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Abstract

Federated learning is a learning paradigm to enable collaborative learning across
different parties without revealing raw data. Notably, vertical federated learning
(VFL), where parties share the same set of samples but only hold partial features,
has a wide range of real-world applications. However, most existing studies in VFL
disregard the “record linkage” process. They design algorithms either assuming
the data from different parties can be exactly linked or simply linking each record
with its most similar neighboring record. These approaches may fail to capture
the key features from other less similar records. Moreover, such improper linkage
cannot be corrected by training since existing approaches provide no feedback
on linkage during training. In this paper, we design a novel coupled training
paradigm, FedSim, that integrates one-to-many linkage into the training process.
Besides enabling VFL in many real-world applications with fuzzy identifiers,
FedSim also achieves better performance in traditional VFL tasks. Moreover, we
theoretically analyze the additional privacy risk incurred by sharing similarities.
Our experiments on eight datasets with various similarity metrics show that FedSim
outperforms other state-of-the-art baselines. The codes of FedSim are available at
https://github.com/Xtra-Computing/FedSim.

1 Introduction

Federated learning is a collaborative learning framework to train a model from distributed datasets
with privacy guarantees. A commonly existing and widely studied scenario of federated learning is
vertical federated learning [32, 62] (VFL), where multiple parties sharing the same set of samples
have different sets of features. We focus on the setting where only one party holds the labels like
most of the studies [33, 39, 60]. The party holding labels is named primary party; the parties without
labels are named secondary parties. In VFL, the features that exist on multiple parties are called
common features. The vector of common features in a data record is called the identifier of the record.

Existing studies [22, 27, 39, 40] formulate VFL as two separated processes: linkage and training. In
the linkage process, the datasets on different parties are linked according to the identifiers. In the
training process, these distributed but linked data records are trained by VFL algorithms. Specifically,
in the linkage process of existing studies, each data record is linked to a data record with the exactly
matched or the most similar identifier (i.e., one-to-one linkage). Nonetheless, according to our study
on all the completed projects in German Record Linkage Center [4] (GRLC), only 27.3% of the
record-linkage applications are linked on exact identifiers. The other projects rely on fuzzy identifiers
such as addresses, in which one-to-one linkage can seriously impair the accuracy of the VFL model
for the following two reasons.

First, only linking the records with top similarity (i.e., one-to-one linkage) does not necessarily
capture the key features, which can be demonstrated by two real-world applications. 1) Considering
the VFL for price prediction between a real estate company and a house leasing company linked by
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A

(i) Housing prices by geolocations in
Beijing

(ii) Games with similar titles to “Command & Conquer 3: Tiberium
Wars”

Figure 1: Examples of real-world record linkage (house and game dataset in the experiments)

GPS locations of houses, as shown in Figure 1(i), the closest house to house A (purple) may not be in
the same price level as A. 2) Considering the VFL between steam games and IGN games linked by
the game titles, as shown in Figure 1(ii), linking not only the exactly matched game but also other
games in the same series intuitively benefits game recommendation tasks. Even in applications where
identifiers can be exactly matched (e.g., identifiers are ID), if some features are missing or biased,
one-to-one linkage prevents the training process from enhancing these features from other similar
records. These applications commonly exist in practice according to our investigation. An opposite
extreme case is to link each record with all the records in another party (one-to-all linkage), which
keeps all the information but is too expensive for both linkage and training. Therefore, a one-to-many
linkage approach is needed as a balance between efficiency and performance.

Second, separating the linkage from the training also harms the performance of VFL. In existing
VFL approaches, since the linkage process cannot obtain any feedback from the training process, the
linkage is conducted with the goal of finding true-matched pairs of records instead of finding the
pairs that reduce the training loss. Hence, an integrated VFL framework that conducts one-to-many
linkage under the guide of training is desired.

To address these two drawbacks, we link each data record to the records with top-K similar identifiers
in another party and design a coupled framework of linkage and training. Our main challenge is to
effectively exploit these linked pairs and their similarities to boost the performance of VFL. To tackle
this challenge, we propose a similarity-based coupled VFL framework FedSim on the top of SplitNN
[56] which is a VFL algorithm for neural networks. In FedSim, similarity is a dominant feature that
determines the order and the weight of each pair of linked records. The weights (i.e., impact) of
similarities are also adjusted in each training iteration. After the training, each similarity is mapped
to a weight based on its contribution to reducing the loss.

Furthermore, to address the additional data privacy issue incurred by FedSim, we first add Gaussian
noise to the similarities and analyze the privacy of FedSim under differential privacy [15]. Our
analysis suggests that differential privacy that provides rigorous guarantees for every individual
record regardless of the type of attack is impractical for FedSim. As an alternative, we propose an
intuitive greedy attack to infer identifiers from similarities, followed by a theoretical bound of the
probability of its success.

Our main contributions can be summarized below. 1) We propose a novel asymmetric training
paradigm, named FedSim, and a training-free metric to estimate the improvement of FedSim on
baseline approaches; 2) we analyze the privacy of FedSim under differential privacy; 3) we propose
a greedy attack on FedSim and the corresponding defense method that can theoretically bound the
success rate of this attack; 4) we conduct extensive experiments on three synthetic datasets and five
real-world datasets, which indicates that FedSim outperforms state-of-the-art baselines.

2 Preliminaries

Privacy-Preserving Record Linkage. Privacy-preserving record linkage (PPRL) [55] aims to link
the data records from two parties that refer to the same sample without revealing real identifiers. Most
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Figure 2: Structure of SplitNN and baseline VFL models

PPRL methods [28, 53, 55] consist of three main steps: blocking, comparison, and classification.
First, in the blocking step, data records that are unlikely to be linked are pruned to reduce the number
of comparisons. Then, in the comparison step, a similarity between identifiers is computed for each
candidate pair of data records. Finally, in classification, each candidate pair is classified as “matches”
or “non-matches”, which is usually done by a manually set threshold. Notably, although blocking
ensures sample scalability, party scalability remains a challenge in PPRL. Therefore, we focus on the
linkage and training process of two parties and provide an extension to multiple parties in this paper.

Although the training of FedSim does not rely on any specific PPRL framework, our privacy analysis
is based on a state-of-the-art PPRL framework FEDERAL [29]. Coordinated by an honest-but-curious
server, FEDERAL calculates similarities by comparing Bloom filters [55] generated from identifiers.
It is theoretically guaranteed that all the identifiers generate Bloom filters containing similar numbers
of ones; thus, attackers are hard to distinguish identifiers based on Bloom filters. More detailed
background of FEDERAL is introduced in Appendix I.

Vertical Federated Learning. In this paragraph, we present a formal definition of VFL between
two parties. Suppose two parties P and S want to cooperate with each other to train a machine
learning model. P is the primary party holding m samples and labels {xP ,y} ≜ {xP

i , yi}mi=1, S is
the secondary party holding n samples xS ≜ {xS

i }ni=1 which can also benefit the machine learning
task. In order to perform linkage, we assume there are some common features between {xP

i }mi=1

and {xS
i }ni=1, i.e., {xP

i }mi=1 = {dPi , kPi }mi=1, {xS
i }ni=1 = {dSi , kSi }ni=1, where kPi , k

S
i are common

features used for linkage and dPi , d
S
i are remaining features used for training with dimension lP , lS .

We denote dP ≜ {dPi }mi=1, dS ≜ {dSi }ni=1 for simplicity. Our goal is to enable party P to exploit xS

to train a model that minimizes the global loss. Formally, we aim to optimize the following formula:

min
θ

1

m

m∑
i=1

L(f(θ;xP
i ,x

S); yi) + λΩ(θ)

where L(·) is the loss function, f(·) is the VFL model, and λΩ(θ) is the regularization term.

SplitNN. Most vertical federated learning algorithms only support simple models like logistic
regression [25] which are ineligible to handle many real-world applications. Therefore, we adopt
SplitNN [56] which is a popular and state-of-the-art VFL algorithm that supports neural networks.
The main idea of SplitNN is to split a model into multiple parties and conduct training by transferring
gradients and intermediate outputs across parties. As shown in Figure 2(i), a global model is split into
an aggregation model θagg and H local models θP , {θSu |u ∈ [1, H − 1]}, where H is the number
of parties. In each iteration, the outputs of local models are calculated by forward propagation and
sent to the primary party P0 which holds the labels. After concatenating the outputs of local models,
P continues forward propagation to derive the final prediction ŷ and the loss ℓ. Then, P performs
back-propagation until the input of the aggregation model. The gradients w.r.t. the outputs of each
local model are calculated and sent to the corresponding secondary party. Finally, all H parties finish
back-propagation with the gradients.
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3 Baseline Approaches

By extensively reviewing the existing VFL approaches, we find that all the existing approaches
only use exactly matched (Exact) or most similar (Top1Sim) pairs of data records in the training.
We denote these approaches that separate the linkage and training and as separated approaches.
According to our detailed study in Appendix D, only 27.3% of the record-linkage applications in
GRLC based on exact identifiers are suitable for these approaches. To design a coupled approach
that effectively exploits linkage information, we analyze the main drawback of existing approaches
and some baseline coupled frameworks.

Exact [7, 18, 26, 35, 36, 59, 60]/Top1Sim [22, 27, 39, 40]. (Figure 2(ii)(a,b)) These baseline
separated approaches that only link exactly matched or most similar pairs neglect information of less
similar but useful pairs, resulting in a poor performance of VFL model in many real applications such
as those in GRLC.

AvgSim. (Figure 2(ii)(d)) We propose AvgSim as a baseline coupled approach that considers multiple
pairs of records. Specifically, each data record in xP

i party P is linked with its K most similar
data records in party S. The prediction of xP

i is an average of prediction when linking xP
i with its

K nearest xS
j . Though considering more pairs, AvgSim overemphasizes the pairs with medium

similarities, leading to redundant noise added to the model. Unaware of the similarity of each pair,
the model is unable to filter out this redundant noise.

FeatureSim. (Figure 2(ii)(c)) We propose FeatureSim as a coupled baseline approach that adopts
similarities to the training. Each xP

i in party P is linked with its K most similar data records in party
S, and the similarity between each pair is appended to the record. Nonetheless, similarity, which
contains critical linkage information, is treated equally to other features. This drawback limits the
ability of VFL models to extract information from similarities, thus affecting the overall performance.
Such an impact can be significant according to our experiments.

Based on the above analyses, we clearly observe that the record linkage should be coupled with the
design of VFL by taking advantage of record similarity not only during the linkage procedure but
also during the training procedure. Meanwhile, according to the analysis on AvgSim, more advanced
models are needed to merge the outputs of linked pairs with K largest similarities. These analyses
motivate our design of FedSim as a coupled framework of linkage and training.

4 Our Approach: FedSim

Our approach has two components: soft linkage and similarity-based VFL. In soft linkage, after
finding top-K similar pairs by existing PPRL methods, the server preprocesses the similarities
by normalization and Gaussian noise perturbation. The scale of noise can be determined by a
constant bound τ of the attacker’s success rate, which is further analyzed in Section 5. Then, the
aligning information and aligned similarities are sent to party P or S which will align the data records
accordingly. In similarity-based VFL, we design a model (as shown in Figure 3) by adding additional
components around SplitNN to effectively exploit similarities. Finally, this model, taking the aligned
data records and aligned similarities as input, is trained by back-propagation like SplitNN. Although
we use SplitNN as an example, the idea of soft linkage and similarity-based learning can be extended
to other federated learning algorithms.

4.1 Soft Linkage

Soft linkage, following traditional PPRL in “blocking” and “comparison” steps, directly outputs the
similarities with normalization and noise addition without performing the “classification” step. Same
as many existing PPRL approaches [28–30, 54], we assume there exists an honest-but-curious server
coordinating the linkage process. Specifically, soft linkage, taking kP and kS as input, outputs the
alignment information (i.e., indices that indicate the order of records) and similarities. First, each
sample xP

i in party P is linked with samples containing K most similar identifiers in party S. The
similarities between identifiers of these linked pairs are calculated by a PPRL protocol. To fully
utilize xS for each sample xP

i , K should be large enough to ensure that all the pairs which may
benefit the model are included. Notably, setting a large K hardly leads to overfitting according to our
experiments in Appendix F.2. Second, the server calculates the raw similarities ρij between these
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linked pairs; the raw similarity ρij is defined as normalized negative distance. Formally,

ρij =
−dist(kPi , k

S
j )− µ0

σ0
. (1)

where µ0 and σ0 are the mean and standard variance of all negative distances −dist(kPi , k
S
j ). To

prevent the attacker from guessing the vectors kPi or kSj from similarities (further discussed in
Section 5), we add Gaussian noise of scale σ to each ρij . Formally, for ∀i ∈ [1,m],∀j ∈ [1,K]

sij = ρij +N(0, σ2). (2)

For simplicity, we denote si ≜ {sij}Kj=0 and s ≜ {si}mi=0.

After the similarities are calculated, the server directly sends the similarities s to party P and sends
the aligning information (i.e., indices that indicate orders) to both parties. Finally, parties P and S
align their samples or similarities according to the aligning information to ensure that each xP

i , xS
i

and si refer to the same sample.

4.2 Similarity-Based VFL
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Figure 3: Model structure of FedSim

The training process is summarized in Algo-
rithm 1 and the model structure is shown in Fig-
ure 3. As discussed in Section 7, FedSim is
designed on top of SplitNN [56], which makes
preliminary predictions oi (with lm dimensions)
for each dPi and its K neighbors dS

i (lines 4-7).
Specifically, we add three gates (weight gate,
merge gate, sort gate) around SplitNN and train
the whole model similarly to SplitNN. The main
function of these gates is to effectively exploit
similarities si to merge the preliminary outputs
oi into the final prediction ŷi.

Weight Gate. One straightforward idea is that
more similar pairs of samples contribute more
to the performance. Thus, the rows in oi with
higher similarities should be granted a larger
weight. Directly multiplying the similarities to
oi is inappropriate since the values of similar-
ities do not directly represent the importance
of records. Therefore, in weight gate, we use
similarity model, a simple neural network with
one-dimensional input and one-dimensional out-
put, to non-linearly map the similarities to weights wi which indicates the importance of the record
(line 8). Then, the weighted outputs are calculated as a matrix multiplication (line 9).

Merge Gate. The merge gate contains a merge model to aggregate the information in o′
i (line 11).

For tasks that only require a linear aggregation, setting the merge model as an “average over rows” of
o′
i is sufficient to obtain a promising result. However, for tasks that require a non-linear aggregation,

a neural network is required to be deployed as a merge model. In this case, although the merge model
can be implemented by a multi-layer perceptron (MLP) which takes flattened o′

i as input, such an
approach usually leads to over-fitting due to a large number of parameters. Meanwhile, the flatten
operation causes information loss because the merge model is unaware of which K features in the
flattened o′

i correspond to the same output feature in o′
i. Considering these two factors, we set the

merge model as a 2D convolutional neural network (CNN) with kernel size kconv × 1. o′
i, containing

K output vectors with lm dimensions, is regarded as a 2D input of size K × lm for the CNN merge
gate. Then, the merge gate effectively merges these output vectors with close similarities.

Sort Gate. The sort gate is an optional but sometimes crucial module depending on the property of
the chosen merge model. For merge models that are insensitive to the order of o′

i (e.g., averaging
over rows), sorting is not needed because the order does not affect the output of the merge model.
However, for merge models that are sensitive to the order of o′

i (e.g., neural networks), inconsistent
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order of features can incur irregular sharp gradients which makes the merge model hard to converge.
Thus, o′

i should be sorted by similarities (line 10) to stabilize the updates on the merge model. Also,
grouping the pairs with close similarities together helps the merge gate effectively aggregate the
information.

Algorithm 1: Training Process of FedSim
Input :Aligned datasets and labels dP , dS , y; similarities s; number of similar samples K; number of

epochs T ; number of samples m in party P;
Output :SplitNN parameter θPt , θSt , θ

agg; similarity model parameter θsimt ; merge model parameter θmt
1 Initialize θP0 , θS0 , θ

sim
0 , θm0 , θagg0 ; // FP: forward propagation; BP: back-propagation

2 for t← 0 to T do
3 for i← 0 to m do
4 Party S loads i-th batch dS

i from dS ;
5 calculates cSi = f(θSt ;d

S
i ) and sends cSi to party P; // Local model FP

6 Party P loads i-th sample dPi from dP ;
7 receives cSi from party S and calculates oi = f(θPt ; cSi , d

P
i ); // SplitNN FP

8 loads similarities si from s and calculates wi = f(θsimt ; si); // Similarity model FP
9 calculates weighted outputs o′

i = diag(wi)oi;
10 sorts the rows of o′

i by si (or wi); // Sort gate
11 calculates ŷi = f(θmt ;o′

i) with sorted o′
i; // Merge model FP

12 calculates gradients gP
t = ∇θPt

L(ŷi, yi), gsim
t = ∇θsimt

L(ŷi, yi), gm
t = ∇θmt

L(ŷi, yi),
gc
t = ∇cSi

L(ŷi, yi) and sends gc
t to party S; // Merge and similarity model BP

13 updates parameters
θaggt+1 = θaggt − ηtθ

agg
t , θPt+1 = θPt − ηtg

P
t , θ

sim
t+1 = θsimt − ηtg

sim
t , θmt+1 = θmt − ηtg

m
t ;

14 Party S receives gc
t from party P and continues calculating gradients gS

t = ∇θSt
gc
t ;

15 updates parameters θSt+1 = θSt − ηtg
S
t ; // Local model BP

The whole model with SplitNN and three gates performs back-propagation by transferring gradients
like SplitNN (lines 12, 14). After gradients are calculated, all the parameters are updated by gradient
descent (lines 13, 15). According to the experiment in Appendix F.4, FedSim incurs longer but
acceptable training time compared to Exact and Top1Sim. During the inference, for each data record
in the primary party, K most similar data records in secondary parties are linked. These linked data
records are fed into the FedSim model to derive the final prediction. More insights into the weight
gate and merge gate are elaborated by visualization in Appendix F.5.

4.3 Improvement Estimation

Pair indices sorted by similarities
0

1

Redundant information

Lost Information

Threshold

Similarities (scaled to [0,1])

Figure 4: Estimated improve-
ment of FedSim on AvgSim with
top-K neighbors

Similar to many existing studies [7, 22, 39, 60] in VFL, we mainly
focus on the two-party setting which has many real-world applica-
tions (e.g., bank and fintech company [60]). Meanwhile, we also
support an extension to the multiple-party setting as elaborated in
Appendix C.

In this subsection, we propose a data-linkage-based metric to es-
timate the improvement of FedSim over baselines (i.e., AvgSim,
Top1Sim, Exact) without training. Calculating all the similarities
between xP

i and every {xS
j }nj=1, we can plot the sorted similarities

of each pair as a curve. For example, Figure 4 displays the curve
of AvgSim with top-K neighboring records. The performance of
these baselines is impeded by two main factors: 1) lost informa-
tion - some pairs of samples with small similarities are neglected.
For example, in Figure 4, the samples above the threshold are
neglected; 2) redundant information - some pairs of samples with
smaller similarities are treated equally to those pairs with large
similarities. For example, in Figure 4, some samples below the threshold with medium similarities are
overestimated. To jointly estimate these two factors, we intuitively assume the information contained

6



in each pair is proportional to its similarity; then, the lost information and the redundant information
can be estimated by the similarities. We formally define the metric as follows.

Definition 1. Given a data linkage between xP ≜ {xP
i }mi=1 and xS ≜ {xS

j }nj=1, for a data record xP
i

in P, a VFL algorithm F divide the indices of n records in S into matches and non-matches, denoted
as Smatches and Snon-matches, respectively. Denote sij as the scaled similarity between xP

i and xS
j , the

improvement of FedSim on F for xP
i is defined as ∆i(F) ≜

∑
j∈Smatches

(1− sij) +
∑

j∈Snon-matchessij
;

the overall improvement of FedSim on F is defined as ∆(F) = 1
m

∑m
i=1 ∆i(F).

As shown in Figure 5(ii), this metric can effectively estimate the improvement of FedSim compared
with the other baselines in the experiments.

5 Privacy

The shared information in FedSim includes:

(1) similarities s shared to party P;
(2) intermediate results in SplitNN shared to party P;
(3) intermediate results in PPRL shared to the server.

The intermediate results in SplitNN and PPRL are respectively studied in [57] and [29] (see Section 2
for details), both of which are orthogonal to this paper. Therefore, we mainly study the privacy risk
caused by similarities s.

5.1 Differential Privacy

According to Equation 1 and 2, each similarity sij is calculated from kPi and kSj . We formally define
this procedure as G below.

Procedure G: Take kS as the input. Each kPi ∈ kP is linked to multiple kSj ∈ kS ; the similarities

between kPi and kSj are calculated by sij = −∥kP
i −kS

j ∥2+µ0

σ0
+N(0, σ2), where N(0, σ2) refers to

Gaussian distribution with variance σ2. Output the similarities s.

Theorem 1. Suppose ε > 0 and 0 < δ < 1/2 − e−3ε/
√
2πε. Suppose the size of kP is n × β. If

procedure G is (ε, δ)-DP, then σ ≥ ∆G/
√
2ε, where ∆G = n ·max

{∣∣∣ 1+µ0

σ0

∣∣∣ , ∣∣∣−1+µ0

σ0

∣∣∣}.

The proof of Theorem 1 is included in Appendix A.1. As observed from Theorem 1, the noise scale
σ increases linearly by n. The large scale of noise derived from differential privacy would seriously
affect the performance of FedSim. Hence, we further analyze the privacy risk of FedSim against
specific attacks.

5.2 Privacy Against Greedy Attacks

In this subsection, our analysis focuses on a greedy attacker who first predicts the most likely distance
from each sij and then predicts the most likely Bloom filter from the predicted distance. Assuming
the attacker already knows the scaling parameters µ0, σ0, we formulate the attack method as follows.

Attack Method. To obtain k̂Sj as a prediction of kSj , the attacker 1) predicts a set of normalized
negative distances ρ̂ij (i ∈ Q) from sij (i ∈ Q), respectively, by maximum a posteriori (MAP)
estimation with Gaussian prior N(0, 1), i.e., ρ̂ij = argmaxρij

p(ρij |sij); 2) calculates each distance
ûij by scaling back ρ̂ij with parameters µ0, σ0, i.e., ûij = −σ0ρ̂ij − µ0 (i ∈ Q); 3) uniformly
guesses k̂Sj from all possible values satisfying ∀i ∈ Q,dist(kPi , k̂

S
j ) = ûij which have the same

probability of being the real kSj .

Besides the greedy attack, advanced attackers may predict through the probability distribution of
distances rather than predict through the most likely distance. Some attackers may even know some
side information like the prior distribution of kSj and employ this side information to launch attacks.
These advanced attacks are further discussed in Appendix B.
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Although not satisfying differential privacy, we prove that the success probability of greedy attacks is
always bounded by a small constant related to σ0 and σ regardless of the choice of Q if an attacker
follows the attack method (Theorem 2).
Theorem 2. Given a finite set of perturbed similarities sij (i ∈ Q) between |Q| bloom-filters
kPi (i ∈ Q) in party P and one Bloom filter kSj in party S, if an attacker knows the scaling parameters
µ0, σ0 and follows the procedure of the attack method, the probability of the attacker’s predicted
Bloom filter k̂Sj equaling the real Bloom filter kSj is bounded by a constant τ . Formally,

Pr
[
k̂Sj = kSj

∣∣∣ {sij |i ∈ Q}, {kPi |i ∈ Q}, µ0, σ0,A
]
≤ τ

where constant τ = erf
( √

σ2+1
2
√
2σσ0

)
; erf(·) is the error function, i.e., erf(x) = 2√

π

∫ x

0
e−t2dt; event

A: attackers follow the given attack method.

The proof of Theorem 2 is included in Appendix A. From Theorem 2, we find two factors that
affect the attacker’s success rate: 1) noise added to the similarity (σ); 2) standard variance of
Bloom filters (σ0). Among these factors, σ0 determines the lower bound of the success rate because√
σ2 + 1/(2

√
2σσ0) < 1/(2

√
2σ0), and σ determines how close success rates FedSim can guarantee

compared to the lower bound. When σ is large enough, increasing σ helps little with reducing the
success rate. Therefore, to ensure the good privacy of FedSim, we should first guarantee a large
enough variance among the Bloom filters and then add a moderate noise to the similarities. Taking
house dataset (see Section 6.1) as an example where µ0 = −46237.78, σ0 = 21178.86. Letting
δ = 10−5, σ = 0.4, the differential privacy parameter ε = 2.96 × 109 implies that there is almost
no differential privacy guarantee at all. Nonetheless, the attacking success rate τ = 1.94 × 10−5

suggests that the privacy risk from certain attacks is very low. Considering the 19479 samples in the
training set of party S, only 0.378 (smaller than one) Bloom filters are expected to be disclosed.

6 Experiment

6.1 Experimental Setup

Dataset. We evaluate FedSim on three synthetic datasets (sklearn [10], frog [13], boone, [14])
and five real-world datasets (house [1, 44], taxi [8, 52], hdb [23, 45], game [11, 24], and company
[6, 12]). The details (e.g. dimension of identifiers) of these datasets are summarized in Appendix E.
For each real-world dataset, we collect two public datasets from different real-world parties and
conduct VFL on both public datasets. For each synthetic dataset, we first create a global dataset
by generating with sklearn API [10] (sklearn) or collecting from public (frog, boone). Then,
we randomly select some features as common features and randomly divide the remaining features
equally to both parties. Common features are not used in training for all methods except Combine.
To simulate the real-world applications, for synthetic datasets, we also add different scales σcf of
Gaussian noise to the common features. Specifically, for each identifier vi, the perturbed identifier
v′
i = vi + N(σ2

cfI) will be used for linkage. For datasets with numeric identifiers (house, taxi,
hdb, syn boone, frog), Euclidean distance is adopted to calculate similarities. For game dataset,
Levenshtein distance is adopted to calculate similarities. For company dataset, we first generate
Bloom filters from strings following [29], then calculate similarities based on Hamming distances.

Training. Similarity model is a multi-layer perceptron (MLP) with one hidden layer. The merge
model contains a 2D convolutional layer with kconv × 1 kernel followed by a dropout layer and an
MLP with one hidden layer. Both the local model and aggregate model in SplitNN are MLPs with one
hidden layer. We adopt LAMB [63], the state-of-the-art large-batch optimizer, to train all the models.
Each dataset is split into training, validation, and test sets by 7:1:2. We run each algorithm five times
and report the mean and standard variance (range is reported instead in figures) of performance on
the test set. We present root mean square error (RMSE) or R-squared value (R2) for regression tasks
and accuracy for classification tasks. The choices of hyperparameters are introduced in Appendix E.

Baselines. We compare FedSim with nine baselines in our experiments. Besides the four baselines
(Exact, Top1Sim, AvgSim, FeatureSim) introduced in Section 3, the remaining baselines include:
1) Solo: only dataset dP is trained; 2) Combine: [dP ,dS ] is trained (only applicable for synthetic
datasets); 3) FedSim-MLP: the CNN in FedSim is changed to an MLP with a similar number of
parameters. 4) FedSim w/o sort: FedSim without sorting gate. 5) FedSim w/o weight: FedSim
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Table 1: Performance on real-world datasets

Algorithms
house (numeric) bike (numeric) hdb (numeric) game (string) company (string)

∆ = 34.05 ∆ = 14.26 ∆ = 20.69 ∆ = 4.14 ∆ = 10.50

Solo 58.31±0.28 272.83±1.50 29.75±0.15 85.27±0.29% 42.67±0.66
Exact - - - 89.25±0.12% 44.44±1.95

Top1Sim 58.54±0.35 256.19±1.39 31.56±0.21 92.71±0.08% 42.84±0.77
FeatureSim 66.39±0.15 273.29±0.37 37.39±0.29 91.13±0.23% 39.24±1.80

AvgSim 51.92±0.65 239.85±0.40 34.12±0.19 90.84±0.14% 38.19±0.91

FedSim (w/o Weight) 42.82±0.20 236.79±0.29 27.18±0.08 92.79±0.13% 41.00±1.19
FedSim (w/o Sort) 52.14±0.58 238.30±0.81 36.35±0.42 92.79±0.10% 38.28±1.56
FedSim (w/o CNN) 42.62±0.20 235.97±0.42 27.76±0.13 92.50±0.12% 39.63±1.31

FedSim 42.12±0.23 235.67±0.27 27.13±0.06 92.88±0.11% 37.08±0.61

(i) Performance on synthetic datasets (ii) ∆(Top1Sim) vs. perf.

Figure 5: Performance on synthetic datasets and the effectiveness of ∆(Top1Sim)

Figure 6: Performance with different scale of noise on similarities

without weight gate (similarities are directly regarded as weights). Notably, Exact is only evaluated
on game and company because no exactly matched identifiers can be found on other datasets.

6.2 Performance

We evaluate the performance of FedSim on three synthetic datasets under different σcf and five
real-world datasets. The results of synthetic datasets are presented in Figure 5(i), from which two
observations can be made. First, FedSim consistently has better or close performance compared to all
the baselines. Second, FedSim is more robust to the noise on the identifiers. For example, in frog,
the accuracy of Top1Sim drops to 84% as σcf = 0.2, while the accuracy of FedSim remains 91%.

The results of real-world datasets are summarized in Table 1. We also calculate the estimated
improvement ∆(Top1Sim) (denoted as ∆ for simplicity) according to our proposed metric. The
relationship between ∆(Top1Sim) and the relative improvement on Top1Sim is presented in Fig-
ure 5(ii). Three observations can be made from the results. First, FedSim consistently produces
the best performance on all five datasets, while the baselines (especially the separated approaches)
only have good performances on specific datasets. For example, Top1Sim has close performance
to FedSim on game, but fails on bike; AvgSim has close performance to FedSim on bike, but
fails on game. Second, ∆(Top1Sim) is positively correlated with real improvement on Top1Sim,
indicating that the metric can be effectively used to estimate the improvement of FedSim without
training. This also implies that FedSim can effectively reduce the effect of lost information and
redundant information as expected. Third, comparing the performance of removing each component
from FedSim, the sort gate makes the most significant contribution to the performance of FedSim
by stabilizing the updates of the merge model. The improvement of the weight gate indicates that
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adjusting the distribution of similarities can slightly benefit the performance. Besides, CNN merge
gate can also slightly improve on MLP merge gate by reducing overfitting.

As elaborated in Section D, FedSim only boosts performance on the datasets satisfying a widely
held assumption: the similarity between identifiers is related to the similarity between data records.
Our experiments in Appendix F.6 indicate that FedSim has close (small K) or lower (large K)
performance compared to baselines on a synthetic dataset with independent identifiers.

6.3 Privacy

In this subsection, to study how additional noise on similarities affects the performance of FedSim, we
conduct experiments on five real-world datasets (the result of company is included in Appendix F.1
due to page limit). Specifically, string or numeric identifiers are converted to Bloom filters according
to [29]. The Hamming distances between Bloom filters are used to calculate raw similarities. Then,
given an acceptable success rate τ , a noise scale σ is calculated according to Theorem 2. Finally,
Gaussian noise with scale σ is added to the raw similarities according to Equation 2. The results
are presented in Figure 6. Exact is not evaluated since few Bloom filters have exactly the same
bits. From Figure 6, we observe that FedSim is robust to the noise on similarities; therefore, the
attacking success rate can be reduced to [10−4, 10−3] without evident performance loss. Notably,
the performance when τ = 1 is not necessarily the same as the performance in Section 6.2 since
similarities are calculated based on different distances.

7 Related Work

Most studies [18, 26, 37, 50, 56, 61] in VFL focus on training and simply assumes record linkage has
been done (i.e., the implicit exact linkage on record ID), which is impractical since most real-world
federated datasets are unlinked. Some approaches exactly link the identifiers by exact PPRL [7]
or private set intersection (PSI) [7, 36, 60]. Nonetheless, these approaches incur performance loss
of VFL and are also impractical since the common features of many real-world federated datasets
cannot be exactly linked (e.g. GPS location). [22] greedily links the most similar identifiers in PPRL,
which negatively impacts performance since some beneficial pairs with relatively low similarity may
be neglected. [39, 40] explore the impact of record linkage on the performance of VFL, which is also
adopted by [27]. However, all of them focus only on the most similar identifiers and assume there is
a one-to-one mapping between the data records of two parties, which is not always true in practice.

Current VFL frameworks support various machine learning models including linear regression [17],
logistic regression [25], support vector machine [34], gradient boosting decision trees [7, 60]. FDML
[26] supports neural networks but it requires all the parties to hold labels. SplitNN [56] focuses on
neural networks and provides a new idea of collaborative learning where the model is split and held
by multiple parties. Since we study the scenario where only one party holds the labels and want to
support commonly used neural networks, we build FedSim on top of SplitNN.

8 Conclusion

In this paper, we propose FedSim, a novel VFL framework based on similarities to boost the
performance of VFL by directly utilizing the similarities calculated in PPRL and skipping the
classification process. We also theoretically analyze the additional privacy risk introduced by sharing
similarities and provide a bound for the success rate of an intuitive attack. In our experiment, FedSim
consistently outperforms all the baselines.
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