A Proofs

Here we prove the propositions stated in Section 4.

A.1 Entropy Search

Proposition 1. If we choose \(\mathcal{A} = \mathcal{P}(\Theta) \) and \(\ell(f, q) = -\log q(\theta_f) \), then the EHIG is equivalent to the entropy search acquisition function, i.e. \(\text{EHIG}_t(x; \ell, \mathcal{A}) = \text{ES}_t(x) \).

Proof of Proposition 1. We first prove that under our definition of loss \(\ell \), the \(H_{\ell,\mathcal{A}} \)-entropy \(H[f | \mathcal{D}_t] \) is equivalent to the Shannon entropy of the posterior distribution over \(\theta_f \) (where \(\theta_f \) denotes a property of \(f \) that we would like to infer—as an example, \(\theta_f \) could be equal to the global maximizer \(x^* \) of \(f \)).

Note that the \(H_{\ell,\mathcal{A}} \)-entropy is the expected loss of the Bayes action

\[
q^* = \arg \inf_{q \in \mathcal{P}(X)} E_{p(f|\mathcal{D}_t)} [-\log q(\theta_f)].
\]

We want to show that \(q^* \) defined above is equal to \(p(\theta_f | \mathcal{D}_t) \). To do so, note that

\[
q^* = \arg \inf_{q \in \mathcal{P}(X)} E_{p(f|\mathcal{D}_t)} [-\log q(\theta_f|\mathcal{D}_t)] = \arg \inf_{q \in \mathcal{P}(X)} E_{p(\theta_f|\mathcal{D}_t)} [-\log q(\theta_f|\mathcal{D}_t)] = p(\theta_f|\mathcal{D}_t),
\]

where the first equality holds since

\[
E_X[f(g(X))] = E_Z[f(Z)], \text{ when } Z = g(X),
\]

and the second equality holds since we can view \(E_{p(\theta_f|\mathcal{D}_t)} [-\log q(\theta_f|\mathcal{D}_t)] \) as a cross entropy, which is minimized when \(q(\theta_f|\mathcal{D}_t) = p(\theta_f|\mathcal{D}_t) \). Therefore, under this loss and action set, using the definition of the EHIG we can write

\[
\text{EHIG}_t(x; \ell, \mathcal{A}) = H[p(\theta_f | \mathcal{D}_t)] - E_{p(y_i|\mathcal{D}_t)} [H[p(\theta_f | \mathcal{D}_t \cup \{x, y_i\})]] = \text{ES}_t(x).
\]

\(\square \)

A.2 Knowledge Gradient

Proposition 2. If we choose \(\mathcal{A} = \mathcal{X} \) and \(\ell(f, x) = -f(x) \), then the EHIG is equivalent to the knowledge gradient acquisition function, i.e. \(\text{EHIG}_t(x; \ell, \mathcal{A}) = \text{KG}_t(x) \).

Proof of Proposition 2. The proof follows directly from the definition of \(H_{\ell,\mathcal{A}} \)-entropy and the EHIG, namely

\[
\text{EHIG}_t(x) = \inf_{a \in \mathcal{A}} E_{p(f|\mathcal{D}_t)} [\ell(f, a)] - E_{p(y_i|\mathcal{D}_t)} \left[\inf_{a \in \mathcal{A}} E_{p(f|\mathcal{D}_t \cup \{(x, y_i)\})} [\ell(f, a)] \right] = \inf_{x' \in \mathcal{X}} E_{p(f|\mathcal{D}_t)} [-f(x')] - E_{p(y_i|\mathcal{D}_t)} \left[\inf_{x' \in \mathcal{X}} E_{p(f|\mathcal{D}_t \cup \{(x, y_i)\})} [-f(x')] \right] = -\sup_{x' \in \mathcal{X}} E_{p(f|\mathcal{D}_t)} [f(x')] + E_{p(y_i|\mathcal{D}_t)} \left[\sup_{x' \in \mathcal{X}} E_{p(f|\mathcal{D}_t \cup \{(x, y_i)\})} [f(x')] \right] = E_{p(y_i|\mathcal{D}_t)} [\mu_{t+1}(x, y_i)] - \mu_t^* = \text{KG}_t(x)
\]

\(\square \)

A.3 Expected Improvement

Proposition 3. If we choose \(\mathcal{A}_t = \{x_i\}_{i=1}^{t-1} \), where \(x_i \in \mathcal{D}_t \), and \(\ell(f, x_i) = -f(x_i) \), then the EHIG is equal to the expected improvement acquisition function, i.e. \(\text{EHIG}_t(x; \ell, \mathcal{A}) = \text{EI}_t(x) \).
Proof of Proposition 3. The first term of EHIG\(_t\) in Eq. (3) is equal to:

\[
H_{\ell,A_t}[f \mid D_t] = \inf_{a \in A_t} \mathbb{E}_{p(f|D_t)} [\ell(f, a)] = -\max_{i \leq t-1} \hat{f}(x_i) := -f_t^*
\] \hspace{1cm} (20)

where \(\hat{f}(x_i)\) is the posterior expected value of \(f\) at \(x_i\).

The second term in Eq. (3) is:

\[
\mathbb{E}_{p(y_t|D_t)} \left[H_{\ell,A_{t+1}} [f \mid D_t \cup \{(x, y_x)\}] \right]
= \mathbb{E}_{p(y_t|D_t)} \left[\mathbb{E}_{p(f|D_t \cup \{(x, y_x)\})} \left[\inf_{a \in A_{t+1}} \ell(f, a) \right] \right]
= \mathbb{E}_{p(y_t|D_t)} \left[\mathbb{E}_{p(f|D_t \cup \{(x, y_x)\})} \left[-\max(f_t^*, f(x)) \right] \right]
= \mathbb{E}_{p(y_t|D_t)} \left[-\max(f_t^*, y_x) \right]
\] \hspace{1cm} (21)

Putting it together, the EHIG\(_t\) acquisition function in Eq. (3) will reduce to:

\[
EHIG_t(x; \ell, A) = -f_t^* - \mathbb{E}_{p(y_t|D_t)} \left[-\max(f_t^*, y_x) \right]
= \mathbb{E}_{p(y_t|D_t)} \left[\max(0, y_x - f_t^*) \right]
= EI_t(x).
\] \hspace{1cm} (22)

\[\square\]

A.4 Probability of Improvement

We additionally include a result below showing that the probability of improvement (PI) acquisition function can similarly be viewed as a special case of the proposed EHIG family.

Proposition 4. For some constant \(\tau\), the acquisition function of PI is defined as \(PL_t(x; D_t) = \mathbb{E}_{p(f|D_t)} [\mathbb{I}(f(x) - \tau > 0)],\) where \(\mathbb{I}(\cdot)\) is the indicator function, and typically \(\tau\) is taken to be equal to \(f_t^* = \max_{i \leq t-1} \hat{f}(x_i)\) for \(x_i \in D_t\). If we choose \(A_t = \{x_{t-1}\}\), where \(x_{t-1} \in D_t\), and \(\ell_{\tau}(f, x) = \mathbb{I}(f(x) - \tau > 0),\) then maximizing EHIG is equivalent to maximizing the probability of improvement acquisition function, i.e. \(\arg \max_{x \in X} EHIG_t(x; \ell_{\tau}, A) = \arg \max_{x \in X} PL_{\tau}(x).\)

Proof of Proposition 4. The first term of EHIG\(_t\) in Eq. (3) is equal to:

\[
H_{\ell,A_t}[f \mid D_t] = \inf_{a \in A_t} \mathbb{E}_{p(f|D_t)} [\ell(f, a)] = -\mathbb{I}(\hat{f}(x_{t-1}) - \tau > 0)
\] \hspace{1cm} (23)

where \(\hat{f}(x_{t-1})\) is the posterior expected value of \(f\) at \(x_{t-1}\). More importantly, \(H_{\ell,A_t}[f \mid D_t]\) is a constant with respect to \(x\) that we are optimizing.

The second term in Eq. (3) is:

\[
\mathbb{E}_{p(y_t|D_t)} \left[H_{\ell,A_{t+1}} [f \mid D_t \cup \{(x, y_x)\}] \right]
= \mathbb{E}_{p(y_t|D_t)} \left[\inf_{a \in \{x\}} \mathbb{E}_{p(f|D_t \cup \{(x, y_x)\})} [\ell(f, a)] \right]
= \mathbb{E}_{p(y_t|D_t)} \left[\mathbb{E}_{p(f|D_t \cup \{(x, y_x)\})} [-\mathbb{I}(f(x) - \tau > 0)] \right]
= -\mathbb{E}_{p(y_t|D_t)} \left[\mathbb{I}(y_x - \tau > 0) \right]
\] \hspace{1cm} (24)

Putting it together, the EHIG\(_t\) acquisition function in Eq. (3) will reduce to:

\[
EHIG_t(x; \ell_{\tau}, A) = -\mathbb{I}(\hat{f}(x_{t-1}) - \tau > 0) + \mathbb{E}_{p(y_t|D_t)} \left[\mathbb{I}(y_x - \tau > 0) \right]
= \mathbb{E}_{p(y_t|D_t)} \left[\mathbb{I}(y_x - \tau > 0) \right] + \text{constant}
= PL_{\tau}(x) + \text{constant}.
\] \hspace{1cm} (25)

Thus maximizing EHIG is equivalent to maximizing the probability of improvement acquisition function.

\[\square\]
B Additional Experimental Details and Results

Details on the Alpine-d function. The multimodal Alpine-d function is defined as \(\text{Alpine-d}(x) = \sum_{i=1}^{d} |x_i \sin(x_i) + 0.1x_i|, \) for \(x \in \mathbb{R}^d \).

Details on the Vaccination function. The vaccination function is obtained by training a Multi-Layer Perceptron (MLP) network based on the data from [53], which uses county-level vaccination data provided by the CDC, and uses small area estimation\(^3\) to interpolate the vaccination rate of every location. We restrict the optimization domain to be a rectangle focusing on the state of Pennsylvania.

Details on the Multihills function. The Multihills function is defined as a mixture density as follows. \(\text{Multihills}(x) = \sum_{j=1}^{J} w_j \mathcal{N}(x | \mu_j, C_j), \) for \(x \in \mathbb{R}^d \), where \(\mathcal{N} \) denotes a multivariate normal density, \(\{\mu_j\} \) are a set of \(J \) means, \(\{C_j\} \) are a set of \(J \) covariance matrices, and \(\{w_j\} \) are a set of \(J \) weights.

Details on the Pennsylvania Night Light function. We consider the 2012 gray scale global night-light raster with resolution 0.1 degree per pixel. The data is downloaded from NASA Earth Observatory\(^4\). We restrict the optimization domain to be a rectangle focusing on the state of Pennsylvania and normalize all raster data before use. Each location query gives a value proportional to the average amount of night light at that location.

Computational Cost. While using the EHIG\(_t(x; \ell, A) \) acquisition function in Bayesian optimization (Algorithm 1) is more expensive than simpler methods (e.g. expected improvement (EI)), in many cases it has a comparable computational cost to methods such as knowledge gradient (KG) or entropy search (ES) methods, when applied to the same task—in fact, our implementation has a similar structure as one-shot knowledge gradient acquisition optimization methods.

The following timing results compare the average cost (mean wall clock time in seconds) of acquisition optimization for a set of comparison methods, including EI as an additional method, on the Alpine-2 function from the first experiment in our paper: \(\text{EHIG: 6.9s, KG: 6.6s, EI: 0.5s, US: 0.3s}. \)

\(^3\)https://en.wikipedia.org/wiki/Small_area_estimation
\(^4\)https://earthobservatory.nasa.gov/features/NightLights
B.1 Additional Experiment Results and Visualizations.

We show further experiment results for multi-level set estimation and sequence search (Figure 5), visualizations for multi-level set estimation (Figure 6), and an additional comparisons of classic BO acquisition functions on the initial top-\(k\) optimization experiments (Figure 7).

Figure 5: **Multi-level set estimation and sequence search.** *Left and center:* Plots of accuracy versus iteration for the task of multi-level set estimation (Equation (5), \(m = 1\)), where error bars represent one standard error. *Right:* Plot of negative loss versus iteration for the task of sequence search (Equation (6)), where error bars represent one standard error.

Figure 6: **Visualization results for multi-level set estimation.** Visualization of multi-level set estimation for Alpine-2, Multihills, and the Pennsylvania Night Light (PNL) functions. We show the ground-truth level set thresholds with red and blue dashed lines (for Alpine-2 and Multihills) and white dashed line (for the PNL function). The queries \(D_t\) taken by each method are shown with black dots (for Alpine-2 and Multihills) and red dots (for the PNL function). We observe that the queries taken by \(H_{f,A}\)-Entropy Search focus on level set boundaries, yielding a fine-grained estimate near these boundary curves, while the other methods fail to do so.