more details of this assumption.

Let MS = {w : w is a local minimum of RS(·)} be the set consists of all the local minima of
empirical risk RS(·). Then we establish the following non-asymptotic probability bound.

4Please note the definition of w∗
S,k in (12) which is not necessary to be a local minimum.
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Lemma 2. Under Assumption 1 and 4, for r = min
{

λ
8L2

, α2

16L0L1

}
, with probability at least

1− 2

(
3D

r

)d

exp

(
− nα4

128L4
0

)
− 4d

(
3D

r

)d

exp

(
− nλ2

128L2
1

)
−K

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
,

(17)

we have

i: MS = {w∗
S,1, . . . ,w

∗
S,K};

ii: for any w ∈ W , if ∥∇RS(w)∥ < α2/(2L0) and ∇2RS(w) ≻ −λ/2, then ∥w −
PMS

(w)∥ ≤ λ∥∇RS(w)∥/4,

where ∇2RS(w) ≻ −λ/2 means ∇2RS(w) + λ/2Id is a positive definite matrix.

The first conclusion in this lemma states that there are no extra empirical local minima except for
those w∗

S,k concentrate around population local minima, which have guaranteed generalization
ability (by Theorem 1). The second result is that the empirical risk is “error bound” (see [42] for its
definition) around its local minima, with high probability. The “error bound” is a nice property in
optimization [42]. Proof of the lemma is in Appendix C.2.1. The probability bound (17) will appear
in the generalization bound of iterates obtained by proper algorithms accounting for the existence of
those empirical local minima away from population local minima. We defer the discussion to the
bound after providing our generalization upper bound in Theorem 4.

We move forward to derive the generalization upper bound of those iterates obtained by the proper
algorithm that approximates the local minima under non-convex problems. Under strict saddle
Assumption 4, the proper algorithm A approximates the second-order stationary point (SOSP) 5, that
says with probability at least 1− δ (δ is a constant that can be arbitrary small),

∥∇RS(wt)∥ ≤ ζ(t), ∇2RS(wt) ⪰ −ρ(t) (18)

where wt is updated by the algorithm A, and ζ(t), ρ(t) → 0 (which may have poly-logarithmic
dependence on δ [37]) as t → ∞.

To instantiate such proper algorithms, we construct an algorithm that satisfies (18) in Appendix D.
The following theorem establishes a generalization upper bound of wt obtained by such A.
Theorem 4. Under Assumption 1, 2 and 4, if wt satisfies (18) and r defined in Lemma 2, by choosing
t such that ζ(t) < α2/(2L0) and ρ(t) < λ/2 we have

|EA,S [R(wt)−RS(wt)] | ≤
8L0

λ
ζ(t) + 2L0Dδ +

2KM√
n

+
8KL2

0

nλ

+

(
L0 min

{
3D,

3λ

2L2

}
+ 2M

)
ξn,1 + 2Mξn,2

= Õ
(
ζ(t) +

1√
n

)
(d/n ≤ O(1)),

(19)

where

ξn,1 = K

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
, (20)

and

ξn,2=2

(
3D

r

)d

exp

(
− nα4

128L4
0

)
+4d

(
3D

r

)d

exp

(
− nλ2

128L2
1

)
. (21)

If with probability at least 1− δ′ (δ′ can be arbitrary small), RS(·) has no spurious local minimum,
then

|EA,S [R(wt)−RS(wt)] | ≤
8L0

λ
ζ(t) + 2L0Dδ + 6Mδ′ +

8(K + 4)L2
0

nλ

+

(
(K + 4)L0

K
min

{
3D,

3λ

2L2

}
+ 6M

)
ξn,1 + 6Mξn,2

= Õ
(
ζ(t) +

1

n

)
(d/n ≤ O(1)).

(22)

5w is a (ϵ, γ)-second-order stationary point (SOSP) if ∥∇RS(w)∥ ≤ ϵ and ∇2RS(w) ⪰ −γ
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This theorem is proved in Appendix C.3, and it provides upper bounds of the expected generalization
error of iterates obtained by any proper algorithm that approximates SOSP. We present an explanation
of each term in it as follows. The 2DL0δ is of order O(1/

√
n) or O(1/n) as we take the corresponded

δ = 1/
√
n or 1/n, and 8L0ζ(t)/λ can be arbitrary small if we take a sufficiently large t. Since ξn,1

is of order Õ(1/n), we next explore ξn,2. The leading term in ξn,2 is

4d

(
3D

r

)d

exp

(
− nλ2

128L2
1

)
= exp

(
log 4d+ d log

(
3D

r

)
− nλ2

128L2
1

)
. (23)

If d is large enough to make log 4d ≤ d log(3D/r), then ξn,2 ≤ exp(−c2n(c1 − d
n )), where

c1 = λ2/(256L2
1 log(3D/r)) and c2 = 2 log(3D/r). Thus ξn,2 ≪ Õ(1/n) provided by d/n < c1.

In this case, the 2KM/
√
n appears in bound (19) implies it is of order Õ(1/

√
n), even under

high-dimensional problems such that d is in the same order of n. The K can be small here for
many non-convex problems, as previously discussed. Moreover, the bound (22) improves the result
in (19) to Õ(1/n), under the condition of empirical risk has no spurious local minima with high
probability (i.e. δ′ ≤ Õ(1/n)). The condition has been proven to be satisfied by many important
non-convex optimization problems e.g., PCA [30], matrix completion [28], and over-parameterized
neural network [43, 1, 21].

Comparison. Under the extra strictly saddle Assumption 4, our bounds (no matter whether im-
posing the no spurious local minima assumption) improve the classical results of order O(

√
d/n)

based on the uniform convergence theory [63] or the one of order O(tc/n) for a positive c [32, 79]
based on algorithmic stability. [30] get the result of order Õ(d/n) under the same Assumptions 1
and 4 imposed in this paper. However, their bound has a linear dependence on d, thus can not be
non-vacuous like ours when d is in the same order of n.

Specifically, if the parameter space satisfies some sparsity conditions [6, 80, 35, 36, 22, 72] , we can
extrapolate Theorem 4 to ultrahigh-dimensional problem such that d ≫ n. For example, suppose the
parameter space W is contained in a ℓ1-ball, i.e., ∥w1 −w2∥1 ≤ D′ for some positive D′. Note that
the covering number (defined in [72]) of polytopes (Corollary 0.0.4 in [71]) is much smaller than
that of ℓ2-ball. Then, applying the similar proof of Theorem 4 establishes the same upper bound of
generalization error w.r.t. wt with ξn,2 in Theorem 4 replaced by

2(2d)(2D
′/r)2+1 exp

(
− nα4

128L4
0

)
+ 2(2d)(2D

′/r)2+2 exp

(
− nλ2

128L2
1

)
≪ Õ

(
1

n

)
, (24)

where the much smaller relationship is valid as long as log(d)/n → 0.

4.2 Excess Risk Under Non-Convex Problems

In this subsection, we establish upper bounds for the expected excess risk of iterates obtained
by proper algorithms under non-convex problems. In contrast to convex optimization, the proper
algorithm under non-convex problems is not guaranteed to find the global minimum, as it only
approximates SOSP. Hence the optimization error may not vanish as in Theorem 3. The following
theorem proved in Appendix C.4 establishes an upper bound of the expected excess risk.

Theorem 5. Under Assumption 1, 2 and 4, if wt satisfies (18), by choosing t in (18) such that
ζ(t) < α2/(2L0) and ρ(t) < λ/2, we have

EA,S [R(wt)−R(w∗)] ≤ 4L0

λ
ζ(t) + L0Dδ +

2KM√
n

+
8KL2

0

nλ
+

(
L0 min

{
3D,

3λ

2L2

}
+ 2M

)
ξn,1 + 2Mξn,2

+ EA,S [RS(PMS (wt))−RS(w
∗
S)]

= EA,S [RS(PMS (wt))−RS(w
∗
S)] + Õ

(
ζ(t) +

1√
n

)
(d/n ≤ O(1)),

(25)
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where w∗ is the global minimum of the population risk. If with probability at least 1− δ′ (δ′ can be
arbitrary small), RS(·) has no spurious local minimum, then

EA,S [R(wt)−R(w∗)] ≤ 4L0

λ
ζ(t) + L0Dδ + 8Mδ′ +

8(K + 4)L2
0

nλ

+

(
(K + 4)L0

K
min

{
3D,

3λ

2L2

}
+ 8M

)
ξn,1 + 8Mξn,2

= Õ
(
ζ(t) +

1

n

)
(d/n ≤ O(1)),

(26)

where ξn,1 and ξn,2 are defined in Theorem 4, and w∗
S is the global minimum of RS(·).

From the discussions in the last section, the bound (25) and (26) become O(1/
√
n) and Õ(1/n),

respectively, when d is in the same order of n and t → ∞. Besides that, in (25), expected for the order
of convergence rate O(ζ(t)) and the generalization bound of order Õ(1/

√
n+exp(−c2n(c1−d/n))

6, there is an extra EA,S [RS(PMS
(wt)) − RS(w

∗
S)] in the bound (25), compared with the result

of convex problems in Theorem 3. This is the gap between the empirical global minimum and the
algorithmic approximated empirical local minimum. The gap seems necessary as the proper algorithm
is not guaranteed to find the global minima, and if so, the gap becomes zero.

The bound (26) of order Õ(1/n) is obtained under empirical risk without spurious local minima,
which is proven to be hold on many important non-convex problems e.g., PCA [30], matrix completion
[28], and over-parameterized neural network [43, 1, 21, 85].

5 Related Works

Generalization The generalization error is the gap between the model’s performance on training
and unseen test data. One of the central tools to bound the generalization error in statistical learning
is uniform convergence theory. However, this method is unavoidably related to the capacity of
hypothesis space e.g., VC dimension [7, 17, 59, 31], Rademacher complexity [3, 51, 55], covering
number [73, 82, 65], or entropy integral [72]. Thus, these results are not well suited for high-
dimensional hypothesis spaces, which makes the mentioned measures to be large.

The generalization error of the iterates obtained by some algorithms, e.g., GD or SGD, is often of
more interest. There are plenty of papers working on this topic via the tool of algorithmic stability
[9, 26, 10, 30, 63], differential privacy [18, 41], robustness of model [75, 66, 77], and information
theory [74, 67, 11]. However, these tools either depend heavily on algorithm implementation
(algorithmic stability and information theory) or require unverifiable conditions (robustness and
differential privacy). This paper combines the technique of characterizing empirical loss landscape
and algorithmic stability to explore the generalization under both convex and non-convex problems.
Our methods develop a new way to use algorithmic stability, which can be applied without restrictions
on the algorithm, learning rate, and the number of iterations.

Optimization Results in this paper are related to both convex and non-convex problems.

For convex problems, [12] summarizes most of the classical algorithms in convex optimization. Some
other novel methods [40, 62, 56] with lower computational complexity have also been extensively
explored. Recently, the non-convex optimization has attracted quite a lot attentions owing to the
development of deep learning [33, 70]. But most of the existing algorithms [29, 2, 57, 15, 23, 78]
approximate the first-order stationary point instead of local minima.

Under non-convex problem, the algorithm that approximates SOSP is proper (approximate local
minima) in this paper. We refer readers for recent progress in the topic of developing algorithms
approximating SOSP to [27, 24, 19, 37, 39, 76, 52, 84, 38]. The discussed proper algorithms in this
paper have constrained parameter space which is different from the ones in [5, 13, 52]. To resolve
this, we also develop an algorithm that approximates SOSP under our constraints in Appendix D.

6The difference in the coefficients of the convergence rate term ζ(t) between the bounds in Theorem 4 and 5
is due to a technique issue and not essential.
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Excess Risk A straightforward way to characterize the excess risk is by controlling the general-
ization and optimization errors, respectively, as we did in this paper. Thus, for this problem, the
used tools are similar to the ones in analyzing generalization, e.g., uniform convergence theory
[69, 81, 25], algorithmic stability [32, 14, 16, 79, 20], information theory [53, 54]. However, the
discussed drawbacks of these tools also appeared. Our results are built upon the combination of
characterizing empirical risk’s landscape and algorithmic stability. Moreover, they are dimensional
insensitive, independent of algorithm’s implementation, and they improve the order of existing results
under both convex and non-convex problems.

6 Conclusion

This paper provides a unified analysis of the expected excess risk of models trained by proper
algorithms under convex and non-convex problems. Our primary techniques are algorithmic stability
and the non-asymptotic characterization of the empirical risk’s landscape.

Under the conditions of local strong convexity around population local minima and some other
mild regularity conditions, we establish the upper bounds of the expected excess risk in the order
of Õ (1/n) and Õ(1/

√
n) (can be improved to Õ(1/n) when empirical risk has no spurious local

minima with high probability) under convex and non-convex problems respectively.

The presented results improve the existing results in many aspects. For convex problems, our
results improve the standard excess risk bound of order O(

√
1/n) [32] to Õ(1/n) under locally

convex assumption. For non-convex problems, our results significantly improve the standard uniform
convergence bound in the order of O(

√
d/n) [63] when d/n is smaller than a universal constant.

Moreover, our results can be generally applied to algorithms that approximate local minima, and they
have no restrictions on the algorithm, learning rate, and number of iterations.
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A Proof of Theorem 1

Proof. Recall that {z1, · · · , zn, z
′
1, · · · , z′

n} are 2n i.i.d samples from the target population, S =

{z1, · · · , zn}, Si = {z1, · · · , zi−1, z
′
i, zi+1, · · · , zn}, and S′ = S1. We have

EA,S [R(A(S))−RS(A(S))] = EA,S,z

[
1

n

n∑
i=1

(f(A(S),z)− f(A(S),zi))

]

= EA,S,Si

[
1

n

n∑
i=1

(
f(A(Si),zi)− f(A(S),zi)

)]

=
1

n

n∑
i=1

EA,S,Si

[
f(A(Si),zi)− f(A(S),zi)

]
.

(27)

Thus

|EA,S [R(A(S))−RS(A(S))] | ≤ 1

n

n∑
i=1

ES,Si

∣∣∣EA

[
f(A(Si),zi)− f(A(S),zi)

]∣∣∣
≤ ES,S′

[
sup
z

|EA[f(A(S′),z)− f(A(S),z)]|
]

≤ ϵ,

where the last inequality is due to the ϵ-uniform stability.

B Proofs in Section 3

Throughout this and the following proofs, for any symmetric matrix A, we denote its smallest and
largest eigenvalue by σmin(A) and σmax(A), respectively.

B.1 Proofs in Section 3.1

Before providing the proof of Theorem 2, we need several lemmas. First we define two “good events"

E1 =

{
∥∇RS(w

∗)∥ ≤ λ2

16L2
, ∥∇RS′(w∗)∥ ≤ λ2

16L2

}
E2 =

{
∥∇2RS(w

∗)−∇2R(w∗)∥ ≤ λ

4
, ∥∇2RS′(w∗)−∇2R(w∗)∥ ≤ λ

4

} (28)

The following lemma is based on the fact that on event E1

⋂
E2 the empirical global minimum is

around the population global minimum.
Lemma 3. Under Assumptions 1-3, there exists global minimum w∗

S and w∗
S′ of RS(·) and RS′(·)

such that
E
[
∥w∗

S −w∗
S′∥1E1

⋂
E2

]
≤ 8L0

nλ
, (29)

where 1(·) is the indicative function and w∗ is the sole global minimum of R(·).

Proof. To begin with, we show RS(·) is locally strongly convex around w∗ with high probability.
Then, by providing that there exists w∗

S and w∗
S′ locates in the region, we get the conclusion.

We claim that if the event E1

⋂
E2 happens, then ∇2RS(w) ⪰ λ

2 for any w ∈ B2(w
∗, λ

4L2
). Since

σmin(∇2RS(w)) = σmin

(
∇2RS(w)−∇2RS(w

∗) +∇2RS(w
∗)−∇2R(w∗) +∇2R(w∗)

)
≥ σmin(∇2R(w∗))− ∥∇2RS(w)−∇2RS(w

∗)∥ − ∥∇2RS(w
∗)−∇2R(w∗)∥

≥ λ− L2∥w −w∗∥ − λ

4
≥ λ

2
,

(30)

where the last inequality is due to the Lipschitz Hessian and event E2. After that, we show that
both w∗

S and w∗
S′ locate in B2(w

∗, λ
4L2

), when E1, E2 hold. Let w = γw∗
S + (1 − γ)w∗, with

γ = λ
4L2∥w∗

S−w∗∥ then
∥w −w∗∥ = γ∥w∗

S −w∗∥. (31)
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One can see w ∈ S2(w
∗, λ

4L2
). Thus by the strong convexity,

∥w −w∗∥2 ≤ 4

λ
(RS(w)−RS(w

∗) + ⟨∇RS(w
∗),w −w∗⟩) < 4

λ
∥∇RS(w

∗)∥∥w −w∗∥, (32)

where the last inequality is due to the convexity such that
RS(w)−RS(w

∗) = RS(γw
∗
S + (1− γ)w∗)−RS(w

∗) ≤ γ(RS(w
∗
S)−RS(w

∗)) < 0 (33)

and Schwarz inequality. Then,

λ

4
∥w −w∗∥ =

λ2

16L2∥w∗
S −w∗∥∥w

∗
S −w∗∥ =

λ

16L2
2

< ∥∇RS(w
∗)∥, (34)

which leads to a contraction to event E1. Thus, we conclude that w∗
S ∈ B2(w

∗, λ
4L2

). Identically,
one can verify that w∗

S′ ∈ B2(w
∗, λ

4L2
).

Since both w∗
S and w∗

S′ are in B2(w
∗, λ

4L2
) on event E1

⋂
E2, S and S′ differs in z1, then we have

∥w∗
S −w∗

S′∥ ≤ 4

λ
∥∇RS(w

∗
S′)∥

=
4

λ

∥∥∥∥∥ 1n ∑
z∈S

∇f(w∗
S′ ,z)

∥∥∥∥∥
=

4

nλ

∥∥∇f(w∗
S′ ,z1)−∇f(w∗

S′ ,z′
1)
∥∥

≤ 8L0

nλ
,

(35)

where the last equality is due to w∗
S′ is the minimum of RS′(·). The lemma follows from the fact

E
[
∥w∗

S −w∗
S′∥1E1

⋂
E2

]
≤ 8L0

nλ
P(E1

⋂
E2) ≤

8L0

nλ
. (36)

Next, we show that the “good event" happens with high probability.
Lemma 4. Under Assumption 1,

P(Ec
1

⋃
Ec

2) ≤ P(Ec
1) + P(Ec

2) ≤
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2

, (37)

where Ec
k is the complementary of Ek for k = 1, 2.

Proof. By Assumption 1, we have ∥∇f(w, z)∥ ≤ L0 and ∥∇2f(w, z)∥ ≤ L1 for any w ∈ W
and z. Thus Ez[∥∇f(w∗, z)∥2] ≤ L2

0 and E[∥∇2f(w, z)−∇2R(w)∥2] ≤ 4L2
1. For Ec, a simple

Markov’s inequality implies

P(Ec) = P
(
Ec

1

⋃
Ec

2

)
≤ P(Ec

1) + P(Ec
2)

= 2P
(
∥∇RS(w

∗)∥ >
λ2

16L2

)
+ 2P

(
∥∇2RS(w

∗)−∇2R(w∗)∥ >
λ

4

)
≤ 512L2

2

λ4
E
[
∥∇RS(w

∗)∥2
]
+

32

λ2
E
[
∥∇2RS(w

∗)−∇2R(w∗)∥2
]
.

(38)

By similar arguments as in the proof of Lemma 7 in [83], we have

E
[
∥∇RS(w

∗)∥2
]
≤ L2

0

n
, (39)

and

E
[
∥∇2RS(w

∗)−∇2R(w∗)∥2
]
≤ 1

n

(
10
√

log dL1 +
8e log dL1√

n

)2

. (40)

Combining these with (38), we have

P(Ec) ≤ P(Ec
1) + P(Ec

2) ≤
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2

. (41)

Then Lemma 3 follows from (35) and (37).
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This lemma shows the fact that there exists empirical global minimum on the training set S and
S′ concentrate around population global minimum w∗, so the two empirical global minimum are
close with each other. Besides that, the empirical risk is locally strongly convex around this global
minimum with high probability.

To present the algorithmic stability, we need to show the convergence of wt to w∗
S with wt trained

on the training set S. However, there is no convergence rate of ∥wt −w∗
S∥ under general convex

problems, because the quadratic growth condition 7 only holds for strongly convex problems 8 .
Fortunately, the local strong convexity of RS(·) and RS′(·) enables us to upper bound ∥wt −w∗

S∥
and ∥w′

t −w∗
S′∥ after a certain number of iterations.

Lemma 5. Under Assumption 1 and 3, for any global minimum w∗
S of RS(·), define event

E0,r =

{
∇2RS(w) ⪰ λ

4
: ∀w ∈ B2(w

∗
S , r)

}
(42)

for some r > 0 and the training set S. Then

E[∥wt −w∗
S∥1E0,r ] ≤

2
√
2(r +D)

r
√
λ

E [RS(wt)−RS(w
∗
S)]

1
2 . (43)

Proof. Define event

E1,r =

{
RS(wt)−RS(w

∗
S) <

λr2

8

}
. (44)

First, we prove on event E0,r

⋂
E1,r we have ∇2RS(wt) ⪰ λ

4 . If E0,r holds and wt ∈ B2(w
∗
S , r),

the conclusion is full-filled. On the other hand, if wt /∈ B2(w
∗
S , r) and E0,r

⋂
E1,r happens, for any

w with ∥w −w∗
S∥ = r, we have

RS(w)−RS(w
∗
S) ≥

λr2

8
, (45)

since E0,r holds. Then, let w = γwt + (1 − γ)w∗
S with γ = r

∥wt−w∗
S∥ . Due to w ∈ B2(w

∗
S , r)

and the convexity of RS(·),

RS(w)−RS(w
∗
S) ≤ γ(RS(wt)−RS(w

∗
S)) <

λr2

8
, (46)

which leads to a contraction to (45). Hence, we conclude that on E0,r

⋂
E1,r,

∥wt −w∗
S∥ ≤ 2

√
2√
λ
(RS(wt)−RS(w

∗
S))

1
2 , (47)

due to the local strong convexity. With all these derivations, we see that

E
[
∥wt −w∗

S∥1E0,r

]
= E

[
1E0,r

⋂
E1,r

∥wt −w∗
S∥
]
+ E

[
1E0,r

⋂
Ec

1,r
∥wt −w∗

S∥
]

a

≤ 2
√
2√
λ
E [RS(wt)−RS(w

∗
S)]

1
2 +DP(Ec

1,r)

≤ 2
√
2√
λ
E [RS(wt)−RS(w

∗
S)]

1
2 +D

2
√
2

r
√
λ
E
[
(RS(wt)−RS(w

∗
S))

1
2

]
≤ 2

√
2(r +D)

r
√
λ

E [RS(wt)−RS(w
∗
S)]

1
2 ,

(48)

where a is due to (47) and Jesen’s inequality. Thus, we get the conclusion.

B.1.1 Proof of Theorem 2

With all these lemmas, we are now ready to prove the Theorem 2.

7For f : Rd → R, quadratic growth means µ
2
∥w −w∗∥2 ≤ f(w)− f(w∗) for some µ > 0, where w∗ is

the global minimum.
8For f : Rd → R, strongly convex means f(w1)− f(w2) ≤ ⟨∇f(w1),w1 −w2⟩ − λ

2
∥w1 −w2∥ for

some λ > 0 and any w1,w2 ∈ Rd.
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Restate of Theorem 2 Under Assumption 1-3, we have

ϵstab(t) ≤
4
√
2L0(λ+ 4DL2)

λ
3
2

√
ϵ(t) +

8L0

nλ

{
L0 +

64L2
0L

2
2D

λ3
+

16L2
1D

λ

(
5
√

log d+
4e log d√

n

)2
}
,

(49)
where ϵstab(t) = ES,S′ [supz |EA[f(wt, z)− f(w′

t, z)]|] is the stability of the output in the t-th
step, and ϵ(t) = E [RS(wt)−RS(w

∗
S)] with w∗

S as global minimum of RS(·).

Proof. At first glance,

|f(wt,z)− f(w′
t,z)| ≤ L0∥wt −w′

t∥
≤ L0(∥wt −w∗

S∥+ ∥w′
t −w∗

S′∥+ ∥w∗
S −w∗

S′∥).
(50)

We respectively bound these three terms. An upper bound of the third term can be verified by Lemma
3. As proven in Lemma 3, when the two events

E1 =

{
∥∇RS(w

∗)∥ ≤ λ2

16L2
, ∥∇RS′(w∗)∥ ≤ λ2

16L2

}
E2 =

{
∥∇2RS(w

∗)−∇2R(w∗)∥ ≤ λ

4
, ∥∇2RS′(w∗)−∇2R(w∗)∥ ≤ λ

4

} (51)

hold, there exists empirical global minimum w∗
S and w∗

S′ such that ∇2RS(w
∗
S) ⪰ λ

2 and
∇2RS′(w∗

S′) ⪰ λ
2 . Thus for ∥w −w∗

S∥ ≤ λ
4L2

, we have

σmin(∇2RS(w)) ≥ σmin(∇2RS(w
∗
S))− ∥∇2RS(w)−∇2RS(w

∗
S)∥ ≥ λ

2
− L2∥w −w∗

S∥ ≥ λ

4
. (52)

Hence, we conclude that event E1

⋂
E2 ⊆ ES

⋂
ES′ with

ES =

{
∇2RS(w) ⪰ λ

4
: w ∈ B2(w

∗
S ,

λ

4L2
)

}
ES′ =

{
∇2RS′(w) ⪰ λ

4
: w ∈ B2(w

∗
S′ ,

λ

4L2
)

}
.

(53)

By choosing r = λ
4L2

in Lemma 5,

E
[
∥wt −w∗

S∥1ES + ∥w′
t −w∗

S′∥1ES′

]
≤
(
4
√
2√
λ

+
16

√
2DL2

λ
3
2

)√
ϵ(t). (54)

Note that Ec
S

⋃
Ec

S′ ⊆ Ec
1

⋃
Ec

2 and on the event Ec
1

⋃
Ec

2 we still have

|f(wt,z)− f(w′
t,z)| ≤ L0∥wt −w′

t∥ ≤ L0D. (55)

Combining this with (29), (37), (50) and (54), we get the conclusion.

B.2 Proofs in Section 3.2

We now respectively prove the convergence results of GD and SGD w.r.t the terminal point in Section
3.2. The two convergence results imply the conclusion of the two Corollaries in Section 3.2.
Lemma 6. Under Assumption 1 and 3, we have

RS(wt)−RS(w
∗
S) ≤

D2L1

2t
, (56)

where wt is updated by GD in (8) with ηt = 1/L1.

Proof. The following descent equation holds due to the Lipschitz gradient,

RS(wk)−RS(wk−1) ≤ ⟨∇RS(wk−1),wk −wk−1⟩+
L1

2
∥wk −wk−1∥2 ≤ − 1

2L1
∥wk −wk−1∥2,

(57)
where the last inequality is because the property of projection. On the other hand, we have

∥wk −w∗
S∥2 = ∥wk −wk−1 +wk−1 −w∗

S∥2

≤ ∥wk −wk−1∥2 + 2⟨wk −wk−1,wk−1 −w∗
S⟩+ ∥wk−1 −w∗

S∥2.
(58)
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Then, due to the co-coercive of RS(·) (see Lemma 3.5 in [12]), we have
t∑

k=1

(RS(wk)−RS(w
∗
S)) ≤

t∑
k=1

L1

(
⟨wk−1 −wk,wk−1 −w∗

S⟩ −
1

2
∥wk −wk−1∥2

)
a

≤
t∑

k=1

L1

2

(
∥wk−1 −w∗

S∥2 − ∥wk −w∗
S∥2
)

≤ D2L1

2
,

(59)

where a is due to (58). The descent equation shows

RS(wt)−RS(w
∗
S) ≤

1

t

t∑
k=1

(RS(wk)−RS(w
∗
S)) ≤

D2L1

2t
. (60)

Thus, we get the conclusion.

For SGD, the following convergence result holds for the terminal point. This conclusion is Theorem
2 in [64], we give the proof of it to make this paper self-contained.
Lemma 7. Under Assumption 1 and 3,

E[RS(wt)−RS(w
∗
S)] ≤

D(L2
1 + 2L2

0)

2L1

√
t+ 1

(1 + log (t+ 1)), (61)

for wt updated by SGD in (9) with ηt =
D

L1

√
t+1

.

Proof. By the convexity of RS(·),
t∑

k=j

E [(RS(wk)−RS(w))] ≤
t∑

k=j

E [⟨∇RS(wk),wk −w⟩]

≤ 1

2D

t∑
k=j

L1

√
k + 1E

[
∥wk −w∥2 − ∥wk+1 −w∥2 + D2

L2
1(k + 1)

∥∇f(wk,zik )∥
2

]

≤
√
j + 1L1

2D
∥wj −w∥2 + L1

2D

t∑
k=j+1

(√
k + 1−

√
k
)
∥wk −w∥2 + DL2

0

2L1

t∑
k=j

1√
k + 1

≤
√
j + 1L1

2D
∥wj −w∥2 + DL1

2

(√
t+ 1−

√
j + 1

)
+

DL2
0

2L1

t∑
k=j

1√
k + 1

(62)

for any 0 ≤ j ≤ t and w, where the second inequality is due to the property of projection. By
choosing w = wj , one can see

t∑
k=j

E [(RS(wk)−RS(wj))] ≤
DL1

2

(√
t+ 1−

√
j + 1

)
+

DL2
0

L1
(
√
t+ 1−

√
j)

≤ D(L2
1 + 2L2

0)

2L1
(
√
t+ 1−

√
j).

(63)

Here we use the inequality
∑t

k=j 1/
√
k + 1 ≤ 2(

√
t+ 1−

√
j). Let Sj =

1
t−j+1

∑t
k=j E [RS(wk)],

we have

(t− j)Sj+1 − (t− j + 1)Sj = −E[RS(wj)] ≤ −Sj +
D(L2

1 + 2L2
0)

2L1(t− j + 1)

(√
t+ 1−

√
j
)

≤ −Sj +
D(L2

1 + 2L2
0)

2L1(
√
t+ 1 +

√
j)

≤ −Sj +
D(L2

1 + 2L2
0)

2L1

√
t+ 1

,

(64)

which concludes
Sj+1 − Sj ≤ D(L2

1 + 2L2
0)

2L1(t− j)
√
t+ 1

. (65)

21



Thus

E[RS(wt)] = St ≤ S0 +
D(L2

1 + 2L2
0)

2L1

√
t+ 1

t−1∑
j=0

1

t− j
≤ S0 +

D(L2
1 + 2L2

0)

2L1

√
t+ 1

(1 + log (t+ 1)). (66)

Here we use the inequality
∑t

k=1 1/k ≤ 1 + log (t+ 1). By taking w = w∗
S , j = 0 in (62) and

dividing t+ 1 in both side of the above equation, we have

S0 −RS(w
∗
S) ≤

DL1

2
√
t+ 1

+
DL2

0

L1

√
t+ 1

=
D(L2

1 + 2L2
0)

2L1

√
t+ 1

. (67)

Combining this with (66), the proof is completed.

In convex optimization, the convergence results are usually on the running average scheme i.e.,
w̄t = (w0 + · · ·+wt)/t, especially for the randomized algorithm [12]. In this case, we can take
w̄t to be the output of the algorithm after t update steps. One can prove the convergence rate of
order O(1/

√
t) for w̄t from (67). But Lemma 7 gives the nearly optimal convergence result for the

terminal point wt without involving average.

Combining the convergence result of w̄t and our Theorem 3, we conclude that the expected excess
risk of w̄t obtained by SGD is also upper bounded by Õ

(
t−1/4 + n−1

)
.

C Proof in Section 4

C.1 Generalization Error on Empirical Local Minima

To begin our discussion, we give a proposition to the finiteness of population local minima.

Proposition 1. Let w∗
i and w∗

j be two local minima of R(·). Then ∥w∗
i −w∗

j∥ ≥ 4λ/L2.

Proof. Denote c = ∥w∗
i −w∗

j∥ and define

g(t) =
d

dt
R

(
v∗ +

t

c
(w∗ − v∗)

)
. (68)

Then g(0) = g(c) = 0, g′(0) ≥ λ and g′(c) ≥ λ. By Assumption 1, g′(·) is Liptchitz continuous
with Liptchitz constant L2 and hence g′(t) ≥ λ− L2 min{t, c− t} for t ∈ [0, c]. Thus

0 =

∫ c

0

g′(t)dt ≥ cλ− L2

∫ c

0

min{t, c− t}dt = cλ− L2
c2

4
, (69)

and this implies c ≥ 4λ/L2.

Due to the parameter space W ⊆ Rd is compact set, Heine–Borel Theorem and the above proposition
implies that there only exists finite population local minima. The following lemma is needed in the
sequel.

Lemma 8. Under Assumption 1, 2, for any local minimum w∗
k of R(·) with 1 ≤ k ≤ K and the

two training sets S and S′, w∗
S,k and w∗

S′,k are empirical local minimum of RS(·) and RS(·)
respectively on the event Ek, where

Ek = E1,k

⋂
E2,k (70)

with

E1,k =

{
∥∇RS(w

∗
k)∥ <

λ2

16L2
, ∥∇RS′(w∗

k)∥ <
λ2

16L2

}
E2,k =

{
∥∇2RS(w

∗
k)−∇2R(w∗

k)∥ ≤ λ

4
, ∥∇2RS′(w∗

k)−∇2R(w∗
k)∥ ≤ λ

4

}
,

(71)

and

P (Ec
k) ≤

512L2
0L

2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2

, (72)

for any k.
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Proof. First, as in the proof of Lemma 3, we have ∇2RS(w) ⪰ λ
2 ,∇

2RS′(w) ⪰ λ
2 for w ∈

B2(w
∗
k,

λ
4L2

) when the event E2,k holds. This is due to w∗
k is a local minimum of R(·). Then for

any w ∈ B2(w
∗
k,

λ
4L2

) with ∥w∥ = λ
4L2

, we have

RS(w)−RS(w
∗
k) ≥ ⟨∇RS(w

∗
k),w −w∗

k⟩+
λ

4
∥w −w∗

k∥2

≥ −∥∇RS(w
∗
k)∥∥w −w∗

k∥+
λ

4
∥w −w∗

k∥2

≥
(
λ

4
∥w −w∗

k∥ − ∥∇RS(w
∗
k)∥
)
∥w −w∗

k∥

=

(
λ2

16L2
− ∥∇RS(w

∗
k)∥
)
∥w −w∗

k∥ > 0,

(73)

when event Ek holds. Then the function RS(·) has at least one local minimum in the inner of
B2(w

∗
k,

λ
4L2

). Remind that
w∗

S,k = argmin
w∈B2(w∗

k,
λ

4L2
)

RS(w), (74)

then w∗
S,k is a local minimum of RS(·). Similarly, w∗

S′,k is a local minimum of RS′(·). Thus we
get the conclusion by event probability upper bound (38).

This lemma implies that RS(·) is locally strongly convex around those local minima close to
population local minima with high probability. Now, we are ready to give the proof of Lemma 1.

C.1.1 Proof of Lemma 1

Restate of Lemma 1 Under Assumption 1 and 4, for k = 1, . . . ,K, with probability at least

1− 512L2
0L

2
2

nλ4
− 128L2

1

nλ2

(
5
√

log d+
4e log d√

n

)2

, (75)

w∗
S,k

9 is a local minimum of RS(·). Moreover, for such w∗
S,k, we have

|ES [RS(w
∗
S,k)−R(w∗

S,k)]|

≤ 8L0

nλ

[
L0 +

{
64L2

0L
2
2

λ3
+

16L2
1

λ

(
5
√

log d+
4e log d√

n

)2
}
min

{
3D,

3λ

2L2

}]
.

(76)

Proof. The first statement of this Theorem follows from Lemma 8. We prove (76) via the stability
of the proposed auxiliary sequence in Section 4.1. Let A0,k on the training set S and S′ be the
following auxiliary projected gradient descent algorithm that follow the update rule

wt+1,k = PB2(w
∗
k
, λ
4L2

)

(
wt,k − 1

L1
∇RS(wt,k)

)
,

w′
t+1,k = PB2(w

∗
k
, λ
4L2

)

(
w′

t,k − 1

L1
∇RS′(w′

t,k)

)
,

(77)

start from w0,k = w′
0,k = w∗

k. Although this sequence is infeasible, the generalization bounds based
on the stability of it are valid. First note that∥∥wt,k −w′

t,k

∥∥ ≤
∥∥wt,k −w∗

S,k

∥∥+ ∥∥w′
t,k −w∗

S′,k

∥∥+ ∥∥w∗
S,k −w∗

S′,k

∥∥ . (78)

If event Ek defined in (70) holds, due to Lemma 8, w∗
S,k and w∗

S′,k are respectively empirical local
minimum of RS(·) and RS′(·), and the two empirical risk are λ/2-strongly convex in B2(w

∗
k,

λ
4L2

).
As in Lemma 3, we have

∥w∗
S,k −w∗

S′,k∥ ≤ 8L0

nλ
(79)

and

P(Ec
k) ≤

512L2
0L

2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2

. (80)

9Please note the definition of w∗
S,k in (12) which is not necessary to be a local minimum.
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By the standard convergence rate of projected gradient descent i.e., Theorem 3.10 in [12], we have

∥wt,k −w∗
S,k∥ ≤ exp

(
− λt

4L1

)
λ

4L2
, (81)

and
∥w′

t,k −w∗
S′,k∥ ≤ exp

(
− λt

4L1

)
λ

4L2
. (82)

on event Ek. Since A0,k is a deterministic algorithm, similar to the proof of Lemma 3, we see

ϵstab(t) = ESES′

[
sup
z

|f(wt,k,z)− f(w′
t,k,z)|

]
≤ L0ESES′

[
∥wt,k −w′

t,k∥
]

≤ L0

(
8L0

nλ
+ 2 exp

(
− λt

4L1

)
λ

4L2

)
P(Ek) + L0 min

{
D,

λ

2L2

}
P (Ec

k)

≤ L0

(
8L0

nλ
+ exp

(
− λt

4L1

)
λ

2L2

)
+ L0

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
min

{
D,

λ

2L2

}
.

(83)

Then, according to Theorem 1,

|E[RS(wt,k)−R(wt,k)]| ≤ ϵstab(t). (84)

Because
|E[RS(w

∗
S,k)−R(w∗

S,k)]− E[RS(wt,k)−R(wt,k)]|
≤ 2L0E

[
∥wt,k −w∗

S,k∥
]

≤ L0 exp

(
− λt

4L1

)
λ

2L2
+ L0

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
min{2D,

λ

L2
},

(85)

we have

|E[RS(w
∗
S,k)−R(w∗

S,k)]| ≤ L0

(
8L0

nλ
+ exp

(
− λt

4L1

)
λ

L2

)
+ L0

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
min

{
3D,

3λ

2L2

}
.

(86)

Since t is arbitrary, the inequality in the theorem follows by invoking t → ∞.

C.2 No Extra Empirical Local Minima

To justify the statement in the main body of this paper, we need to introduce some definitions and
results in random matrix theory. We refer readers to [72] for more details of this topic. Remind that
for any deterministic matrix Q, exp(Q) is defined as

exp(Q) =

∞∑
k=0

1

k!
Qk. (87)

Then, for random matrix Q, E[exp(Q)] is defined as

E[exp(Q)] =

∞∑
k=0

1

k!
EQk. (88)

Definition 3 (Sub-Gaussian random matrix). A zero-mean symmetric random matrix M ∈ Rp×p is
Sub-Gaussian with matrix parameters V ∈ Rp×p if

E[exp(cM)] ⪯ exp

(
c2V

2

)
, (89)

for all c ∈ R.
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Note that when p = 1, Definition 3 becomes the definition of sub-Gaussian random variable.
Lemma 9. Let θ ∈ {−1,+1} be a Rademacher random variable independent of z. Under Assump-
tion 1, for any w ∈ W , θ⟨∇f(w, z),∇R(w)⟩ and θ∇2f(w, z) are Sub-Gaussian with parameter
L4
0 and L2

1Id respectively.

Proof. According to Assumption 1, we have ∥∇f(w, z)∥ ≤ L0 and ∥∇2f(w, z)∥ ≤ L1. Because
∇R(w) = E[∇f(w, z)], we have ∥∇R(w)∥ ≤ L0 and

|⟨∇f(w,z),∇R(w)⟩| ≤ ∥∇f(w,z)∥∥∇R(w)∥ ≤ L2
0. (90)

Hence

E[exp(cθ⟨∇f(w,z),∇R(w)⟩) | z] =
∞∑

k=0

(c⟨∇f(w,z),∇R(w)⟩)k

k!
E[θk]

a
=

∞∑
k=0

(c⟨∇f(w,z),∇R(w)⟩)2k

2k!

≤
∞∑

k=0

(cL2
0)

2k

2k!

= exp

(
L4

0c
2

2

)
,

(91)

where a is due to Eθk = 0 for all odd k. This implies

E[exp(cθ⟨∇f(w,z),∇R(w)⟩)] ≤ exp

(
L4

0c
2

2

)
, (92)

then θ⟨∇f(w, z),∇R(w)⟩ is Sub-Gaussian with parameter L4
0. Similar arguments can show

θ∇2f(w, z) is Sub-Gaussian matrix with parameter L2
1Id, since ∥∇2f(w, z)∥ ≤ L1.

We have the following concentration results for the gradient and Hessian of empirical risk.
Lemma 10. For any δ > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

⟨∇f(w,zi),∇R(w)⟩ − ∥∇R(w)∥2
∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−nδ2

8L4
0

)
, (93)

and

P

(∥∥∥∥∥ 1n
n∑

i=1

∇2f(w,zi)−∇2R(w)

∥∥∥∥∥ ≥ δ

)
≤ 2d exp

(
−nδ2

8L2
1

)
. (94)

Proof. Note that E[⟨∇f(w, zi),∇R(w)⟩] = ∥∇R(w)∥2 and E[∇2f(w, zi)] = ∇2R(w). Accord-
ing to symmetrization inequality (Proposition 4.1.1 (b) in [72]), for any c ∈ R

E

[
exp

(∣∣∣∣∣ cn
n∑

i=1

⟨∇f(w,zi),∇R(w)⟩ − ∥∇R(w)∥2
∣∣∣∣∣
)]

≤ E

[
exp

(∣∣∣∣∣2cn
n∑

i=1

θi⟨∇f(w,zi),∇R(w)⟩

∣∣∣∣∣
)]

,

(95)
and

E

[
exp

(
sup

∥u∥=1

cuT

(
1

n

n∑
i=1

∇2f(w,zi)−∇2R(w)

)
u

)]

≤ E

[
exp

(
sup

∥u∥=1

2cuT

(
1

n

n∑
i=1

θi∇2f(w,zi)

)
u

)]
,

(96)

where θ1, . . . , θn are i.i.d. Rademacher random variables independent of z1, . . . ,zn.

Because θi⟨∇f(w, zi),∇R(w)⟩ is Sub-Gaussian with parameter L4
0,

E

[
exp

(
2c

∣∣∣∣∣ 1n
n∑

i=1

θi⟨∇f(w,zi)∇R(w)⟩

∣∣∣∣∣
)]

≤ E

[
exp

(
2c

n

n∑
i=1

θi⟨∇f(w,zi),∇R(w)⟩

)]
+ E

[
exp

(
−2c

n

n∑
i=1

θi⟨∇f(w,zi),∇R(w)⟩

)]

≤ 2 exp

(
2L4

0c
2

n

)
.

(97)
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Thus by Markov’s inequality,

P

(∣∣∣∣∣ 1n
n∑

i=1

⟨∇f(w,zi),∇R(w)⟩ − ∥∇R(w)∥2
∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−cδ +

2L4
0c

2

n

)
. (98)

Taking c = nδ/(4L4
0), the first inequality is full-filled. By the spectral mapping property of the

matrix exponential function and Sub-Gaussian property of θi∇2f(w, zi),

E

[
exp

(
sup

∥u∥=1

uT

(
2c

n

n∑
i=1

θi∇2f(w,zi)

)
u

)]
=E

[
exp

(
σmax

(
2c

n

n∑
i=1

θi∇2f(w,zi)

))]

=E

[
σmax

(
exp

(
2c

n

n∑
i=1

θi∇2f(w,zi)

))]

≤tr

{
E

[
exp

(
2c

n

n∑
i=1

θi∇2f(w,zi)

)]}

≤tr

{
exp

(
2L2

1c
2Id

n

)}
=d exp

(
2L2

1c
2

n

)
.

(99)

Thus

E

[
exp

(
c

∥∥∥∥∥ 1n
n∑

i=1

∇2f(w,zi)−∇2R(w)

∥∥∥∥∥
)]

≤ E

[
exp

(
sup

∥u∥=1

uT

(
c

n

n∑
i=1

∇2f(w,zi)−∇2R(w)

)
u

)]

+ E

[
exp

(
sup

∥u∥=1

uT

(
−c

n

n∑
i=1

∇2f(w,zi)−∇2R(w)

)
u

)]

≤ 2d exp

(
2L2

1c
2

n

)
.

(100)

Again by Markov’s inequality

P

(∥∥∥∥∥ 1n
n∑

i=1

∇2f(w,zi)−∇2R(w)

∥∥∥∥∥ ≥ δ

)
≤ 2d exp

(
−cδ +

2L2
1c

2

n

)
. (101)

Taking c = nδ/(4L2
1), the second inequality follows.

The next lemma establishes Liptchitz property of ⟨∇f(w, z),∇R(w)⟩ and ∥∇R(w)∥2.
Lemma 11. For any w,w′ ∈ W , we have

|⟨∇f(w,z),∇R(w)⟩ − ⟨∇f(w′,z),∇R(w′)⟩| ≤ 2L0L1∥w −w′∥, (102)

and
|∥∇R(w)∥2 − ∥∇R(w′)∥2| ≤ 2L0L1∥w −w′∥. (103)

Proof. We have

|⟨∇f(w,z),∇R(w)⟩ − ⟨∇f(w′,z),∇R(w′)⟩| ≤|⟨∇f(w,z)−∇f(w′,z),∇R(w)⟩|
+|⟨∇f(w′,z), (∇R(w)−∇R(w′))⟩|
≤2L0L1∥w −w′∥,

(104)

and

|∥∇R(w)∥2 − ∥∇R(w′)∥2| = |⟨∇R(w)−∇R(w′),∇R(w) +∇R(w′⟩)| ≤ 2L0L1∥w −w′∥ (105)

due to the Lipschitz gradient. Hence we get the conclusion.

Now, we are ready to provide the proof of Lemma 2.
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C.2.1 Proof of Lemma 2

Restate of Lemma 2 Under Assumption 1 and 4, for r = min
{

λ
8L2

, α2

16L0L1

}
, with probability at

least

1− 2

(
3D

r

)d

exp

(
− nα4

128L4
0

)
− 4d

(
3D

r

)d

exp

(
− nλ2

128L2
1

)
−K

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
,

(106)

we have

i: MS = {w∗
S,1, . . . ,w

∗
S,K};

ii: for any w ∈ W , if ∥∇RS(w)∥ < α2/(2L0) and ∇2RS(w) ≻ −λ/2, then ∥w −
PMS

(w)∥ ≤ λ∥∇RS(w)∥/4,

where ∇2RS(w) ≻ −λ/2 means ∇2RS(w) + λ/2Id is a positive definite matrix.

Proof. Let

r = min

{
λ

8L2
,

α2

16L0L1

}
, (107)

then according to the result of covering number of ℓ2-ball and covering number is increasing by
inclusion (i.e., [81]), there are N ≤ (3D/r)d points w1, . . . ,wN ∈ W such that: ∀w ∈ W ,
∃j ∈ {1, · · · , N}, ∥w −wj∥ ≤ r. Then, by Lemma 10 and Bonferroni inequality we have

P
(

max
1≤j≤N

∣∣⟨RS(wj),∇R(wj)⟩ − ∥∇R(wj)∥2
∣∣ ≥ α2

4

)
≤ 2

(
3D

r

)d

exp

(
− nα4

128L4
0

)
, (108)

and

P
(

max
1≤j≤N

∥∥∇2RS(wj)−∇2R(wj)
∥∥) ≤ 4d

(
3D

r

)d

exp

(
− nλ2

128L2
1

)
. (109)

Define the event

H =

{
max

1≤j≤N
|⟨∇RS(wj),∇R(wj)⟩ − ∥∇R(wj)∥| ≤

α2

4
,

max
1≤j≤N

∥∥∇2RS(wj)−∇2R(wj)
∥∥ ≤ λ

4
,

w∗
S,k is a local minimum of RS(·), k = 1, . . . ,K

}
,

(110)

then combining inequalities (75), (108), (109), and Bonferroni inequality, we have

P(H) ≥ 1− 2

(
3D

r

)d

exp

(
− nα4

128L4
0

)
− 4d

(
3D

r

)d

exp

(
− nλ2

128L2
1

)
−K

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
.

(111)

Next, we show that on event H , the two statements in Lemma 2 hold. For any w ∈ W there is
j ∈ {1, . . . , N} such that ∥w −wj∥ ≤ r. When event H holds, due to Lemma 11, we have∣∣⟨∇RS(w),∇R(w)⟩ − ∥∇R(w)∥2

∣∣ ≤ ∣∣⟨∇RS(wj),∇R(wj)⟩ − ∥∇R(wj)∥2
∣∣

+ |⟨∇RS(w),∇R(w)⟩ − ⟨∇RS(wj),∇R(wj)⟩|
+
∣∣∥∇R(w)∥2 − ∥∇R(wj)∥2

∣∣
≤ α2

4
+

α2

8
+

α2

8

=
α2

2
,

(112)
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and ∥∥∇2RS(w)−∇2R(w)
∥∥ ≤

∥∥∇2RS(wj)−∇2R(wj)
∥∥

+
∥∥∇2RS(w)−∇2RS(wj)

∥∥+ ∥∥∇2R(w)−∇2R(wj)
∥∥

≤ λ

4
+

λ

8
+

λ

8

=
λ

2
.

(113)

Let D = {w : ∥∇R(w)∥ ≤ α}. According to Lemma 8 in the supplemental file of [49], there
exists disjoint open sets {Dk}∞k=1 with Dk possibly empty for k ≥ K + 1 such that D = ∪∞

k=1Dk.
Moreover w∗

k ∈ Dk, for 1 ≤ k ≤ K and σmin(∇2R(w)) ≥ λ for each w ∈ ∪K
k=1Dk while

σmin(∇2R(w)) ≤ −λ for each w ∈ ∪∞
k=K+1Dk.

Thus when the event H holds, for w ∈ Dc, we have

⟨∇RS(w),∇R(w)⟩ ≥ α2

2
, (114)

and thus w is not a critical point of the empirical risk. On the other hand, Weyl’s theorem implies

|σmin(∇2RS(w))− σmin(∇2R(w))| ≤ ∥∇2RS(w)−∇2R(w)∥ ≤ λ

2
. (115)

Hence σmin(∇2RS(w)) ≤ −λ/2 for each w ∈ ∪∞
k=K+1Dk, and then w is not a empirical local

minimum. Moreover, σmin(∇2RS(w)) ≥ λ/2 for each w ∈ ∪K
k=1Dk, thus for k = 1, . . . ,K, RS(·)

is strongly convex in Dk and there is at most one local minimum in Dk. Hence when H holds, RS(·)
has at most K local minimum point, and w∗

S,1, . . . ,w
∗
S,K are K distinct local minima. This proves

MS = {w∗
S,1, . . . ,w

∗
S,K}. By inequality (114), we have

α2

2
≤ ⟨∇RS(w),∇R(w)⟩ ≤ ∥∇RS(w)∥∥∇R(w)∥ ≤ L0∥∇RS(w)∥ (116)

for w ∈ Dc. Thus if ∥∇RS(w)∥ < α2/(2L0) and ∇2RS(w) ≻ −λ/2, then w ∈ ∪K
k=1Dk. The

second statement of Lemma 2 follows from the fact that RS(·) is λ/2-strongly convex on each of Dk

for k = 1, . . . ,K.

C.3 Proof of Theorem 4

The following is the proof of Theorem 4, it provides upper bound of the expected excess risk of any
proper algorithm for non-convex problems that efficiently approximates SOSP. We first introduce the
following lemma which is a variant of Lemma 1.
Lemma 12. Under Assumptions 1 and 4

ES

[
|RS(w

∗
S,k)−R(w∗

S,k)|
]

≤ 2M√
n

+
8L0

nλ

[
L0 +

{
64L2

0L
2
2

λ3
+

16L2
1

λ

(
5
√

log d+
4e log d√

n

)2
}
min

{
3D,

3λ

2L2

}]
.

(117)

Proof. For w ∈ B2(w
∗
k,

λ
4L2

), by Weyl’s theorem (Exercise 6.1 in [72]),

σmin(∇2R(w)) ≥ σmin(∇2R(w∗
k))− ∥∇2R(w)−∇2R(w∗

k)∥ ≥ λ− L2∥w −w∗
k∥ ≥ 3λ

4
. (118)

Hence R(·) is strongly convex in B2(w
∗
k,

λ
4L2

). Then because w∗
k is a local minimum of R(·), we

have
w∗

k = argmin
w∈B2(w

∗
k
, λ
4L2

)

R(w). (119)

Thus R(w∗
k) ≤ R(w∗

S,k) and RS(w
∗
S,k) ≤ RS(w

∗
k). Then

(RS(w
∗
S,k)−R(w∗

S,k))+ ≤ |RS(w
∗
k)−R(w∗

k)|, (120)

and
E
[
(RS(w

∗
S,k)−R(w∗

S,k))+
]
≤ E [|RS(w

∗
k)−R(w∗

k)|]
a

≤
(
E
[
(RS(w

∗
k)−R(w∗

k))
2]) 1

2

≤ M√
n
,

(121)
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where a is due to Jensen’s inequality. Hence

E
[
|RS(w

∗
S,k)−R(w∗

S,k)|
]
= E

[
(RS(w

∗
S,k)−R(w∗

S,k))+
]
+ E

[
(RS(w

∗
S,k)−R(w∗

S,k))−
]

= 2E
[
(RS(w

∗
S,k)−R(w∗

S,k))+
]
− E

[
RS(w

∗
S,k)−R(w∗

S,k)
]

≤ 2E
[
(R(w∗

S,k)−R(w∗
S,k))+

]
+ |E

[
RS(w

∗
S,k)−R(w∗

S,k)
]
|

≤ 2M√
n

+ |E
[
RS(w

∗
S,k)−R(w∗

S,k)
]
|.

(122)

Then (117) follows from (76).

Then we are ready to give the proof of Theorem 4.

Restate of Theorem 4 Under Assumption 1, 2 and 4, if wt satisfies (18) and r defined in Lemma 2,
by choosing t such that ζ(t) < α2/(2L0) and ρ(t) < λ/2 we have

|EA,S [R(wt)−RS(wt)] | ≤
8L0

λ
ζ(t) + 2L0Dδ +

2KM√
n

+
8KL2

0

nλ

+

(
L0 min

{
3D,

3λ

2L2

}
+ 2M

)
ξn,1 + 2Mξn,2,

(123)

where

ξn,1 = K

{
512L2

0L
2
2

nλ4
+

128L2
1

nλ2

(
5
√

log d+
4e log d√

n

)2
}
, (124)

and

ξn,2 = 2

(
3D

r

)d

exp

(
− nα4

128L4
0

)
+ 4d

(
3D

r

)d

exp

(
− nλ2

128L2
1

)
. (125)

If with probability at least 1− δ′ (δ′ can be arbitrary small), RS(·) has no spurious local minimum,
then

|EA,S [R(wt)−RS(wt)] | ≤
8L0

λ
ζ(t) + 2L0Dδ + 6Mδ′ +

8(K + 4)L2
0

nλ

+

(
(K + 4)L0

K
min

{
3D,

3λ

2L2

}
+ 6M

)
ξn,1 + 6Mξn,2.

(126)

Proof. Remind the event in the proof of Lemma 2

H =

{
max

1≤j≤N
∥⟨∇RS(wj),∇R(wj)⟩ − ∥∇R(wj)∥∥ ≤ α2

4
,

max
1≤j≤N

∥∥∇2RS(wj)−∇2R(wj)
∥∥ ≤ λ

4
,

w∗
S,k is a local minimum of RS(·), k = 1, . . . ,K

}
,

(127)

We have P(Hc) ≤ ξn,1 + ξn,2, and on the event H

i: MS = {w∗
S,1, . . . ,w

∗
S,K};

ii: For any w ∈ W , if ∥∇RS(w)∥ < α2/(2L0) and ∇2RS(w) ≻ −λ/2, then ∥w −
PMS

(w)∥ ≤ λ∥∇RS(w)∥/4.

By Assumption 1,

|E [R(wt)−RS(wt)]| ≤ |E [(R(wt)−RS(wt))1H ]|+ |E [(R(wt)−RS(wt))1Hc ]|
≤ |E [(R(wt)−R(PMS (wt)))1H ]|
+ |E [(RS(wt)−RS(PMS (wt)))1H ]|
+ |E [(R(PMS (wt))−RS(PMS (wt)))1H ]|+ 2MP(Hc)

≤ 2L0E [∥wt − PMS (wt)∥1H ]

+ |E [(R(PMS (wt))−RS(PMS (wt)))1H ]|+ 2MP(Hc).

(128)
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Because ζ(t) < α2/(2L0), ρ(t) < λ/2 and (18), we have on event H

PA (U) ≥ 1− δ, (129)

where

U =

{
∇RS(wt) <

α2

2L0
,∇2RS(wt) ≻ −λ

2

}
. (130)

Thus we have

E[∥wt − PMS (wt)∥1H ] ≤ E[∥wt − PMS
(wt)∥1H∩Uc ] + E[∥wt − PMS

(wt)∥1H∩U ]

≤ 4

λ
ζ(t) +Dδ,

(131)

where the second inequality is due to the property (ii) in Lemma 2 holds on event H . According to
(117), we have

|E [(R(PMS (wt))−RS(PMS (wt)))1H ]|
≤ E |[(R(PMS (wt))−RS(PMS (wt)))1H ]|

≤ E
[

max
1≤k≤K

|R(w∗
S,k)−RS(w

∗
S,k)|

]
≤

K∑
k=1

E
[
|R(w∗

S,k)−RS(w
∗
S,k)|

]
≤ K

[
2M√
n

+
8L0

nλ

[
L0 +

{
64L2

0L
2
2

λ3
+

16L2
1

λ

(
5
√

log d+
4e log d√

n

)2
}
min

{
3D,

3λ

2L2

}]]
.

(132)

Combination of equations (128), (131) and (132) completes the proof of (123).

To establish (126), we bound |E [(RS(PMS
(wt))−R(PMS

(wt)))1H ]| in a different manner. Re-
mind M = {w∗

1, · · · ,w∗
K} is the set of population local minima. Let

G = {RS(·) has no spurious local minimum} . (133)

Then the assumption implies that P(Gc) ≤ δ′. Note that

|E[(R(PMS (wt))−RS(PMS (wt)))1H ]| ≤
∣∣E[(R(PMS (wt))−RS(PMS (wt)))1H

⋂
G]
∣∣

+
∣∣E[(R(PMS (wt))−RS(PMS (wt)))1H

⋂
Gc ]
∣∣

≤
∣∣E[(R(PMS (wt))−RS(PMS (wt)))1H

⋂
G]
∣∣+ 2Mδ′

=
∣∣E[(R(PMS (wt))−RS(w

∗
S,1))1H

⋂
G]
∣∣+ 2Mδ′

≤
∣∣E[(R(PMS (wt))−RS(w

∗
S,1))1H ]

∣∣+ 4Mδ′,
(134)

where the last inequality is due to P(Gc) ≤ δ′. Moreover, under Assumption 1∣∣E[(R(PMS (wt))−RS(w
∗
S,1))1H ]

∣∣ ≤ |E[(R(PMS (wt))−R(PM(PMS (wt))))1H ]|
+ |E[(R(PM(PMS (wt)))−R(w∗

1))1H ]|
+
∣∣E[(R(w∗

1)−R(w∗
S,1))1H ]

∣∣
+
∣∣E[(R(w∗

S,1)−RS(w
∗
S,1))1H ]

∣∣
≤
∣∣∣E [max

k

{
R(w∗

S,k)−R(w∗
k)
}

1H

]∣∣∣
+max

k
{|R(w∗

k)−R(w∗
1)|}+

∣∣E[(R(w∗
1)−R(w∗

S,1))]
∣∣

+
∣∣E[(R(w∗

S,1)−RS(w
∗
S,1))]

∣∣+ 4MP(Hc).

(135)

Due to Proposition 1, R(w∗
S,k)−R(w∗

k) ≥ 0, then

∣∣∣E [max
k

{
R(w∗

S,k)−R(w∗
k)
}

1H

]∣∣∣ ≤ ∣∣∣∣∣E
[

K∑
k=1

(R(w∗
S,k)−R(w∗

k))

]∣∣∣∣∣
≤

K∑
k=1

∣∣E[(R(w∗
S,k)−R(w∗

k))]
∣∣ . (136)
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According to Lemma 1,

|E[R(w∗
S,k)−RS(w

∗
S,k)]| ≤

8L0

nλ

[
L0 +

{
64L2

0L
2
2

λ3
+

16L2
1

λ

(
5
√

log d+
4e log d√

n

)2
}
min

{
3D,

3λ

2L2

}]

=
8L2

0

nλ
+

L0

K
min

{
3D,

3λ

2L2

}
ξn,1.

(137)
Then

E[R(w∗
S,k)−R(w∗

k)] = E[R(w∗
S,k)−RS(w

∗
S,k)] + E[RS(w

∗
S,k)−RS(w

∗
k)]

≤ 8L2
0

nλ
+

L0

K
min

{
3D,

3λ

2L2

}
ξn,1,

(138)

where the inequality is due to the definition of w∗
S,k. (134), (135), (137) and (138) together implies

|E[(R(PMS (wt))−RS(PMS (wt)))1H ]| ≤ 8(K + 2)L2
0

nλ
+

(K + 2)L0

K
min

{
3D,

3λ

2L2

}
ξn,1

+max
k

{|R(w∗
k)−R(w∗

1)|}+ 4M(δ′ + ξn,1 + ξn,2).

(139)

Now we deal with the term maxk {|R(w∗
k)−R(w∗

1)|}. Note that
|R(w∗

k)−R(w∗
1)| ≤ |E[R(w∗

S,k)−RS(w
∗
k)]|+ |E[R(w∗

S,1)−RS(w
∗
1)]|

+ |E[RS(w
∗
S,k)−RS(w

∗
S,1)]|

≤ 16L2
0

nλ
+

2L0

K
min

{
3D,

3λ

2L2

}
ξn,1 + |E[RS(w

∗
S,k)−RS(w

∗
S,1)]|.

(140)

Because on the event H
⋂
G, RS(w

∗
S,k)−RS(w

∗
S,k) = 0,

|E[RS(w
∗
S,k)−RS(w

∗
S,1)]| ≤ 2M(P(Hc) + P(Gc)) ≤ 2M(ξn,1 + ξn,2 + δ′). (141)

Combining (139), (140) and (141), we (126).

|E[(R(PMS (wt))−RS(PMS (wt)))1H ]| ≤ 8(K + 4)L2
0

nλ
+

(K + 4)L0

K
min

{
3D,

3λ

2L2

}
ξn,1

+ 6M(δ′ + ξn,1 + ξn,2).

(142)

(128), (131) and (142) implies (126).

We notice the technique of deriving the order Õ(1/n) when empirical risk has no spurious local
minima with high probability is very tricky. Because the obstacle is when we derive upper bound
of |E [(RS(PMS

(wt))−R(PMS
(wt)))1H ]|, the involved PMS

(wt) is related to the proper algo-
rithm, then it is not guaranteed to converge to a specific empirical local minima which makes us
can not directly apply Lemma 1. However, if the proper algorithm is guaranteed to find a specific
local minima e.g., GD finds the minimal norm solution for over-parameterized neural network, which
is called “the implicit regularization of GD” [4], the order of Õ(1/n) can be maintained even the
assumption on empirical local minima is violated.

C.4 Proof of Theorem 5

The proof is based on the Lemma 2 in the above section.

Restate of Theorem 5 Under Assumption 1, 2 and 4, if wt satisfies (18), by choosing t in (18) such
that ζ(t) < α2/(2L0) and ρ(t) < λ/2, we have

EA,S [R(wt)−R(w∗)] ≤ 4L0

λ
ζ(t) + L0Dδ +

2KM√
n

+
8KL2

0

nλ
+

(
L0 min

{
3D,

3λ

2L2

}
+ 2M

)
ξn,1 + 2Mξn,2

+ EA,S [RS(PMS (wt))−RS(w
∗
S)],

(143)

If with probability at least 1− δ′ (δ′ can be arbitrary small), RS(·) has no spurious local minimum,
then

EA,S [R(wt)−R(w∗)] ≤ 4L0

λ
ζ(t) + L0Dδ + 8Mδ′ +

8(K + 4)L2
0

nλ

+

(
(K + 4)L0

K
min

{
3D,

3λ

2L2

}
+ 8M

)
ξn,1 + 8Mξn,2,

(144)
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where ξn,1 and ξn,2 are defined in Theorem 4, and w∗
S is the global minimum of RS(·).

Proof. By Assumption 1 and the relationship RS(w
∗
S) ≤ RS(w

∗), we have the following decompo-
sition
E [R(wt)−R(w∗)] = E [R(wt)−RS(w

∗)]

≤ E[R(wt)−RS(w
∗
S)]

≤ |E [(R(wt)−RS(w
∗
S))1H ] |+ |E [(R(wt)−RS(w

∗
S))1Hc ] |

≤ |E[(R(wt)−R(PMS (wt)))1H ]|+ |E[(R(PMS (wt))−RS(PMS (wt)))1H ]|
+ E[(RS(PMS (wt))−RS(w

∗
S))1H ] + 2MP(Hc)

≤ L0E [∥wt − PMS (wt)∥1H ] + E[|R(PMS (wt))−RS(PMS (wt))| 1H ]

+ E[RS(PMS (wt))−RS(w
∗
S)] + 2MP(Hc).

(145)
The upper bound of the first and second terms in the last inequality can be easily derived from the
proof of Theorem 4 which implies

L0E [∥wt − PMS (wt)∥1H ] + E[|R(PMS (wt))−RS(PMS (wt))| 1H ]

≤ 4L0

λ
ζ(t) + L0Dδ +

2KM√
n

+
8KL2

0

nλ
+ L0 min

{
3D,

3λ

2L2

}
ξn,1.

(146)

Plugging this into (145), we get (143).

Next, we move on to (144). According to (145),

E [R(wt)−R(w∗)] = E [R(wt)−RS(w
∗)]

≤ E[R(wt)−RS(w
∗
S)]

≤ |E [(R(wt)−RS(w
∗
S))1H ] |+ |E [(R(wt)−RS(w

∗
S))1Hc ] |

≤ |E[(R(wt)−R(PMS (wt)))1H ]|
+ |E[(R(PMS (wt))−RS(PMS (wt)))1H ]|
+ E[(RS(PMS (wt))−RS(w

∗
S))1H ] + 2MP(Hc).

(147)

According to (131),

|E[(R(wt)−R(PMS (wt)))1H ]| ≤ L0E [∥wt − PMS (wt)∥1H ] ≤ 4L0

λ
ζ(t) + L0Dδ. (148)

Moreover,

E[(RS(PMS (wt))−RS(w
∗
S))1H ] ≤ |E[(RS(PMS (wt))−RS(w

∗
S))1H

⋂
G]|

+ |E[(RS(PMS (wt))−RS(w
∗
S))1H

⋂
Gc ]|.

(149)

Because on the event H
⋂
G, RS(PMS

(wt))−RS(w
∗
S) = 0, (149) implies

E[(RS(PMS (wt))−RS(w
∗
S))1H ] ≤ 2MP(Gc) = 2Mδ′. (150)

(147), (142), (148) and (150) implies (144).

D An Algorithm Approximates the SOSP

For non-convex problems, as we have mentioned in the main body of this paper, we consider proper
algorithm that approximates SOSP. Here, we present a detailed discussion to them, and propose such
a proper algorithm to make it more concrete.

There are extensive papers about non-convex optimization working on proposing algorithms that
approximate SOSP, see [27, 24, 19, 37, 39, 76, 52] for examples. However, to the best of our
knowledge, theoretical guarantee of vanilla SGD approximating SOSP remains to be explored,
especially for the constrained parameter space. The most related result is Theorem 11 in [27] that
projected perturbed noisy gradient descent approximates a (ϵ,

√
L2ϵ)-SOSP (The definition of (ϵ, γ)-

SOSP is in the main body of this paper.) in a computational cost of O(ϵ−2). Though this result is
only applied to equality constraints.

Considering the mismatch of settings between this paper and the existing literatures, we propose a
gradient-based method Algorithm 1 inspired by [52] to approximate SOSP for non-convex problems.
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Algorithm 1 Projected Gradient Descent (PGD)

Input: Parameter space B1(0, 1), initial point w0, learning rate η = 1
L1

, tolerance ϵ ≤
min

{
8β3L3

2

27L3
1
, 27
643L3

2
, β
2

}
,

for t = 0, 1, · · · do
if ∥∇RS(wt)∥ ≥ ϵ then

if wt ∈ B2(0, 1) with ∥wt∥ = 1 then
wt+1 =

(
1− β

L1

)
wt

else
wt+1 = PB2(0,1) (wt − η∇RS(wt))

end if
else

if ∇2RS(wt) ⪯ −ϵ
1
3 then

Computed ut ∈ B2(0, 1) such that (ut −wt)
T∇2RS(wt)(ut −wt) ≤ −β2ϵ

1
3

8L1

wt+1 = σut + (1− σ)wt with σ = 3L1ϵ
1
3

2βL2
.

else
Return wt+1

end if
end if

end for

Without loss of generality, we assume that the convex compact parameter space W is B2(0, 1). The
proposed algorithm is conducted under the following assumption which implies that there is no
minimum on the boundary of the parameter space W .
Assumption 5. For any w ∈ B2(0, 1) with ∥w∥ = 1, there exists L1 > β > 0 such that
⟨∇RS(w),w⟩ ≥ β.

We have following discussion to the proposed Algorithm 1 before providing its convergence rate.
The involved quadratic programming can be efficiently solved under Assumption 4 [58]. In addition,
we can find ut in Algorithm 1 is because the minimal value of the quadratic loss is −β2ϵ1/3/8L1.
The next theorem states the convergence rate of the proposed Algorithm 1.
Theorem 6. Under Assumption 1 and 5, let wt updated in Algorithm 1, by choosing

ϵ ≤ min

{
8β3L3

2

27L3
1

,
27

643L3
2

,
β

2

}
, (151)

and σ = 3L1ϵ
1
3 /2βL2, the algorithm breaks at most

2M max

{
2L1

ϵ2
,
256L2

2

9ϵ

}
= O(ϵ−2) (152)

number of iterations.

Proof. ∥∇RS(wt)∥ ≥ ϵ holds for two cases.

Case 1: If wt ∈ B2(0, 1) with ∥w∥ = 1, then we have

RS(wt+1)−RS(wt) ≤ ⟨∇RS(wt),wt+1 −wt⟩+
L1

2
∥wt+1 −wt∥2

≤ −β2

L1
+

β2

2L1

= − β2

2L1

< − ϵ2

2L1
,

(153)

due to the Assumption 5 and Lispchitz gradient.
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Case 2: If wt ∈ B2(0, 1) but ∥wt∥ < 1 then

RS(wt+1)−RS(wt) ≤ ⟨∇RS(wt),wt+1 −wt⟩+
L1

2
∥wt+1 −wt∥2

a

≤
(
−L1 +

L1

2

)
∥wt+1 −wt∥2

= −L1

2
∥wt+1 −wt∥2.

(154)

Here a is due to the property of projection. Then, if ∥wt+1∥ < 1, one can immediately verify that

RS(wt+1)−RS(wt) ≤ −(1/2L1)∥∇RS(wt)∥2 ≤ − ϵ2

2L1
. (155)

On the other hand, if ∥wt∥ < 1 while ∥wt+1∥ = 1, descent equation (154) implies RS(wt+1) −
RS(wt) ≤ 0. More importantly, wt+1 goes back to the sphere. Then we go back to Case 1. Thus we
have

RS(wt+2)−RS(wt) ≤ RS(wt+2)−RS(wt+1) +RS(wt+1)−RS(wt) ≤ − ϵ2

2L1
(156)

in this situation.

Combining the results in these two cases, we have

−2M ≤ RS(w2t)−RS(w0) =

t∑
j=1

RS(w2(j))−RS(w2(j−1)) ≤ − tϵ2

2L1
. (157)

Thus, t ≤ 4L1M/ϵ2. Then we can verify that wt approximates a first-order stationary point in the
number of O

(
ϵ−2

)
iterations.

On the other hand, when ∥∇RS(wt)∥ ≤ ϵ ≤ β/2, we notice that
∥∇RS(w)∥ = ∥∇RS(w)∥∥w∥ ≥ ⟨∇RS(w),w⟩ ≥ β, (158)

for any w ∈ B2(0, 1) with ∥w∥ = 1. Then by Lipschitz gradient, we have

∥w −wt∥ ≥ 1

L1
∥∇RS(w)−∇RS(wt)∥

≥ 1

L1
(∥∇RS(w)∥ − ∥∇RS(wt)∥)

≥ 1

L1
(β − ϵ)

≥ β

2L1
,

(159)

for any w satisfies ∥w∥ = 1. Thus we can choose the ut in Algorithm 1, and ut ∈ B2(0, 1). Then

with the Lipschitz Hessian, by taking σ = 3L1ϵ
1
3

2βL2
and ϵ ≤ min

{
8β3L3

2

27L3
1
, 27
643L3

2

}
,

RS(wt+1)−RS(wt) ≤ σ ⟨RS(wt),ut −wt⟩+
σ2

2
(ut −wt)

T∇2RS(wt)(ut −wt) +
σ3L2

6
∥ut −wt∥3

≤ σ∥RS(wt)∥∥ut −wt∥ − σ2 β
2ϵ

1
3

16L2
1

+
σ3L2

6

(
β

2L1

)3

a

≤ σ
βϵ

2L1
− σ2 β

2ϵ
1
3

16L2
1

+ σ3L2β
3

48L3
1

≤ 3ϵ
4
3

4L2
− 9ϵ

128L2
2

≤ − 9ϵ

256L2
2

,

(160)
where a is from the value of ut, and the last two inequality is due to the choice of σ and ϵ. Thus,
combining this with (153) and (154), we see the Algorithm break after at most

2M max

{
4L1

ϵ2
,
256L2

2

9ϵ

}
= O(ϵ−2) (161)

iterations.
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Figure 1: Results of digits dataset under cross entropy loss. From the left to right are respectively
training loss, generalization error, and excess risk.

Figure 2: Results of MNIST dataset on LeNet5. From the left to right are respectively training loss,
generalization error and excess risk.

From the result, we see that PGD approximates some (ϵ, ϵ
1
3 ) second-order stationary point at a

computational cost of O(ϵ−2).

D.1 Excess Risk Under Non-convex problems

We have the following corollary about the expected excess risk of the proposed PGD Algorithm 1. This
corollary is proved when we respectively plug ζ(t) = max

{
2
√
ML1/t, 512L

2
2/9t

}
, ρ(t) = ζ(t)

1
3

and δ = 0 into the Theorem 4.

Corollary 3. Under Assumption 1, 2, 4, and 5. For t satisfies with

max

{
2

√
ML1

t
,
512L2

2

9t

}
≤ min

{
8β3L3

2

27L3
1

,
27

643L3
2

,
β

2
,
α2

2L0
,
λ3

8

}
(162)

we have

min
1≤s≤t

|EA,S [R(ws)−R(w∗)] | ≤ 2L0

λ
√
n
+

4L0

λ
max

{
2

√
ML1

t
,
512L2

2

9t

}
+

2KM√
n

+
8KL2

0

nλ
+

(
L0 min

{
6,

3λ

2L2

}
+ 2M

)
ξn,1 + 2Mξn,2

+ EA,S [RS(PMS (wt))−RS(w
∗
S)].

(163)

where wt is updated by PGD, ξn,1 and ξn,2 are respectively defined in Theorem 4 with D = 2.

E Experiments

In this section, we empirically verify our theoretical results in this paper. The experiments are
respectively conducted for convex and non-convex problems. We choose SGD [61]; RMSprop [68],
and Adam [44] as three proper algorithms which are widely used in the field of machine learning.
Since we can not access the exact population risk R(wt) as well as infw R(w) during training.
Hence, we use the loss on test set to represent the excess risk. Our experiments are conducted on a
server with single NVIDIA V100 GPU. All the reported results are the average over five independent
runs.
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Figure 3: Results of CIFAR10 dataset on various structures of ResNet i.e., 20, 32, 44, 56. From the
left to right are respectively training loss, generalization error and excess risk.

E.1 convex problems

We conduct the experiments on multi-class logistic regression to verify our results for convex
problems. We use the dataset digits which is a set with 1800 samples from 10 classes. The dataset is
available on package sklearn [60].

We split 70% data as the training set and the others are used as the test set. We follow the training
strategy that all the experiments are conducted for 2000 steps, the learning rates are respectively 0.1,
0.001, and 0.001 for SGD, RMSprop, and Adam. They are decayed with the inverse square root of
update steps. The results are summarized in the Figure 1.

From the results, we see that training loss for the three proper algorithms converge close to zero,
while the generalization error and excess risk converge to a constant. The observation is consistent
with our theoretical conclusion in Section 3.

E.2 Non-convex problems on Neural Network

For the non-convex problem, we conduct experiments on image classification with various neural
network models. Specifically, we use convolutional neural networks LeNet5 [46] and ResNet [33].
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Figure 4: Results of CIFAR100 dataset on various structures of ResNet i.e., 20, 32, 44, 56. From the
left to right are respectively training loss, generalization error and excess risk.

The two structures are widely used in the image classification tasks, and they are leveraged to verify
our conclusions for non-convex problems with model parameters in the same order of n and much
larger than n.

For both structures, we follow the classical training strategy. All the experiments are conducted for
200 epochs with cross entropy loss. The learning rates are set to be 0.1, 0.002, 0.001 respectively
for SGD, RMSprop, and Adam. More ever, the learning rates are decayed by a factor 0.2 at epoch
60, 120, 160. We use a uniform batch size 128 and weight decay 0.0005.

E.2.1 Model Parameters in the Same Order of Training Samples

Data. The dataset is MNIST [46] which contain binary images of handwritten digits with 50000
training samples and 10000 test samples.

Model. The model is LeNet5 which is a five layer convolutional neural network with nearly 60, 000
number of parameters.

Main Results. The results are summarized in Figure 2. Our code is based on https://github.
com/activatedgeek/LeNet-5. From the results, we see that the training loss monotonically
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decreases with the update steps, while both the generalization error and excess risk tend to converge
to some constant. This is consistent with our theoretical results in Section 4.2 when d is in the same
order of n.

E.3 Model Parameters Larger than the Order of Training Samples

Data. The datasets are CIFAR10 and CIFAR100 [45], which are two benchmark datasets of colorful
images both with 50000 training samples, 10000 testing samples but from 10 and 100 object classes
respectively.

Model. The model we used is ResNet in various depths i.e., 20, 32, 44, 56. The four structures
respectively have nearly 0.27, 0.46, 0.66, and 0.85 millions of parameters.

Main Results. The experimental results for CIFAR10 and CIFAR100 are respectively in Figure 3
and 4. Our code is based on https://github.com/kuangliu/pytorch-cifar. The results show
the optimization error, generalization error, and excess risk exhibit similar trends as the results on
MNIST dataset. Thus, although our bounds in Section 4 are non-vacuous when d is in the same order
of n. The empirical verification on the over-parameterized neural network indicates that our results
potentially can be applied to the regime of d ≫ n.

F Examples

In this Section, we present three examples satisfies our assumptions imposed in this paper. Let us
start with a linear regression problem for convex optimization.
Example 1 (Linear Regression). Let z = (x, y), y = x⊤w∗ + ϵ for independent noise ϵ, and
f(w, z) = (y −w⊤x)2.

For any z, the quadratic loss f(w, z) is convex, and satisfies our smoothness condition Assumption
1. Obviously, when the Hessian of population risk E[xx⊤] is positively definite, the population
risk is local (global) strongly convex, thus Assumptions 1, 2, and 3 are satisfied. However, for any
instantaneous loss f(w, z) has Hessian of xx⊤ which means f(w, z) is not necessarily strongly
convex with respect to w for any z. Thus, we can only treat it as a convex loss function when
applying the technique in [32], and get the excess risk bound of order O(

√
1/n). However, the

empirical minimizer has a excess risk of order O(1/n) which matches our result. By the way, the
technique in [81] also can be applied here, while they require the number of data is sufficiently large,
while we do not have such requirement.

The above example has a globally strongly convex population risk, let us consider the following
example with locally but not globally strongly convex population risk.
Example 2 (Robust Regression). Let z = (x, y), y = x⊤w∗ + ϵ for independent noise ϵ, and
f(w, z) = ϕ(y −w⊤x), with

ϕ(u) =


u2 − 1

3
u3 0 ≤ u ≤ 1,

u2 + 1
3
u3 0 ≤ u ≤ 1,

|u| |u| ≥ 1.

(164)

By computing the gradient and Hessian, one can verify that for any z, our robust regression loss
f(w, z) is convex, and satisfies our smoothness condition Assumption 1. Again, when the matrix
E[xx⊤] is positively definite, the population risk of this example is locally but not globally strongly
convex. Then the example satisfies our Assumption 1-3. One can also show that the empirical risk
minimizer has the generalization bound of order O(1/n) when E[ϵ2] is small enough. The error also
matches our generalization bound in Theorem 2.

Finally, we consider an example of non-convex loss that satisfies our imposed Assumptions 1 and 4.
Example 3. Let zi be mixture Gaussian data such that zi ∼ 1

2N (w∗
1, I) +

1
2N (w∗

2, I) = pw∗(·).
The maximizing likelihood loss is f(w, z) = − log pw(z).

By checking the gradient and Hessian, the loss function f(w, z) satisfies smoothness Assump-
tion 1. The population risk R(w) = −Ez∼pw∗ [log pw(z)], which has two global minima
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(w∗
1,w

∗
2), (w

∗
2,w

∗
1), and a saddle point ((w∗

1 + w∗
2)/2, (w

∗
1 + w∗

2)/2). Thus, this problem vio-
lates the PL-inequality which says that every local minima are global minima. However, by Lemma
16 in [49], we can compute the Hessian to check that the two population global minima are all
strict local minima, while the saddle point is strict saddle point. Thus, the example satisfies our
Assumptions 1 and 4.
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