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Abstract

We present a family {π̂p}p≥1 of pessimistic learning rules for offline learning of
linear contextual bandits, relying on confidence sets with respect to different `p
norms, where π̂2 corresponds to Bellman-consistent pessimism (BCP), while π̂∞
is a novel generalization of lower confidence bound (LCB) to the linear setting. We
show that the novel π̂∞ learning rule is, in a sense, adaptively optimal, as it achieves
the minimax performance (up to log factors) against all `q-constrained problems,
and as such it strictly dominates all other predictors in the family, including π̂2.

1 Introduction

Offline (or batch) reinforcement learning (RL) [17, 18] seeks to learn a good policy from fixed
historical data without active interactions with the environment. This offline paradigm has been
widely adopted in applications including dialog generation [10], autonomous driving [43], and robotic
control [16], etc.

When the offline dataset has insufficient coverage over the state and action spaces, planning via
nominal estimates of either the value function or the model may perform poorly—a phenomenon that
is observed even in a simple two-armed bandit [24]. This challenge motivates the adoption of the
pessimism principle for solving offline RL. In essence, the pessimism principle discounts policies
that are less represented/supported in the offline dataset, and hence is pessimistic/conservative in
outputting a policy. Built on this common principle, a diverse collection of pessimistic learning rules
have been proposed in theory and practice [11, 24, 36, 37, 45, 46, 9, 15, 34, 14, 21, 42]. This leads
us to the following natural question:

Which pessimistic learning rule should one use for solving offline RL problems?
In this paper, we address the question in the setting of offline linear contextual bandits, in which
the expected reward—as a function of the state-action pair—is linear with respect to a known
feature mapping that maps state-action pairs to finite-dimensional vectors. Our goal is to make
sense of previously proposed learning rules for offline RL, and understand which learning rule is
“optimal” in a statistical sense. We present a general family {π̂p}p≥1 of pessimistic learning rules
based on the construction of `p confidence sets for the unknown linear parameter. We advocate
for π̂∞, a new `∞ learning rule for offline linear contextual bandits, which we call Pessimism via
Uniform Norm Confidence (for short, PUNC).1 PUNC directly extends the lower confidence bound
algorithm proposed in the tabular contextual bandit setting [24]. We show that PUNC (1) achieves a
suboptimality guarantee that dominates other π̂p (up to log factors, which we ignore throughout the
introduction), and (2) has an adaptive minimax optimality property that is unique among the family
{π̂p}p≥1. In particular, we argue that PUNC dominates prior learning rules which are based on `2
pessimism (e.g., [37, 45, 11]) and which cannot attain adaptive minimax optimality.

1Throughout the paper, we use π̂∞ and PUNC interchangeably.
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Roadmap. We first introduce a broad class of pessimistic learning rules in Section 3. The con-
struction of these pessimistic learning rules relies on the observation that any confidence set of the
linear reward function automatically induces a pessimistic value estimate, and hence a pessimistic
learning rule. As concrete examples, for each p ≥ 1, one can design π̂p, an `p learning rule, by
constructing such a confidence set using the `p distance metric. We show in Section 3.3 that π̂2

recovers the Bellman-consistent pessimism (BCP) learning rule [37], proposed for offline RL with
general function approximation; meanwhile, π̂∞ generalizes the lower confidence bound (LCB)
learning rule, proposed for offline tabular RL, to the linear setting.

Once we have cast pessimistic estimation in this framework, we can study the performance guarantees
of the family {π̂p}p≥1. Employing a notion of pessimism-validity (Definition 1) allows us to easily to
derive upper bounds on suboptimality for each π̂p in terms of the dual `q norm (where 1/p+1/q = 1);
see Theorem 1. For p = 2, the upper bound improves over that provided in the paper [37] for linear
contextual bandits. For p =∞, the upper bound matches that proved in the paper [24] for tabular
contextual bandits. A key observation regarding the upper bound is that the suboptimality guarantee
of π̂∞ dominates all other π̂p in the general linear setting. This partially showcases the advantage of
using PUNC.

To further investigate the advantage of PUNC over other π̂p (for p ∈ [1,∞)), we consider the
fundamental statistical limits of the offline linear contextual bandit problem in Section 4. Inspired
by both the upper bounds we prove and prior work [45, 24, 40], we consider a sequence of norm-
constrained classes of contextual bandit instances indexed by the `q norm (q ≥ 1). We prove that
each π̂p is minimax rate-optimal within the dual `q-norm constrained contextual bandit class; see
Theorem 2. However, Theorem 2 delivers an even stronger message: PUNC is adaptively minimax
optimal in the sense that it simultaneously achieves optimality for all `q-norm constrained classes, as
illustrated by Figure 1. We also demonstrate that such adaptivity is unique to PUNC as other values
of p (e.g., p = 2) cannot achieve simultaneous optimality. Instead, π̂p is only adaptively optimal for
`q-norm constrained classes where q ≥ p/(p− 1); see Theorem 3.

In summary, our main contributions are the following:

• We introduce a novel learning rule, PUNC, for solving the offline linear contextual bandit problem,
whose performance guarantee dominates those of all other π̂p, for finite p (Theorem 1).

• We show minimax lower bounds over norm-constrained classes of contextual bandit instances,
which show that each π̂p is optimal over the dual `q class, up to log factors in the dimension
(Theorem 2).

• We demonstrate that PUNC satisfies the adaptive minimax optimality property (Section 4.2), and
show that this property is unique to PUNC by proving a separation result against any other π̂p
(Theorem 3, and see also Figure 1).

2 Problem setup

We begin by introducing the problem of offline learning in linear contextual bandits. Let S and A be
the state space and the action space, respectively. Let φ : S ×A → Rd be a known feature mapping.
In the offline setting, we observe a dataset D := {(si, ai, ri)}ni=1, where the covariates {(si, ai)}ni=1
are fixed and the rewards are drawn independently according to ri ∼ R(si, ai), where R(s, a) is the
reward distribution associated with the pair (s, a). We assume that R(s, a) is 1-subgaussian for every
(s, a) with mean reward r(s, a) := E[R(s, a)]. Furthermore, we assume that the expected reward
is linear in the sense that for every (s, a) pair, r(s, a) = φ(s, a)>θ? for some unknown parameter
vector θ? ∈ Rd.

Let π : S → A be a deterministic policy. Fixing a (known) test distribution ρ ∈ ∆(S), we define the
value of the policy π (with respect to ρ) as

V (π) := Es∼ρ [r(s, π(s))] = Es∼ρ
[
φ(s, π(s))>θ?

]
. (1)

Correspondingly, we define the optimal policy π? as
π?(s) := arg max

a∈A
r(s, a) = arg max

a∈A
φ(s, a)>θ?, for each s ∈ S. (2)

The goal of offline learning in linear contextual bandits is to design a learning rule which takes as
input a dataset D and outputs a policy π̂ that maximizes the value (1); in this paper we abuse notation
and also denote the learning rule as π̂. We measure the suboptimality of π̂ using V (π?)− V (π̂).
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3 Offline learning with pessimism

The pessimism principle has recently gained much attention in offline RL theory and practice. At a
high level, pessimistic learning rules first construct a data-dependent estimate V̂ (π) of the true value
function V (π) that is pessimistic, i.e., V̂ (π) ≤ V (π) for all π. Then, the learning rule proceeds to
select the policy that maximizes this pessimistic value function, i.e.,

π̂ := arg max
π∈Π

V̂ (π). (3)

Here, Π ⊆ AS is some policy class that contains the optimal policy π?. To see why this choice of
policy makes sense, let us decompose the suboptimality of π̂ as follows:

V (π?)− V (π̂) =
(
V (π?)− V̂ (π?)

)
+
(
V̂ (π?)− V̂ (π̂)

)
+
(
V̂ (π̂)− V (π̂)

)
. (4)

The middle term is non-positive by definition of π̂. Due to the pessimistic property of V̂ , we also
have V̂ (π̂)− V (π̂) ≤ 0, which yields the suboptimality upper bound

V (π?)− V (π̂) ≤ V (π?)− V̂ (π?). (5)

Consequently, under the selection rule (3), a tight pessimistic value function V̂ induces a policy with
small suboptimality.

3.1 Achieving pessimism by building confidence sets

As a general strategy, one can construct the pessimistic value estimator V̂ by building confidence sets
for the linear parameter θ?. Let Θ ⊆ Rd be a confidence set that contains the true parameter θ?. We
can define the corresponding pessimistic value estimator

V̂ (π) := inf
θ∈Θ

Es∼ρ[φ(s, π(s))>θ], (6)

and its associated policy learning rule π̂Θ := arg maxπ∈Π V̂ (π). Here for simplicity we take Π to
be the class of all deterministic policies.

In essence, the confidence set Θ captures the amount of uncertainty we have about the ground truth θ?.
Once Θ is determined, we construct the value estimate V̂ (π) via the worst-case value of π among all
plausible linear parameters θ in the confidence set Θ. It is immediate to see that under the assumption
θ? ∈ Θ, one has V̂ (π) ≤ V (π) for all π. In other words, the value estimator V̂ is indeed pessimistic.
As a result, we can apply the general upper bound (5) to obtain

V (π?)− V (π̂Θ) ≤ V (π?)− V̂ (π?) = sup
θ∈Θ

Es∼ρ[φ(s, π?(s))>(θ? − θ)], (7)

where the identity follows from the definition (6). Clearly, the “smaller” the confidence set, the
smaller the bound on suboptimality. An extreme case is when Θ contains the singleton θ?, which
yields zero suboptimality. However, since only noisy rewards are observed, we cannot hope to
construct such a good confidence set. Given the uncertainty about the rewards, our confidence set has
to be “large” enough in order to guarantee that θ? ∈ Θ with decent probability.

Below we present a general definition called pessimism-validity that involves both the size of the
confidence set and also its confidence level, both of which allow us to bound the suboptimality of the
pessimistic learning rule π̂Θ. Let ‖·‖ be any norm over Rd that will be used to measure the size of
the confidence set Θ. Let δ ∈ (0, 1) be the failure probability. We have the following definition.
Definition 1. We say the confidence set Θ is (β, δ) pessimism-valid under the norm ‖·‖ if with
probability at least 1− δ, the following two properties hold: (1) θ? ∈ Θ; (2) supθ∈Θ ‖θ? − θ‖ ≤ β.

A (β, δ) pessimism-valid confidence set Θ automatically induces a pessimistic learning rule π̂Θ with
bounded suboptimality, as shown in the following proposition.
Proposition 1. Suppose that Θ is (β, δ) pessimism-valid under the norm ‖·‖. Then with probability
at least 1− δ, the pessimistic learning rule π̂Θ obeys

V (π?)− V (π̂Θ) ≤ β ·
∥∥∥ E
s∼ρ

[φ(s, π?(s))]
∥∥∥
∗
,

where ‖·‖∗ is the dual norm of ‖·‖.
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Proposition 1 simply follows from the upper bound (7), the definition of pessimism-validity, and the
definition of the dual norm.

3.2 Building `p confidence sets

In this section, we instantiate the general strategy introduced above for achieving pessimism by
constructing an `p confidence set around the true parameter θ? for some p ≥ 1. Such constructions
using `p norms include the aforementioned BCP and LCB learning rules (as well as other recently
proposed learning rules) as special cases. As we will see, setting up the notion of pessimism-validity
allows us to easily bound the suboptimality of the induced policy learning rules.

Let us denote the data matrix Φ ∈ Rn×d, where the i-th row of Φ is given by φ(si, ai)
>. We also

define the observed reward vector r := (r1, . . . , rn)> ∈ Rn. Let θ̂ols := (Φ>Φ)−1Φ>r be the
ordinary least-squares estimate for the true parameter θ?. Throughout the paper, we assume that the
sample “covariance” matrix ΣD := 1

n

∑n
i=1 φ(si, ai)φ(si, ai)

> = 1
nΦ>Φ is invertible. (The results

in the paper can be modified to accomodate the scenario when ΣD is not invertible by considering
regularized quantities ΣD + λI for some λ > 0.) We then consider the confidence sets of the form:

Θp :=

{
θ ∈ Rd |

∥∥∥Σ
1/2
D (θ − θ̂ols)

∥∥∥
p
≤ β/2

}
, (8)

where β > 0 is a width parameter. In other words, the set Θp contains all the θ’s that are close
to the OLS estimate θ̂ols in `p distance after the linear transformation Σ

1/2
D . Since θ̂ols is a faithful

approximation of the truth θ?, we expect that θ? lies in this confidence set Θp with an appropriate
choice of β. This is indeed true, as the following lemma shows.

Lemma 1. Fix any δ ∈ (0, 1). Set the width parameter β = d1/p
√

8 log(d/δ)
n . Then the confidence

set Θp is (β, δ) pessimism-valid with respect to the norm ‖v‖ := ‖Σ1/2
D v‖p.

See Appendix B.1 for the proof of this lemma.

Combining Lemma 1 and Proposition 1 immediately yields the following performance guarantee for
the pessimistic learning rule constructed using Θp (which for notational brevity we denote as π̂p).
Theorem 1. For any p ≥ 1, with probability at least 1− δ, we have

V (π?)− V (π̂p) ≤ d1/p

√
8 log(d/δ)

n
·
∥∥∥Σ
−1/2
D Es∼ρ [φ(s, π?(s))]

∥∥∥
q
,

where q is the solution to 1/p+ 1/q = 1.

Several remarks regarding Theorem 1 are in order. First, the performance upper bound has a natural
scaling w.r.t. the sample size n, i.e., V (π?)− V (π̂p) .

√
1/n. In addition, Theorem 1 provides a

family of upper bounds for each specific choice of p ≥ 1. Lastly, from an upper bound perspective,
the π̂∞ learning rule (which we call PUNC) dominates all the other p ∈ [1,∞), since for any v ∈ Rd
and q ∈ [1,∞), the inequality ‖v‖1 ≤ d1−1/q ‖v‖q holds. This partially showcases the benefits of
using PUNC over the alternatives. Later in Section 4, we will see a stronger motivation—from the
perspective of the lower bound—for using PUNC, in which we show that PUNC is adaptively minimax
optimal. We also remark that the max-min form for π̂p has an equivalent max-only formulation,
which will be helpful for our proofs and comparisons to other algorithms:

π̂p = arg max
π∈Π

{
Es∼ρ [φ(s, π(s))]

>
θ̂ols − β

2 ·
∥∥∥Σ
−1/2
D Es∼ρ [φ(s, π(s))]

∥∥∥
q

}
. (9)

3.3 Connections to prior pessimistic learning rules

Now we present several connections to existing methods used for offline linear contextual bandits.

Connection between π̂2 and Bellman-consistent pessimism. Xie et al. [37] proposed the idea of
Bellman-consistent pessimism (BCP) for solving offline reinforcement learning with general function
approximation. When specialized to linear contextual bandits, the BCP learning rule first forms a
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version space that includes all possible linear reward functions with small `2 prediction error on the
observed datasets. Then, BCP defines each policy’s pessimistic value as the smallest value the policy
can achieve in the version space. Finally, BCP returns the policy that has the highest pessimistic
value. In fact, BCP exactly matches the learning rule π̂2 proposed herein. To see this, it suffices to
note that the empirical estimate of the Bellman error (cf. Equation (3.1) in the paper [37]) in the linear
contextual bandit case is given by

1

n

n∑
i=1

(
φ(si, ai)

>θ − ri
)2 − inf

θ∈Rd
1

n

n∑
i=1

(
φ(si, ai)

>θ − ri
)2

=
∥∥∥Σ

1/2
D (θ − θ̂ols)

∥∥∥2

2
.

Therefore a parameter θ having a small Bellman error is equivalent to having a small `2 distance
to the OLS estimate. Xie et al. [37] prove that BCP enjoys the guarantee (up to log factors) of√
d/n · Es∼ρ

[
‖Σ−1/2
D φ(s, π?(s))‖2

]
, which is loose compared to our theoretical guarantee

√
d/n ·

‖Σ−1/2
D Es∼ρφ(s, π?(s))‖2, as a consequence of Jensen’s inequality and the convexity of the `2 norm.

Similar ideas using the `2 confidence set also appear in a recent paper by Zanette et al. [45]; their
actor-critic algorithm, PACLE, can be interpreted as providing a computationally efficient way to
solve π̂2.2

Connection between PUNC and lower confidence bound for tabular contextual bandits. We
now discuss how the LCB learning rule for the tabular setting is a specialization of PUNC. The
tabular contextual bandit setting is a special case of the linear setting with the feature mapping
φ(s, a) = esa (the canonical basis vector indexed by (s, a)). For notational convenience, we define
S := |S|, A := |A|, r̂(s, a) to be the empirical average reward, and n(s, a) to be the number of times
the pair (s, a) is seen in the dataset.

Rashidinejad et al. [24] present the following lower confidence bound (LCB) learning rule:

for each s, π̂LCB(s) := arg max
a∈A

r̂(s, a)− β ·

√
log(SA/δ)

n(s, a)
. (10)

In essence, the quantity r̂(s, a)− β ·
√

log(SA/δ)
n(s,a) acts as a lower confidence bound for the true mean

reward r(s, a). In every state, LCB picks the action that maximizes this lower confidence bound. It is
easy to verify that LCB (10) exactly corresponds to PUNC (with proper choices of β); one just needs
to check the max-only formulation in Equation (9) with p =∞ and q = 1.

In establishing performance guarantees for LCB, Rashidinejad et al. [24] assume that the covariates
{(si, ai)}ni=1 are drawn i.i.d. from a behavior distribution µ ∈ ∆(S × A) (as opposed to our fixed
design setting). Nevertheless, it is straightforward to translate our results to this random design case
by using Chernoff bounds.
Corollary 1. In the tabular setting, with probability at least 1 − δ, the learning rule π̂∞ with Θ
given by Equation (8) achieves the suboptimality:

V (π?)− V (π̂∞) .

√
log(SA/δ)

n
·

(∑
s

ρ(s)√
µ(s, π?(s))

)
,

as long as n & log(S/δ) · (mins{µ(s, π?(s))})−1.

Corollary 1 is proved in Appendix B.2.

Compared to the upper bound in the paper [24], Corollary 1 is more fine-grained, or “problem-
dependent”, as the suboptimality bound depends on the interaction between the specific behavior
distribution µ and test distribution ρ. In contrast, Rashidinejad et al. [24] consider the class of tabular
instances with bounded single-policy concentrability coefficient.

Definition 2. The single-policy concentrability coefficient is defined as C? := sups∈S
ρ(s)

µ(s,π?(s)) .

Corollary 1 readily recovers the performance guarantee for LCB of Õ(
√
SC?/n) established in the

paper [24], which is optimal in the regime where C? ≥ 2.
2While we focus on the statistical properties of the family {π̂p} in this work, we believe that the actor-critic

approach developed by Zanette et al. [45] can be extended to yield tractable algorithms for general p ≥ 1.
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Connection to pessimistic value iteration. We give another example of how to interpret pessimistic
learning rules using the idea of confidence set construction. Consider the pessimistic value iteration
(PEVI) learning rule proposed by Jin et al. [11]. PEVI directly extends Equation (10) to the linear
setting:

π̂PEVI(s) := arg max
a∈A

φ(s, a)>θ̂ols − β ·
∥∥∥Σ
−1/2
D φ(s, a)

∥∥∥
2
, (11)

where the right hand side still acts as a lower confidence bound for the true mean reward r(s, a).
PEVI bears striking resemblance with the max-only formulation (9) (with p = q = 2), with the
key difference that the max-only formulation is “averaged” over the test distribution ρ, while PEVI
directly discounts every (s, a) pair. PEVI does not immediately fit into our confidence set framework.
However, if we modify the minimization over confidence sets to minimization over functionals
θ : S → Rd, then we can rewrite PEVI as

π̂PEVI := arg max
π∈Π

inf
θ∈Θ

Es∼ρ[φ(s, π(s))>θ(s)],

where Θ =
{
s 7→ θ(s) |

∥∥∥Σ
1/2
D (θ(s)− θ̂ols)

∥∥∥
2
≤ β, for all s

}
.

In other words, PEVI enlarges the `2 confidence set by separately picking a pessimistic parameter
θ(s) for each state s ∈ S. Jin et al. [11] prove the guarantee (up to log factors) of

√
d2/n ·

Es∼ρ
[
‖Σ−1/2
D φ(s, π?(s))‖2

]
, which is loose due to the extra factor of d and the interchanging of

the expectation and the norm. However, their guarantee holds for all test distributions—as opposed to
a fixed test distribution ρ. This is a consequence of being pessimistic for every state s.

4 Which learning rule should one use?

Having introduced a general strategy for building pessimistic learning rules by constructing `p
confidence sets, it is natural to ask which π̂p one should use. To enable such comparisons, we
investigate the statistical limits of offline linear contextual bandits over constrained sets of problem
instances.

4.1 Minimax lower bound for constrained instances

For any feature mapping φ : S ×A → Rd, sample size n ∈ N, and two quantities q ∈ [1,∞), Λ > 0,
we define a set of linear contextual bandit (CB) instances3 as follows:

CBq(Λ):=

{
(ρ, {(si, ai)}ni=1, θ

?, R) |
∥∥∥Σ
−1/2
D Es∼ρ[φ(s, π?(s))]

∥∥∥
q
≤ Λ, R is 1-subgaussian

}
.

The set CBq(Λ) includes all the linear contextual bandit instances such that a sort of “complexity
measure” Cq := ‖Σ−1/2

D Es∼ρ[φ(s, π?(s))]‖q is at most Λ. Our motivation to consider the rate of
estimation in the CB family CBq(Λ) are two-fold. First, in view of Theorem 1, the family CBq(Λ)
admits a good learning rule, specifically π̂p with 1/p+ 1/q = 1, since for everyQ ∈ CBq(Λ), w.p. at
least 1− δ,

V ?Q − VQ(π̂p) . d1/p
√

log(d/δ)/n · Λ, (12)
where V ?Q denotes the optimal value in instance Q and VQ(π) denotes the value of policy π in
instance Q. Thus, it is natural to view Cq as a certain complexity measure for offline learning in
linear contextual bandits. Second, prior work [45, 24, 40] has proven various types of lower bounds
on offline learning using either the `2 quantity C2 or the `1 quantity C1. We will elaborate more on
this point later.

Now we are ready to present the minimax lower bounds for these families of CB instances.
Theorem 2. For every d ≥ 2, there exists a feature mapping φ such that the following lower bound
holds. For any p, q ≥ 1 such that 1/p + 1/q = 1, as long as Λ ≥

√
8 · d1/q−1/2 and n ≥ d2/pΛ2,

we have
inf
π̂

sup
Q∈CBq(Λ)

E[V ?Q − VQ(π̂)] ≥ c · d1/p
√

1/n · Λ,

3For brevity, we omit the dependence on φ and n in the notation CBq(Λ).
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where c > 0 is some universal constant. Furthermore, when p =∞, q = 1, the lower bound holds
for the extended range of Λ ≥ 2.

The proof can be found in Appendix C. It relies on a reduction to a bound for the minimax regret of
the multi-armed bandit problem.

We note that Theorem 2 also consists of a family of lower bounds for each `q norm constrained
CB class. By comparing the lower bound in Theorem 2 with the upper bound (12) obtained by π̂p,
we see that for the `q norm constrained class CBq(Λ), the learning rule π̂p with 1/p + 1/q = 1 is
minimax rate-optimal, up to a log d factor. For instance, over the `2 class CB2(Λ), the minimax rate
of estimation is Θ̃(

√
d/n · Λ), while over the `1 class CB1(Λ), the rate is given by Θ̃(

√
1/n · Λ).

On a technical front, it would be interesting to extend Theorem 2 to the entire range of Λ ≥ 0. It is
unclear whether the same minimax rate of Ω(d1/p/

√
n ·Λ) holds when Λ = O(d1/q−1/2), or whether

we can achieve faster rates in the small Λ regime. In the tabular setting, Rashidinejad et al. [24]
recently showed that LCB achieves fast 1/n rates when the single policy concentrability coefficient
is small; similar results might hold in the linear setting. Several limitations prevent us from extending
the range of Λ in Theorem 2; Appendix C.1 provides more technical details.

4.2 Adaptive minimax optimality of PUNC

We point out a even stronger message delivered in Theorem 2: PUNC is adaptively minimax optimal
for solving the offline linear contextual bandit problem. This is illustrated in Figure 1, where we plot
the sample complexity n required in order to achieve constant suboptimality (say, 0.01) for various
CBp/(p−1)(Λ). (For sake of illustration, it is more convenient to work with p rather than q on the
x-axis.)

p

n

1

d2 ⋅ Λ2

2 ∞

d ⋅ Λ2

Λ2
Minimax lower bound (Thm. 2)

 performance (Thm. 1)̂π ∞

 performance (Thm. 1 + Thm. 3)̂π 2

Figure 1: Sample complexity of π̂p̃ (for var-
ious p̃) over different CBp/(p−1)(Λ) classes.
The red line corresponds the minimax lower
bound. Other lines correspond to different val-
ues of p̃ and show the number of samples n
required to ensure supQ∈CBp/(p−1)(Λ) E[V ?Q−
VQ(π̂)] ≤ 0.01. The blue and green lines cor-
respond to π̂2 and π̂∞ respectively. Two pur-
ple lines correspond to π̂p̃ for some p̃ ∈ (1, 2)
and p̃ ∈ (2,∞). PUNC attains minimax op-
timality over every class, while other π̂p̃ do
not.

As indicated by the red line, Theorem 2 shows that
every learning rule must incur sample complexity
at least Ω(d2/pΛ2). Likewise, we can also follow
the discussion after Theorem 1 to see that the per-

formance upper bound of π̂∞ is d1/p
√

log(d/δ)
n · Cq

for all p, q ≥ 1, 1/p + 1/q = 1. Thus, PUNC at-
tains the green line in Figure 1; that is, PUNC is
simultaneously minimax rate-optimal for all `q-norm
constrained classes CBq(Λ), up to a log d factor.4
From worst-case perspective, one should always pre-
fer using PUNC given an unknown CB instance.

Is this adaptive optimality property unique to PUNC
among the family {π̂p}p≥1 we consider? Below, we
answer this question in the positive by presenting a
separation result.

Theorem 3 (Informal). Fix any p ≥ 1. For suffi-
ciently large n, d, there exists a contextual bandit
instance Q ∈ CB1(Λ) with Λ =

√
8d, such that with

probability at least 1/4, π̂p has suboptimality at least
Ω(d1/p/

√
n · Λ).

Since PUNC attains a suboptimality of Õ(1/
√
n · Λ) over the class CB1(Λ), Theorem 3 shows that

every other π̂p is suboptimal over the class CB1(Λ).

A formal statement of Theorem 3 and its proof can be found in Appendix D. The key intuition in the
proof is that the `p confidence sets capture a notion of error that is “averaged” over all directions,
while the `∞ confidence sets separately estimate the error in each direction. In the hard instance we
construct, only one direction determines the difficulty of the offline learning problem, so π̂p is worse

4We did not investigate when the log d factor in Theorem 1 can be removed, so for example, it is possible
that π̂2 beats π̂∞ over CB2(Λ) by a factor of

√
log d.
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(a) Random rotation (b) Basis-aligned (c) `1 and `2 complexities

Figure 2: Comparing the performance of the plug-in rule, π̂2, and π̂∞ on linear contextual
bandit instances with d = 100, averaged over 100 trials, with 90% confidence intervals. (a)
φi ∼ N (0, QDQ>) and θ? = Qe20, where Q is a random rotation matrix and D is a diagonal
matrix with entries Dii = i−1/(

∑
i i
−1). (b) φi ∼ N (0, D) and θ? = e20. (c) computed average val-

ues for C1 and
√
d×C2. The quantity C2 is identical in both plots (a) and (b). For (a), C1 ≈

√
d×C2,

while for (b), C1 �
√
d× C2.

by a factor of d1/p. There is nothing special about the choice Λ =
√

8d, and our construction works
for any Λ ≥ Ω(

√
d); we pick it to enable comparison with Theorem 2.

For sake of discussion, consider π̂2. Theorem 1 shows that π̂2 attains the rate:

V (π?)− V (π̂2) .


d1/p

√
log(d/δ)

n ·
∥∥∥Σ
−1/2
D Es∼ρ [φ(s, π?(s))]

∥∥∥
q

when q ≥ 2,√
d log(d/δ)

n ·
∥∥∥Σ
−1/2
D Es∼ρ [φ(s, π?(s))]

∥∥∥
q

when q ∈ [1, 2].

Together, Theorem 2 and 3 provide the message that both cases in the upper bound are tight (up
to log factors). In the range p ∈ [1, 2] (or q ≥ 2), Theorem 2 shows that π̂2 attains the minimax
optimal rate (up to log factors) over CBp/(p−1)(Λ), i.e., it is adaptively minimax optimal here. This
explains the curved part of the blue line in Figure 1. On the other hand, Theorem 3 shows that π̂2

cannot obtain the minimax rate over CB1(Λ). Instead, π̂2 may require Ω(d · Λ2) samples in order to
achieve constant suboptimality. Since for any p, the set CBp/(p−1)(Λ) ⊇ CB1(Λ), we know that π̂2

may require Ω(d · Λ2) samples for any CBp/(p−1)(Λ). Thus, the second case is tight when p ≥ 2 (or
q ∈ [1, 2]), explaining the flat part of the blue line in Figure 1. In general, for any finite p̃, the learning
rule π̂p̃ will be adaptively optimal for CBp/(p−1)(Λ) only in the range p ∈ [1, p̃], and afterwards the
sample complexity will “flatten out”, as illustrated by the purple lines in Figure 1.

Experimental Evidence. In order to further validate this claim, we provide experimental evidence
which shows that π̂2 does not adapt to “easy” CB instances. In Figure 2, we consider a simple offline
linear contextual bandit in which there is a single state and the feature set is Bd2 ; thus the policy
learning problem is equivalent to finding a vector π ∈ Sd−1 that maximizes V (π) := π>θ?. We
vary the offline dataset distribution and the hidden parameter θ?. When θ? is basis-aligned, we have
C1 �

√
d× C2; when θ? is not basis-aligned, the two quantities are on the same order.

4.3 Comparisons with prior lower bounds

There exist several lower bound results for offline reinforcement learning in the literature. In this
section, we compare our lower bounds (cf. Theorem 2) with the prior bounds and highlight several
improvements offered by our results.

Comparison to lower bounds w.r.t. a single Λ. Our lower bounds are stronger than those provided
in the papers [11, 45], which hold for specific choices of p = q = 2 and a single fixed Λ. Take
Theorem 2 of Zanette et al. [45] for example. Zanette et al. proved that the minimax rate of estimation
over CB2(Λ = d) is given by d3/2/

√
n. Such a lower bound fails to uncover the fundamental scaling

on the complexity Λ.5 Theorem 4.7 of Jin et al. [11] shows a result in similar spirit; their construction
essentially shows a minimax lower bound of 1/

√
n over CB2(Λ) when Λ = Θ(1). Furthermore, their

5For instance, their result does not preclude the possibility that the correct lower bound over CB2(Λ) takes
an expression, say, d−98.5Λ100/

√
n.
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Worst-case 
instances coincide 𝖢𝖡1(Λ = 2S)

𝖢𝖡𝖼𝗈𝗇𝖼(C⋆ = 2)

Instances where  
characterization is loose

C⋆

𝖢𝖡1(Λ = S)
𝖢𝖡𝖼𝗈𝗇𝖼(C⋆ = 1)

Worst-case instances 
do not coincide

Figure 3: Illustrating the relationship between single policy concentrability and boundedness of
C1. Left: When C? = 2, the quantity C1 always provides a tighter characterization of the problem
difficulty, and the worst-case instances coincide. R: When C? = 1, the quantity C1 does not provide
a tight characterization in general.

lower bound is loose by a factor of
√
d since they reduce to a two-point hypothesis testing problem.

In contrast, our lower bound holds for nested families of CB instances with varying complexities Λ,
which better showcases that the norm quantity is an intrinsic measure of difficulty for offline learning.

Connections with single-policy concentrability. Our lower bound shares a similar flavor as that
established in the paper [24], with the key difference lying in the class of CB instances under consid-
eration: Rashidinejad et al. [24] consider the contextual bandit instances CBconc(C?) with bounded
single-policy concentrability coefficient C? (cf. Definition 2), while we consider the instances with
bounded complexity C1. These two quantities are intimately related, and we illustrate the relationship
in Figure 3. As we have alluded to in Section 3.3, one has the inclusion

CBconc(C?) ⊆ CB1(
√
SC?).

When C? ≥ 2, the minimax rate of estimation over CBconc(C?) exactly matches that over
CB1(

√
SC?), which implies that the hard instances for CBconc(C?) are also the hard instances

in CB1(
√
SC?). However, this no longer holds when C? ∈ [1, 2). Take C? = 1 as an example.

Rashidinejad et al. show that the optimal rate over CBconc(C? = 1) is S/n, while Theorem 2
indicates that the optimal rate over CB1(Λ =

√
S) is

√
S/n. There is no contradiction, since the

hard instances we construct for CB1(
√
S) satisfy C? ≥ 2. This shows that when C? < 2, we “lose

something” by working with the larger CB1(
√
SC?) class, as we are no longer able to achieve the

fast rates possible over CBconc(C?).

On the flip side, the quantity C1 can give tighter suboptimality guarantees than the C? bound for a
given instance. Consider the tabular instance where ρ = Unif(S) and µ(1, π?(1)) = 1/S3, while
µ(s, π?(s)) = 1/S for all s ≥ 2. This instance has C? = S2, implying a guarantee of S3/2/

√
n,

while C1 = O(
√
S), implying a better guarantee of

√
S/n.

4.4 A better complexity measure?

Our results lend support to the claim that we should always use PUNC, since it is simultaneously
minimax rate-optimal over all the `q norm-constrained contextual bandit classes. Furthermore, the
`1 quantity C1 can be thought of as a “complexity measure” that dominates other `q “complexity
measures” Cq for q > 1. To see this, consider the following thought experiment. Suppose before
solving the linear contextual bandit problem, an oracle told us that the instance satisfies Cq ≤ Λ. The
results herein show that we do not lose anything by assuming that the instance satisfies the weaker
condition C1 ≤ d1/pΛ; using PUNC will give us the optimal rate of d1/p/

√
n · Λ.

However this is certainly not the complete answer to guiding question of “which pessimistic learning
rule should one use for offline linear contextual bandits?”. One piece of evidence comes from the
comparison with the single policy concentrability assumption: in the regime where C? ∈ [1, 2),
we do “lose something” when we assume the instance satisfies the weaker condition C1 ≤

√
SC?.

Below we discuss another drawback associated with using C1 as the complexity measure.

Rotation ambiguity. One drawback of the complexity C1 (as well as the learning rule PUNC) lies
in the fact that it is not rotation invariant. (In fact, C2 is the only rotational invariant complexity!)

9



To see this, let U ∈ Rd×d be a fixed rotation matrix. Suppose that the features are rotated from φ to
Uφ, which yields a different `1 complexity C1(U) := ‖UΣ

−1/2
D Es∼ρ [φ(s, π?(s))]‖1, where ΣD is

defined using the old feature mapping. Since the `1 norm is not rotation invariant, the C1(U) varies
for differing choices of U , by up to a

√
d factor. Thus, we cannot claim that any “complexity measure”

C1(U) dominates others. A naive attempt to modify the `1 set to be rotationally invariant by taking a
minimization over U also fails; observe that:

Θmin
1 :=

{
θ ∈ Rd | inf

U

∥∥∥UΣ
1/2
D (θ − θ̂ols)

∥∥∥
1
≤ β

}
=
{
θ ∈ Rd |

∥∥∥Σ
1/2
D (θ − θ̂ols)

∥∥∥
2
≤ β

}
=: Θ2,

that is, we recover π̂2. A similar equivalence holds if we take the max inside the confidence set; we
will recover the confidence set with an extra factor of

√
d.

Instance-dependent optimality? Arguably, the strongest possible support for PUNC would be an
instance-dependent lower bound which shows that for every specific linear contextual bandit instance,
the performance achieved by PUNC is not improvable. Instance-dependent optimality results have
been shown for related problems such as policy evaluation [23, 12] and optimal value estimation [13]
in tabular MDPs; the recent work [7] also employs the local minimax method for online bandit
and RL problems. For offline bandits, the paper [36] shows how a particular definition of instance
optimality cannot be achieved by any algorithm. Establishing instance-dependent guarantees for
offline learning is an important direction for future research.

Recent work [40] establishes the local minimax rate for offline learning in terms of the complexity C1

for tabular contextual bandits. However, the theorem seems incorrect; we provide a counterexample
in Appendix F to demonstrate—via explicit construction—that the complexity C1 cannot characterize
the local minimax risk for a two-armed bandit instance. The key observation is that the reduction
used in the proof of the paper [40] from offline policy learning to optimal value estimation is invalid;
if the gap in rewards for different actions is large, offline policy learning is fundamentally easier than
optimal value estimation. This in turn allows us to break the claimed parametric 1/

√
n rate.

5 Conclusion

In this paper, we introduce a family {π̂p}p≥1 of pessimistic learning rules that include a number of
prior works as special cases for the problem of offline learning in linear contextual bandits. We prove
upper bounds for each learning rule π̂p and show matching minimax lower bounds over appropriately
defined constrained instance classes. Our results highlight the benefits of using PUNC, the π̂∞
learning rule: namely (1) the guarantee for PUNC dominates all others; (2) PUNC is the sole learning
rule with an adaptive minimax property. In particular, our results demonstrate that prior learning rules
based on `2 pessimism can be suboptimal (by a factor of

√
d).

Below we list several interesting directions for future investigation.

• Extending to MDPs. The MDP setting is more difficult due to the long horizon and transition
dynamics. Extending the results of this paper to the MDP setting is an interesting future direction.
One possible approach is to modify the PACLE algorithm [45] to solve for any `p learning rule.

• Gap-dependent bounds. In online RL, there is a wealth of results which adapt to easy instances
which are characterized by gap structure in the rewards, see, e.g., [6, 32]. Obtaining tight
gap-dependent bounds for the offline setting is an interesting direction for future work.

• Offline RL with general function approximation. In this paper, we focus on offline RL with
linear function approximation. What is the right extension of these `p learning rules to general
function approximation? While π̂2 has the natural interpretation of defining a version space with
small squared prediction error, no such interpretation exists for PUNC. It would be interesting to
establish an analog for PUNC for general function classes.
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