
A Experiment Details

A.1 Data

Table A1 summarizes the datasets used in this paper, which are all licensed under CC BY-NC-ND or
CC BY and have been used extensively by the research communities. Speech datasets are sourced
from interviews, TED talks, and audiobooks, which are not expected to contain offensive content.

Table A1: Dataset specifications
Dataset Type Size (hr) Source License

LRS3 v0.4 [Afouras et al., 2018] audio-visual speech 433 TED and TEDx CC BY-NC-ND 4.0
VoxCeleb1 [Nagrani et al., 2017] audio-visual speech 352 Interviews on YouTube CC BY-NC-ND 4.0
VoxCeleb2 [Chung et al., 2018] audio-visual speech 2,794 Interviews on YouTube CC BY-NC-ND 4.0

TED-LIUM 3 [Hernandez et al., 2018] audio speech 452 TED CC BY-NC-ND 3.0
LibriSpeech [Panayotov et al., 2015] audio speech 960 LibriVox audiobooks CC BY 4.0

MUSAN [Snyder et al., 2015] music / speech / noise 109 US Public Domain / under CC CC BY 4.0

A.2 Fine-tuning

Table A2 summarizes the hyperparameters used for ASR fine-tuning.

Table A2: Speech recognition fine-tuning hyperparameters
FT mod AV A V

batch size 40 sec 40 sec 40 sec
# GPU 8 8 8

audio dropout 0.5 n/a n/a
video dropout 0.5 n/a n/a
learning rate 4e-4 4e-4 5e-4

LR phase ratio [0.33, 0, 0.67] [0.33, 0, 0.67] [0.33, 0, 0.67]
update steps 60,000 60,000 60,000
freezing step 30,000 30,000 30,000

freezing layers 18 8 6

Table A3 summarizes the hyperparameters used for speech translation.

Table A3: Speech translation fine-tuning hyperparameters
FT mod AV A V

batch size 40 sec 40 sec 40 sec
# GPU 8 8 8

audio dropout 0.5 n/a n/a
video dropout 0.5 n/a n/a
learning rate 0.001 0.001 0.001

LR phase ratio [0.33, 0, 0.67] [0.33, 0, 0.67] [0.33, 0, 0.67]
update steps 30,000 30,000 30,000
freezing step 24,000 24,000 24,000

freezing layers all all all

A.3 Speech recognition decoding

Beam search decoding is used with a length weight α, which searches for the hypothesis z1:T that
maximizes ∑T

t=1 P (zt|z1:t−1, X)

Tα
(1)

For the results in the main paper, we do grid search from beam size ∈ {1, 5, 10, 15, 20, 25} and
α ∈ {0, 0.5, 1.0, 1.5}. For the ablation studies in the appendix a beam size of 10 and α = 1.0 is used.
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B Extend Experimental Results

B.1 Impact of fine-tuning hyperparameters

We conduct the ablation studies in this section with the models pre-trained on multimodal LRS3 and
VC2-En. By default, the one pre-trained with modality dropout is used.

B.1.1 Fine-tuning on multimodal data

Table B4 shows how fine-tuning modality dropout configurations affect ASR performance. Models
fine-tuned with dropout can yield better performance on all input modality than the one without
(reported in the caption). When setting m-drop-p and a-drop-p within the range of [0.25, 0.75], the
results have limited variation ([1.43%, 1.65%] WER for AVSR, [1.82%, 2.22%] WER for ASR, and
[28.85%, 30.88%] WER for VSR). Similarly setting the values to 0.5 yields reasonable performance
for all modalities.

Table B4: Impact of fine-tuning modality dropout for audio-visual speech recognition. Without
modality dropout, AV-WER/A-WER/V-WER = 1.48/2.43/34.37.

FT mod m-drop-p AV-WER A-WER V-WER
a-drop-p= 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

AV 0.25 1.58 1.46 1.61 2.04 2.01 1.82 30.88 30.80 30.05
AV 0.50 1.43 1.57 1.53 1.92 2.00 1.85 30.34 29.73 28.85
AV 0.75 1.53 1.71 1.65 2.22 2.08 2.12 29.72 29.43 29.88

B.1.2 Fine-tuning on unimodal data

Next, we study the impact of hyperparameters when fine-tuning on unimodal data. Different from
fine-tuning on multimodal data, fine-tuning on unimodal data is more prone to catastrophic forgetting,
leading to huge performance degradation on modalities unseen during fine-tuning. Hence, we focus
on studying the impact from three hyperparameters:

• Lfrz: number of u-HuBERT Transformer layers that are frozen throughout fine-tuning.

• Nfrz: number of the fine-tuning updates where the entire u-HuBERT is frozen. After this
many updates, the layers above (Nfrz)-th layer are optimized jointly with the prediction
head.

• LR: learning rate.

Number of frozen layers (Lfrz) Setting this effectively treats the first Lfrz layers as a fixed feature
extractor, while the layers above are considered pre-trained and jointly optimized with the added
prediction head during fine-tuning. Results are shown in Table B5.

When fine-tuned on audio speech from PT mod-drop, not freezing any layer leads to worse perfor-
mance for all modalities, but freezing all the layers also reduces the model capacity and harms the
performance for the fine-tuned modality and for audio-visual speech. For visual speech, the audio
fine-tuned model achieves the best result when all the layers are frozen (30.60% compared to 35.68%
when not freezing any layer), but the gap can be reduced from 5.08% to 1.23% when freezing 12
layers, in which audio-visual speech yields the best performance while audio is close to optimal.

When fine-tuned on visual speech from PT mod-drop, the model yields similar performance on
visual speech regardless how many layers are frozen (with a spread of 0.5% WER). In contrast, results
are optimal for both audio-visual and audio input when 12 layers are frozen, with a good trade-off
between mod el capacity and representation distribution shift.

The trends are different when fine-tuning PT no-mod-drop. Because the model has only seen audio-
visual input during pre-training, visual-only or audio-only input is considered out-of-distribution.
Hence, when fine-tuning on visual speech with all the layers frozen (Lfrz = 24), the performance on
the fine-tuned input is significantly worse compared to fine-tuning PT mod-drop (45.18% versus
29.42%). Although this can be alleviated by unfreezing more layers, the model barely works for
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audio-only input with WERs ranging from 21.55% to 54.27%. This again verifies that pre-training
modality dropout is essential for achieving zero-shot modality transfer.

Table B5: Number of layers to freeze

Lfrz
PT w/ mod-drop-p; FT on A PT w/ mod-drop-p; FT on V PT w/o mod-drop-p; FT on V

AV-WER A-WER V-WER AV-WER A-WER V-WER AV-WER A-WER V-WER

0 1.73 1.84 35.68 4.06 3.71 29.51 4.25 54.27 28.43
6 1.59 1.69 32.81 2.52 2.88 29.69 2.92 32.80 28.96

12 1.52 1.70 31.83 2.39 2.78 29.46 2.90 21.55 32.11
18 1.73 1.82 31.14 2.44 2.89 29.92 3.60 21.75 37.76
24 2.09 2.20 30.60 2.80 3.13 29.42 10.97 26.15 45.18

Number of frozen steps Results comparing the impact on freezing u-HuBERT for different
numbers of fine-tuning steps are shown in Table B6. We can observe similar trends as those when
varying the number of layers to freeze: not freezing at all leads worse performance on all input
modalities, while treating the entire pre-trained model as a fixed feature extractor also leads to
sub-optimal performance for the fine-tuned modality. Freezing for 30K updates out of 60K total
updates leads to good balance for all modalities with PT mod-drop, which are 0.25%/0.11%/0.99%
behind the optimal WERs when fine-tuned on audio, and 0%/0%/0.47% behind the optimal WERs
when fine-tuned on visual speech. Similarly, the model pre-trained without modality dropout yields
worse zero-shot modality transfer performance when fine-tuned on a single modality.

Table B6: Number of steps to freeze

Nfrz
PT w/ mod-drop-p; FT on A PT w/ mod-drop-p; FT on V PT w/o mod-drop-p; FT on V

AV-WER A-WER V-WER AV-WER A-WER V-WER AV-WER A-WER V-WER

0 1.58 1.71 39.90 3.54 4.31 31.88 3.68 74.95 30.61
15K 1.43 1.62 38.40 2.69 3.21 31.65 3.83 75.87 29.86
30K 1.68 1.73 31.87 2.52 2.88 29.69 2.92 32.80 28.96
45K 1.82 1.99 31.20 2.83 3.29 29.22 3.05 24.00 29.31
60K 2.10 2.20 30.88 2.84 3.04 29.88 10.16 25.68 44.71

Learning rate Table B7 presents the results. When fine-tuning on audio speech, increasing learning
rate leads to significantly worse WER on visual input (30.62% → 37.43%), but benefits audio-visual
and audio speech up to 6×10−4 and 8×10−4, respectively, and the performance stays rather constant
afterward. Similarly, when fine-tuning on visual speech, increasing learning rate to 10−3 hurts the
result with audio input (2.73% → 3.41%); it also hurts the visual speech recognition performance,
but the degradation is relatively minor (28.62% → 30.39%) compared to when fine-tuning on audio.
In general, we observe a smaller learning is preferred for visual speech recognition, and increasing
learning rates harms the zero-shot modalities more.

Table B7: Learning rate

LR PT w/ mod-drop-p; FT on A PT w/ mod-drop-p; FT on V
AV-WER A-WER V-WER AV-WER A-WER V-WER

2e-4 1.79 1.97 30.62 2.72 2.91 28.62
4e-4 1.68 1.73 31.87 2.45 2.73 29.25
6e-4 1.63 1.71 33.79 2.78 3.13 29.80
8e-4 1.65 1.67 35.29 2.63 3.23 29.97

10e-4 1.66 1.68 37.43 3.03 3.41 30.39

B.2 Per-layer representation analysis

To better understand how u-HuBERT learns modality-agnostic features, we show the clustering
quality of different layers per modality of a pre-trained u-HuBERT model. Similar to Table 1, we
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report PNMI of layerwise clusters per modality quantized by audio-only (Ca), video-only (Cv), audio-
visual (Cav) and all-combined (∪mCm) codebook respectively (see Figure 5). When pre-trained
without modality dropout, the model is unable to learn modality-agnostic features regardless of which
layer to cluster, as can be shown from its overall lower PNMI of cross-modal clustering (e.g., PNMI
of visual features quantized by Cav codebook). To the model pre-trained with modality-dropout, the
features of its intermediate layers become more agnostic to modality as the layer goes deeper, shown
from the diminishing gap between its cross-modality and modality-specific performance in later
layers. Furthermore, the approximately same quality of clusters from different codebooks towards
the end suggests that the final layer is best suited to achieve a unified model that generalizes across
modalities.

Figure 5: Comparison between models pre-trained with (left) and without (right) modality dropout in
layerwise clustering quality (PNMI) of all modalities. A: audio, V: video, AV: audio-visual.

B.3 Stability

Table B8 shows the WER mean and standard deviation over five runs when fine-tuning the two
u-HuBERT models. We see that the one pre-trained additionally with unimodal audio data (TD) is
significantly better on all input modalities.

Table B8: Variance of u-HuBERT performance fine-tuned on 433 hours of audio-visual speech.
Unlab data AV-WER A-WER V-WER
AV A Clean Noisy Clean Noisy

LRS3+VC2-En - 1.34 ± 0.08 4.36 ± 0.18 1.47 ± 0.04 20.25 ± 0.14 29.57 ± 0.29
LRS3+VC2-En TD 1.24 ± 0.06 3.33 ± 0.10 1.37 ± 0.07 15.43 ± 0.09 27.30 ± 0.12

B.4 Speech Translation Results

Table B9 shows the performance of speech translation models fine-tuned with 433 hours of labeled
data.

C Ethical Discussion

The ability to build a model that can process unimodal or multimodal speech without needing labeled
data in the target modality opens many possibilities for real world applications, since except for
audio-only speech, labeled data are extremely lacking for other speech modalities. In particular, we
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Table B9: Speech translation results (fine-tuned with 433 hours of data) on LRS3 test.

PT PT FT mod FT AV-BLEU A-BLEU V-BLEU Avg-BLEUmod-drop mod-drop Clean Noisy Clean Noisy

fine-tuned on 433h
✗ n/a AV ✓ 10.3 4.0 9.9 2.6 2.7 5.9
✓ ✗ AV ✓ 58.4 55.3 58.6 38.1 36.2 49.3
✓ ✓ AV ✓ 59.4 56.2 59.2 39.0 36.1 50.0

✗ n/a A n/a ✗ ✗ 24.5 6.8 ✗ ✗
✓ ✗ A n/a 59.3 43.7 59.1 38.6 4.9 41.1
✓ ✓ A n/a 60.6 46.9 60.7 39.9 34.2 48.4

✗ n/a V n/a ✗ ✗ ✗ ✗ 1.5 ✗
✓ ✗ V n/a 49.5 44.7 21.7 9.4 34.6 32.0
✓ ✓ V n/a 59.4 56.2 59.2 39.0 36.1 50.0

demonstrate its applications to audio-visual and visual speech recognition in this paper. The former
can help hearing-impaired people to better “hear” speech in noisy environments with more accurate
transcriptions, while the latter can help people with speech impairment (e.g., aphonia, dysphonia,
dysarthria) to “speak” by transcribing silent speech.

For visual speech recognition, there could be concerns about the technology being improperly used
for CCTV surveillance. However, current visual speech recognition systems require mostly-frontal
and high-resolution videos with a sufficiently high frame rate, such that motions are clearly captured.
Hence, the type of data studied for audio-visual speech processing are face-to-face meeting scenarios
(AMI, EasyCom, and Ego4D) and recorded speech (LRS3). In contrast, CCTV videos are low
resolution, low frame rate, and recorded from angles where faces are mostly not frontal, where visual
speech processing models will very likely fail.

D More Details of the Baseline ASR, VSR, and AVSR Methods

Table D10 and D11 summarize the model architectures and training/testing setups of the baseline
ASR, VSR, and AVSR methods compared in Table 4.

Table D10: Comparison of model architectures with the state-of-the-art ASR/VSR/AVSR
models listed in Table 4. T-/S-/(T+S)-{Transformer,Conformer} applies attention over the
temporal/spatial/spatial-temporal dimension, respectively. EleAtt-GRU refers to [Zhang et al., 2019].

Method Audio Encoder Video Encoder Shared Encoder Decoder

Ma et al. [2021], Ma et al. [2022] 1D-ResNet-18 + T-Conformer 3D-ResNet-18 + T-Conformer MLP T-Conformer
Xu et al. [2020] 1D-CNN + EleAtt-GRU 3D-CNN + EleAtt-GRU - EleAtt-GRU

Afouras et al. [2021] - 3D-CNN + S-Transformer + T-Transformer - T-Transformer
Makino et al. [2019] - CNN LSTM LSTM
Serdyuk et al. [2021] - (T+S)-Transformer T-Transformer LSTM
Afouras et al. [2020] CNN CNN - -

[Shi et al., 2022b]
Linear 3D-ResNet-18 T-Transformer T-Transformer[Shi et al., 2022a]

u-HuBERT
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Table D11: Comparison of learning paradigms, training objectives, and decoding methods with the
state-of-the-art ASR/VSR/AVSR models listed in Table 4

Method Type Training Criterion Decoding

Ma et al. [2021] Supervised LRW pre-training → CTC, S2S CTC+S2S+LM
Ma et al. [2022] Supervised LRW pre-training → CTC, S2S, feature matching from ASR and VSR CTC+S2S+LM
Xu et al. [2020] Supervised LRW pre-training → S2S, speech enhancement S2S

Afouras et al. [2021] Supervised Two-stage curriculum S2S S2S+LM
Makino et al. [2019] Supervised RNN-T RNN-T
Serdyuk et al. [2021] Supervised RNN-T RNN-T
Afouras et al. [2020] Semi-Supervised CTC, knowledge distillation from ASR CTC+LM

[Shi et al., 2022b]
Self-Supervised Masked cluster prediction → S2S S2S[Shi et al., 2022a]

u-HuBERT
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