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Abstract

We study reward-free reinforcement learning (RL) under general non-linear func-
tion approximation, and establish sample efficiency and hardness results under
various standard structural assumptions. On the positive side, we propose the RFO-
LIVE (Reward-Free OLIVE) algorithm for sample-efficient reward-free exploration
under minimal structural assumptions, which covers the previously studied settings
of linear MDPs (Jin et al., 2020b), linear completeness (Zanette et al., 2020b) and
low-rank MDPs with unknown representation (Modi et al., 2021). Our analyses
indicate that the explorability or reachability assumptions, previously made for
the latter two settings, are not necessary statistically for reward-free exploration.
On the negative side, we provide a statistical hardness result for both reward-free
and reward-aware exploration under linear completeness assumptions when the
underlying features are unknown, showing an exponential separation between
low-rank and linear completeness settings.

1 Introduction

Designing a reward function which faithfully captures the task of interest remains a central practical
hurdle in reinforcement learning (RL) applications. To address this, a series of recent works (Jin et al.,
2020a; Zhang et al., 2020b; Wang et al., 2020a; Zanette et al., 2020b; Qiu et al., 2021) investigate
the problem of reward-free exploration, where the agent initially interacts with its environment
to collect experience (“online phase”), that enables it to perform offline learning of near optimal
policies for any reward function from a potentially pre-specified class (“offline phase”). Reward-free
exploration also provides a basic form of multitask RL, enabling zero-shot generalization, across
diverse rewards, and provides a useful primitive in tasks such as representation learning (Agarwal
et al., 2020; Modi et al., 2021). So far, most of the study of reward-free RL has focused on tabular
and linear function approximation settings, in sharp contrast with the literature on reward-aware RL,
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Setting Reference

1 Linear MDP Wang et al. (2020a)

2 Linear completeness + explorability Zanette et al. (2020b)

3 Completeness + Q-type B-E dimension Theorem 1

4 Completeness + V-type B-E dimension + small |A| Theorem 3

5 Low-rank MDP (ϕ∗ ∈ Φ) + small |A| + reachability Modi et al. (2021)

6 Linear completeness (ϕ∗ ∈ Φ) + small |A| + reward-aware
+ explorability + reachability + generative model

Theorem 5 (intractable)

Table 1: Summary of our results and comparisons to most closely related works in reward-free
exploration. Blue arrows represent implication (A→ B means B is a consequence of and hence
weaker condition than A), and the red assumptions are what prior works need that are avoided by us.
For linear settings, the true feature ϕ∗ is assumed known unless otherwise specified (e.g., in Rows 5 &
6, ϕ∗ is unknown but belongs to a feature class Φ). “B-E” stands for (low) Bellman Eluder dimension
(Jin et al., 2021). Row 6 has many assumptions, which make it strong since it is a negative result.
The detailed comparisons of existing sample complexity rates and our corollaries can be found in
Appendix A.

where abstract structural conditions identify when general function approximation can be used in a
provably sample-efficient manner (Jiang et al., 2017; Jin et al., 2021; Du et al., 2021).

In this paper, we seek to bridge this gap and undertake a systematic study of reward-free RL in a
model-free setting with general function approximation. We devise an algorithm, RFOLIVE, which is
non-trivially adapted from its reward-aware counterpart (Jiang et al., 2017), and provide polynomial
sample complexity guarantees under general conditions that significantly relax the assumptions
needed by prior reward-free RL works. Our results produce both algorithmic contributions and
important insights about the tractability of reward-free RL, as we summarize below (see also Table 1).

Algorithmic contribution: beyond linearity A unique challenge in reward-free RL is that the agent
must exhaustively explore the environment during the online phase, since it does not know which
states will be rewarding in the offline phase. A natural idea to tackle this challenge is to deploy a
reward-aware RL “base algorithm” with the 0 reward function, since this algorithm must explore
to certify that there is indeed no reward. Prior works adopt this idea with optimistic value-iteration
(VI) approaches, which use proxy reward functions to drive the agent to new states. However these
optimistic methods rely heavily on linearity assumptions to construct the proxy reward, and it is
difficult to extend them to general function approximation. Instead of using optimistic VI, our basic
building block is the OLIVE2 algorithm of Jiang et al. (2017), a constraint-gathering and elimination
algorithm that is a central workhorse for reward-aware RL with general function approximation. In
the online phase of RFOLIVE, we run this algorithm with the 0 reward function, and we save the set
of constraints gathered (in the form of separate datasets) for use in the offline phase.

Algorithmic contribution: novel offline module Prior works for reward-free RL typically use
regression approaches (Ernst et al., 2005; Chen and Jiang, 2019; Jin et al., 2020b) in the offline phase,
e.g., FQI (Modi et al., 2021; Zanette et al., 2020b), or its optimistic variants (Zhang et al., 2020b;
Wang et al., 2020a). In the offline phase of RFOLIVE, rather than relying on regression, we enforce
the constraints gathered in the online phase, which amounts to eliminating functions that have large
average Bellman errors on state-distributions visited in the online phase. This generic elimination
scheme does not rely on tabular or linear structures and allows us to move beyond these assumptions
to obtain reward-free guarantees in much more general settings.

Implications: positive results The major assumptions that enable our sample complexity guarantees
are Bellman-completeness (Assumption 2) and low Bellman Eluder dimension (Definition 5 and
Definition 7); see Rows 3 and 4 in Table 1. These conditions significantly relax prior assumptions
in the more restricted settings. Furthermore, prior works in the linear completeness and low-rank
MDP settings require explorability/reachability assumptions (Zanette et al., 2020b; Modi et al., 2021),

2We use the Q-type and V-type versions of OLIVE from Jin et al. (2021) as their structural assumption of low
Bellman Eluder dimension subsumes the low Bellman rank assumption in Jiang et al. (2017) (see Proposition 3).
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which, roughly speaking, assert that every direction in the state-action feature space can be visited
with sufficient probability. These assumptions are often not needed in reward-aware RL but suspected
to be necessary for model-free reward-free settings. Our results do not depend on such assumptions,
showing that they are not necessary for sample-efficient reward-free exploration either.

Implications: negative results We develop lower bounds, showing that some of the structural
assumptions made here are not easily relaxed further. While the settings of linear completeness with
known features (Row 3), and low-rank MDPs with unknown features (Row 4) are both independently
tractable, we show a hardness result against learning under linear completeness when the features are
unknown, even under a few additional assumptions (Row 6).

Taken together, our results take a significant step in bridging the sizeable gap in our understanding of
reward-aware and reward-free settings and bring the two closer to an equal footing.

Related work In recent years, we have seen a wide range of results for reward-aware RL under
general function approximation (Jiang et al., 2017; Dann et al., 2018; Sun et al., 2019; Wang et al.,
2020c; Jin et al., 2021; Du et al., 2021). These works develop statistically efficient algorithms
using structural assumptions on the function class. Despite their generality, a trivial extension to the
reward-free setting incurs an undesirable linear dependence on the size of the reward class.

There also exists a line of research on reward-free RL in various settings: tabular MDPs (Jin et al.,
2020a; Zhang et al., 2020b; Kaufmann et al., 2021; Ménard et al., 2021; Yin and Wang, 2021; Wu
et al., 2022), MDPs with the linear structure (Wang et al., 2020a; Zhang et al., 2021; Zanette et al.,
2020b; Huang et al., 2021; Wagenmaker et al., 2022), kernel MDPs (Qiu et al., 2021), block/low-rank
MDPs (Misra et al., 2020; Agarwal et al., 2020; Modi et al., 2021), and multi-agent settings (Bai and
Jin, 2020; Liu et al., 2021). Many of these settings can be subsumed by our more general setup.

Our offline module uses average Bellman error constraints, which is related to a line of work in offline
RL (Xie and Jiang, 2020; Jiang and Huang, 2020; Chen and Jiang, 2022; Zanette and Wainwright,
2022). However, there is only one dataset in the standard offline RL setting, and these works form
multiple average Bellman error constraints using an additional helper class for reweighting, and need
to impose additional realizability- or even completeness-type assumptions on such a class. In contrast,
we naturally collect multiple datasets in the online phase, so we do not require a parametric class for
reweighting during offline learning.

2 Preliminaries

Markov Decision Processes (MDPs) We consider a finite-horizon episodic Markov decision
process (MDP) defined as M = (X ,A, P,H), where X is the state space, A is the action space,
P = (P0, . . . , PH−1) with Ph : X × A → ∆(X ) is the transition dynamics, and H is the number
of timesteps in each episode. If the number of actions is finite, we denote the cardinality |A| by
K. In each episode, an agent generates a trajectory τ = (x0, a0, x1, . . . , xH−1, aH−1, xH) by
taking a sequence of actions a0, . . . , aH−1, where x0 is a fixed starting state and xh+1 ∼ Ph(· |
xh, ah). For simplicity, we will use ai:j to denote ai, . . . , aj and use the notation [H] to refer
to {0, 1, . . . ,H − 1}. We use the notation π to denote a collection of H (deterministic) policy
functions π = (π0, . . . , πH−1), where πh : X → A. For any h ∈ [H] with h′ > h, we use the
notation πh:h′ to denote the policies (πh, πh+1 . . . , πh′). For any policy π and reward function3

R = (R0, . . . , RH−1) with Rh : X × A → [0, 1], we define the policy-specific action-value (or
Q-) function as Qπ

R,h(x, a) = Eπ[
∑H−1

h′=h R(xh′ , ah′) | xh = x, ah = a] and state-value function
as V π

R,h(x) = Eπ[Q
π
R,h(x, ah) | xh = x, ah ∼ π]. We also use vπR = V π

R,0(x0) to denote the
expected return of policy π. For any fixed reward function R, there exists a policy π∗

R such that
v∗R = V

π∗
R

R,h(x) = supπ V
π
R,h(x) for all x ∈ X and h ∈ [H], where v∗R denotes the optimal expected

return under R. We use T R
h to denote the reward-dependent Bellman operator: ∀fh+1 ∈ RX×A,

(T R
h fh+1)(x, a) := Rh(x, a) + E [maxa′∈A fh+1(x

′, a′) | x′ ∼ Ph(· | x, a)] and similarly define
T 0
h for the operator with zero reward. The optimal action-value function (under reward R) Q∗

R

satisfies the Bellman optimality equation Q∗
R,h = T R

h Q∗
R,h+1,∀h ∈ [H].

3We consider deterministic reward and initial state for simplicity. Our results easily extend to stochastic
versions.
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Reward-free RL with function approximation We study reward-free RL with value function
approximation, wherein, the agent is given a function class F = F0 × . . .×FH−1 where Fh : X ×
A → [−(H−h−1), H−h−1],∀h ∈ [H].4 Without loss of generality, we assume 0 ∈ Fh,∀h ∈ [H]
and fH ≡ 0,∀f ∈ F . For any f ∈ F , we use Vf,h to denote its induced state-value function, i.e.,
Vf,h(x) = maxa fh(x, a) and πf (x) as its greedy policy, i.e., πf,h(x) = argmaxa fh(x, a). When
these functions take xh as input and there is no confusion, we may drop the subscript h and use
Vf (xh) and πf (xh).

In reward-free RL, the agent is given access to a reward class R, but the specific reward function
is only selected after the agent finishes interacting with the environment. Specifically, the agent
operates in two phases: an online phase where it explores the given MDP M to collect a dataset of
trajectories D without the reward information, and an offline phase, where it uses the collected dataset
D to optimize for any revealed reward function R ∈ R.

Our goal is to investigate the statistical efficiency of reward-free RL with general non-linear function
approximation: how many trajectories does the agent need to collect in the online phase such that
in the offline phase, with probability at least 1− δ, for any R ∈ R, it can compute a near-optimal
policy πR satisfying vπR

R ≥ v∗R − ε? We measure the statistical efficiency in terms of the structural
complexity of function class F , reward classR, horizon H , accuracy ε and failure probability δ.

As for expressivity assumptions, we assume the function class F is realizable and complete. Realiz-
ability requires that the optimal function Q∗

R belongs to the reward-appended class F +R, which is
natural in the reward-free setting where the agent uses F to capture reward-independent information.
Completeness requires that the Bellman backups of and Fh+1 +Rh+1 belong to Fh, and additionally
that the Bellman backup of Fh+1 −Fh+1 belongs to Fh −Fh.
Assumption 1 (Realizability of the function class). We assume ∀R ∈ R, h ∈ [H], Q∗

R,h ∈ Fh +Rh,
where Fh +Rh = {fh +Rh : fh ∈ Fh}.
Assumption 2 (Completeness). We assume ∀h ∈ [H], T 0

h Fh+1, T 0
h (Fh+1 + Rh+1) ⊆ Fh and

T 0
h (Fh+1 −Fh+1) ⊆ Fh −Fh, where Fh −Fh = {fh − f ′

h : fh, f
′
h ∈ Fh}.

Next we define the covering number, which measures the statistical capacities of function classes.
Definition 1 (ε-covering number, e.g., Wainwright (2019)). We use NF (ε) to denote the ε-covering
number of a setF = F0× . . .×FH−1 under metric σ(f, f ′) = maxh∈[H] ∥fh−f ′

h∥∞ for f, f ′ ∈ F .
We define it asNF (ε) = min |Fcover| such thatFcover ⊆ F and for any f ∈ F , there exists f ′ ∈ Fcover
that satisfies σ(f, f ′) ≤ ε. For the reward classR, NR(ε) is defined in the same way.

Finally, as our guarantees depend on Bellman Eluder (BE) dimensions—which are structural proper-
ties of the MDP that enable sample-efficient exploration—we will need the following definitions (see
Russo and Van Roy, 2013; Jin et al., 2021) which the later definitions of BE dimensions will build on.
Definition 2 (ε-independence between distributions). Let F ′ be a function class defined on some
space X ′, and ν, µ1, . . . , µn be probability measures over X ′. We say ν is ε-independent of {µi}ni=1

w.r.t. F ′ if ∃ f ′ ∈ F ′ such that
√∑n

i=1(Eµi
[f ′])2 ≤ ε, but |Eν [f

′]| > ε.
Definition 3 (Distributional Eluder (DE) dimension). Let F ′ be a function class defined on some
space X ′, and Γ′ be a family of probability measures over X ′. The DE dimension dde(F ′,Γ′, ε)
is the length of the longest sequence {ρi}ni=1 ⊆ Γ′ s.t. ∃ ε′ ≥ ε where ρi is ε′-independent of
{ρj}i−1

j=1,∀i = 1, . . . , n.

We also introduce the notationDF := {DF,h}h∈[H], whereDF,h denotes the collection of all possible
roll-in distributions at the h-th step generated by πf for some f ∈ F . Formally, DF,h := {dπf

h }f∈F
where d

πf

h (x, a) = Pπf
[xh = x, ah = a] is the state-action occupancy measure.

3 RFOLIVE algorithm and results

In this section, we describe our main algorithm RFOLIVE, a reward-free variant of OLIVE (Jiang
et al., 2017; Jin et al., 2021). The algorithmic template for RFOLIVE is shown in the pseudocode

4Since it is natural to use F to capture the reward-independent component (Assumption 1) in our reward-free
setting, we assume Fh is upper bounded by H−h−1. We include the negative range to simplify the discussions
for various instantiations. Our main results also hold if we assume Fh : X ×A → [0, H − h− 1].
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(Algorithm 1) and it can be instantiated with both Q-type and V-type versions of OLIVE from Jin
et al. (2021).5 In the pseudocode, we use □ as a placeholder for the respective Q/V-type definitions.
For clarity, we will describe the Q-type RFOLIVE algorithm and its results in Section 3.1 and then
state the differences for the V-type version and corresponding results in Section 3.2.

Before introducing our algorithm, we define the following average Bellman error:

Definition 4 (Average Bellman error). We denote ER as the average Bellman error under reward R:

ER(f, π, π′, h) = E [fh(xh, ah)−Rh(xh, ah)− Vf (xh+1) | a0:h−1 ∼ π, ah ∼ π′] .

As shorthand, we use ERQ (f, π, h) = ER(f, π, π, h) to represent the Q-type average Bellman error
and ERV (f, π, h) = ER(f, π, πf , h) to represent the V-type average Bellman error (Jin et al., 2021).
We use E0 to represent the average Bellman errors under 0 reward.

Algorithm 1 RFOLIVE (F , ε, δ): Reward-Free OLIVE

Online phase, no reward information.
1: Set εactv, εelim, nactv, nelim according to Q-type/V-type and construct Fon = F − F .
2: Initialize F0 ← Fon (Q-type) or F0 ← Zon, where Zon is an (εelim/64)-cover of Fon (V-type).
3: for t = 0, 1, . . . do
4: Choose policy πt = πft , where f t = argmaxf∈Ft Vf (x0).

5: Collect nactv trajectories {(x(i)
0 , a

(i)
0 , . . . , x

(i)
H−1, a

(i)
H−1)}

nactv
i=1 by following πt for all h ∈ [H]

and form estimates Ẽ0(f t, πt, πt, h) for each h ∈ [H] via Eq. (1).
6: if

∑H−1
h=0 Ẽ0(f t, πt, πt, h) ≤ Hεactv then

7: Set T = t and exit the loop.
8: end if
9: Pick any ht ∈ [H] for which Ẽ0(f t, πt, πt, ht) > εactv.

10: Set πest = πt (Q-type) or πest = Unif(A), i.e., draw actions uniformly at random (V-type).
11: Collect nelim samples Dt = {(x(i)

ht , a
(i)
ht , x

(i)
ht+1)}

nelim
i=1 where a0:ht−1 ∼ πt and aht ∼ πest.

12: For all f ∈ F t, compute estimate Ê0□(f, πt, ht) via Eq. (2) (Q-type) or Eq. (4) (V-type).
13: Update F t+1 = {f ∈ F t : |Ê0□(f, πt, ht)| ≤ εelim}.
14: end for
15: Save the collected tuples {(ht, πt,Dt)}T−1

t=0 for the offline phase.
Offline phase, the reward function R = (R0, . . . , RH−1) is revealed.

16: Construct Foff(R) = F +R, set Πt
est = {πt} (Q-type) or Πt

est = Πon := {πf : f ∈ Zon} (i.e.,
the greedy policies induced by Zon) (V-type).

17: For each t ∈ [T ], g ∈ Foff(R), and π ∈ Πt
est, compute estimate ÊR(g, πt, π, ht) via Eq. (3)

(Q-type) or Eq. (5) (V-type).
18: Set Fsur(R) = {g ∈ Foff(R) : ∀t ∈ [T ],∀π ∈ Πt

est, |ÊR(g, πt, π, ht)| ≤ εelim/2}.
19: Return policy π̂ = πĝ , where ĝ = argmaxg∈Fsur(R) Vg(x0).

3.1 Q-type RFOLIVE

Our algorithm, reward-free OLIVE (RFOLIVE) described in Algorithm 1, takes the function class F ,
the accuracy parameter ε, and the failure probability δ as input. As we are in the reward-free setting,
it operates in two phases: an online exploration phase where it collects a dataset without an explicit
reward signal, and an offline phase where it computes a near-optimal policy after the reward function
R is revealed. Below, we describe the two phases and the intuition behind the algorithm design.

Online exploration phase During the online phase, we first set elimination thresholds εactv, εelim
and sample sizes nactv, nelim and construct the following function class Fon used in the online phase:

Fon = F − F :=
{
(f0 − f ′

0, . . . , fH−1 − f ′
H−1) : fh, f

′
h ∈ Fh,∀h ∈ [H]

}
.

5The Q/V-type algorithms differ in whether to use uniform actions during exploration, and the distinction is
needed to handle different settings of interest (see Appendix B as well as Table 1).
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The detailed specification of these parameters are deferred to Theorem 1 and Theorem 3. Subsequently,
we simulate Q-type OLIVE with the function class Fon using the zero reward function R = 0 and
the specified parameters. Similar to OLIVE, we initialize F0 = Fon and maintain a version space
F t ⊆ F t−1 ⊆ Fon of surviving functions after each iteration. In each iteration, we first find the
optimistic function f t ∈ F t (line 4) and set πt = πft . In line 5, we collect nactv trajectories to
estimate the Q-type average Bellman error Ẽ0Q(f t, πt, h) = Ẽ0(f t, πt, πt, h) under zero reward:

Ẽ0(f t, πt, πt, h) =
1

nactv

nactv∑
i=1

[
f t
h

(
x
(i)
h , a

(i)
h

)
− Vft

(
x
(i)
h+1

)]
. (1)

If the low average Bellman error condition in line 6 is satisfied, then we terminate the online phase
and otherwise, we pick a step ht where the estimate Ẽ0(f t, πt, πt, ht) > εactv (line 9). Then we
collect nelim trajectories using a0:ht ∼ πt and set Dt as the transition tuples at step ht. Using Dt, we
construct the Q-type average Bellman error estimates Ê0Q(f, πt, ht) for all f ∈ F t in line 12:

Ê0Q(f, πt, ht) =
1

nelim

nelim∑
i=1

[
fht

(
x
(i)
ht , a

(i)
ht

)
− Vf

(
x
(i)
ht+1

)]
. (2)

Finally, in line 13, we eliminate all the f ∈ F t whose average Bellman error estimate Ê0Q(f, πt, ht) >
εelim.

The online phase returns tuples {(ht, πt,Dt)}T−1
t=0 where T is the total number of iterations and each

dataset Dt consists of nelim transition tuples.

Offline elimination phase In the offline phase, the reward function R is revealed, and we first con-
struct the reward-appended function classFoff(R) = F+R := {(f0+R0, . . . , fH−1+RH−1) : fh ∈
Fh,∀h ∈ [H]}. Using the class Πt

est = {πt} from line 16 and the collected tuples {(ht, πt,Dt)}T−1
t=0 ,

we estimate the reward-dependent average Bellman error (Definition 4) for all iterations t ∈ [T ] of
the online phase:

ÊR(g, πt, πt, ht) =
1

nelim

nelim∑
i=1

[
ght

(
x
(i)
ht , a

(i)
ht

)
−Rht

(
x
(i)
ht , a

(i)
ht

)
− Vg

(
x
(i)
ht+1

)]
. (3)

RFOLIVE eliminates all g ∈ Foff(R) whose average Bellman error estimates are large (line 18) and
returns the optimistic function ĝ from the surviving set (line 19).

Remark Similar to its counterparts in reward-aware general function approximation setting (Jiang
et al., 2017; Dann et al., 2018; Jin et al., 2021; Du et al., 2021), RFOLIVE is in general not
computationally efficient. We leave addressing computational tractability as a future direction.

3.1.1 Main results for Q-type RFOLIVE

In this part, we present the theoretical guarantee of Q-type RFOLIVE. We start with introducing the
Q-type Bellman Eluder (BE) dimension (Jin et al., 2021).
Definition 5 (Q-type BE dimension). Let (I − T R

h )F := {fh − T R
h fh+1 : f ∈ F} be the set of

Bellman differences of F at step h, and Γ = {Γh}H−1
h=0 where Γh is a set of distributions over X ×A.

The ε-BE dimension ofF w.r.t. Γ is defined as dimR
qbe(F ,Γ, ε) := maxh∈[H] dde

(
(I−T R

h )F ,Γh, ε
)
.

We can now state our sample complexity result for Q-type RFOLIVE. To simplify presentation, we
state the result here assuming parametric growth of the covering numbers, that is log(NF (ε)) ≤
dF log(1/ε) and log(NR(ε)) ≤ dR log(1/ε).
Theorem 1 (Q-type RFOLIVE, parametric case). Fix δ ∈ (0, 1). Given a reward class R and a
function class F that satisfies Assumption 1 and Assumption 2, with probability at least 1− δ, for any
R ∈ R, Q-type RFOLIVE (Algorithm 1) outputs a policy π̂ that satisfies vπ̂R ≥ v∗R − ε. The required
number of episodes is6

Õ
((
H7dF +H5dR

)
d2qbe log(1/δ)/ε

2
)
,

where dqbe = dim0
qbe(F − F ,DF−F , ε/(4H)).

6The Õ(·) notation suppresses poly-logarithmic factors in its argument.
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The more general statement along with the specific values of εactv, εelim, nactv, nelim are deferred to
Appendix C.2, where we also present the proof. We remark that we only need the covering number
ofR to set these parameters and do not use any other information about the reward class.

We pause to compare Theorem 1 to the reward-aware case. First, our BE dimension involves the
“difference” function class F − F under zero reward as opposed to the original class with the given
reward, and our completeness assumption is also related to such a “difference” function class. As
we will see, these differences are inconsequential for our examples of interest. Second, our sample
complexity has an additional H4 dependence because (a) we consider a different reward normalization
from Jiang et al. (2017); Jin et al. (2021) and (b) we use a smaller threshold in the online phase
to ensure sufficient exploration. Similar gaps in H factors between reward-free and reward-aware
learning also appear in Wagenmaker et al. (2022). We also pay for the complexity ofR in a lower
order term, which is standard in reward-free RL (Zhang et al., 2020a; Modi et al., 2021). We believe
that a similar adaptation of GOLF (Jin et al., 2021) for the reward-free setting may provide a sharper
result with improved dependence on H and dqbe, analogously to the reward-aware setting.

3.1.2 Q-type RFOLIVE for known representation linear completeness setting

Here, we instantiate the general guarantee of Q-type RFOLIVE to the linear completeness setting.7

Definition 6 (Linear completeness setting (Zanette et al., 2020b)). We call feature ϕlc =
(ϕlc

0 , . . . , ϕ
lc
H−1) with ϕlc

h : X × A → Rdlc , ∥ϕlc
h (·)∥2 ≤ 1,∀h ∈ [H] a linearly complete feature,

if for any B > 0, h ∈ [H − 1] and ∀fh+1 ∈ Qh+1({ϕlc}, B) we have: minfh∈Qh({ϕlc},B) ∥fh −
T 0
h fh+1∥∞ = 0, where Qh({ϕlc}, B) = {⟨ϕlc

h , θh⟩ : ∥θh∥2 ≤ B
√
dlc}.

When the linearly complete features (Definition 6) ϕlc are known, we can construct the function class
F({ϕlc}) = F0({ϕlc}, H − 1) × . . . × FH−1({ϕlc}, 0), where Fh({ϕlc}, Bh) =

{
fh(xh, ah) =〈

ϕlc
h (xh, ah), θh

〉
: ∥θh∥2 ≤ Bh

√
dlc, ⟨ϕlc

h (·), θh⟩ ∈ [−Bh, Bh]
}

consists of appropriately bounded
linear functions of ϕlc. Here superscript and subscript lc imply that the notations are related to the
linear completeness setting. It is easy to verify that F({ϕlc}) satisfies the assumptions in Theorem 1.
This gives us the following corollary (see the full statement and the proof in Appendix C.4):
Corollary 2 (Informal). Fix δ ∈ (0, 1). Consider an MDP M that satisfies linear completeness
(Definition 6) with known feature ϕlc, and the linear reward class R = R1 × . . . × Rh, where
Rh =

{
⟨ϕlc

h , ηh⟩ : ∥ηh∥2 ≤
√
dlc, ⟨ϕlc

h (·), ηh⟩ ∈ [0, 1]
}

. With probability at least 1 − δ, for any
R ∈ R, Q-type RFOLIVE (Algorithm 1) with F = F({ϕlc}) outputs a policy π̂ that satisfies
vπ̂R ≥ v∗R − ε . The required number of samples is Õ

(
H8d3lc log(1/δ)/ε

2
)
.

The reward normalization above, called explicit regularity in Zanette et al. (2020b), is standard.
Compared to that work, our result implies that explorability is not necessary, which significantly
relaxes the existing assumptions for this setting. Our result can also be easily extended to handle
approximately linearly complete features (i.e., low inherent Bellman error). On the other hand,
our algorithm is not computationally efficient owing to our general function approximation setting.
Although our sample complexity bound appears to be worse in H factors compared with their upper
bound of Õ

(
d3lrH

5 log(1/δ)/ε2
)
, it is indeed incomparable because their bound only holds when

ε ≤ Õ(νmin/
√
dlc) (νmin is their explorability factor). Thus, there is an implicit dependence on

1/νmin in their result, which could make the bound arbitrarily worse than ours. More discussions are
deferred to Appendix A and Appendix C.4.

3.2 V-type RFOLIVE

In this section, we describe the instantiation of RFOLIVE with V-type definitions. For V-type
RFOLIVE, we also assume that the action space is finite with size K.

Online exploration phase Instead of using Fon, we use its (εelim/64)-cover Zon and maintain
a version space F t across iterations.8 Since the on-policy version of Q-type and V-type Bellman

7Zanette et al. (2020b) only define linear completeness for B = 1. It can be easily verified that it is equivalent
for any choice of B. More discussion can be found in Appendix C.4.

8Following Jin et al. (2021), we run V-type OLIVE with the discretized class Zon for the ease of presentation.
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errors are the same, the termination check in line 5 and line 6 are unchanged. If the algorithm
does not terminate in line 6, we again identify a deviation step ht such that Ẽ0V(f t, πt, ht) =

Ẽ0(f t, πt, πt, ht) > εactv. Instead of using πt to collect trajectories, we use a0:ht−1 ∼ πt and choose
aht uniformly at random to collect the dataset of nelim transition tuples at step ht. Compared to
Q-type RFOLIVE, we estimate Ê0V for all f ∈ F t in line 12 using importance sampling (IS):

Ê0V(f, πt, ht) =
1

nelim

nelim∑
i=1

1[a
(i)
ht = πf (x

(i)
ht )]

1/K

[
fht

(
x
(i)
ht , a

(i)
ht

)
− Vf

(
x
(i)
ht+1

)]
. (4)

Finally, in line 13, we eliminate all f ∈ F t whose V-type average Bellman error estimates are large.

Offline elimination phase In the offline phase, we consider the same reward-appended function
class Foff(R) when reward R ∈ R is revealed. For V-type RFOLIVE, in line 16, we define the policy
class Πt

est = Πon which consists of greedy policies with respect to all f ∈ Zon. Using dataset Dt,
we estimate ER(g, πt, π′, ht) for all g ∈ Foff(R), π′ ∈ Πon, t ∈ [T ] from its empirical version:

ÊR(g, πt, π′, ht) =
1

nelim

nelim∑
i=1

1[a
(i)
ht = π′(x

(i)
ht )]

1/K

[
gh(x

(i)
h , a

(i)
h )−Rh(x

(i)
h , a

(i)
h )− Vg(x

(i)
h+1)

]
(5)

and eliminate invalid functions in line 18. Finally, we return the optimistic policy π̂ from the surviving
set. Apart from estimating different average Bellman errors, the noticeable difference between Q-type
and V-type RFOLIVE is that the latter uses IS to correct the uniformly drawn action to some policy
π′ ∈ Πon to witness the average Bellman error (Jiang et al., 2017).

3.2.1 Main results for V-type RFOLIVE

Here we present the theoretical guarantee of V-type RFOLIVE. Firstly, we introduce the V-type
Bellman Eluder (BE) dimension (Jin et al., 2021).
Definition 7 (V-type BE dimension). Let (I − T R

h )VF ⊆ (X → R) be the state-wise Bellman
difference class of F at step h defined as (I − T R

h )VF :=
{
x 7→ (fh − T R

h fh+1)(x, πfh(x)) : f ∈
F
}
. Let Γ = {Γh}H−1

h=0 where Γh is a set of distributions over X . The V-type ε-BE dimension of F
with respect to Γ is defined as dimR

vbe(F ,Γ, ε) := maxh∈[H] dde
(
(I − T R

h )VF ,Γh, ε
)
.

We now state the guarantee for V-type RFOLIVE, assuming polynomial covering number growth.
Theorem 3 (V-type RFOLIVE, parametric case). Fix δ ∈ (0, 1). Given a reward classR, a function
class F that satisfies Assumption 1, Assumption 2, with probability at least 1− δ, for any R ∈ R,
V-type RFOLIVE outputs a policy π̂ that satisfies vπ̂R ≥ v∗R − ε. The required number of episodes is

Õ
((
H7dF +H5dR

)
d2vbeK log(1/δ)/ε2

)
,

where dvbe = dim0
vbe(F − F ,DF−F , ε/(8H)).

The detailed proof and the specific values of εactv, εelim, nactv, nelim are deferred to Appendix D.2. Our
rate is again loose in H factors when compared with the reward-aware version. Compared with the
Q-type version, here we also incur a dependence on K = |A|, analogous to the reward-aware case.

3.2.2 V-type RFOLIVE for unknown representation low-rank MDPs

As a special case, we instantiate our V-type RFOLIVE result to low-rank MDPs (Modi et al., 2021):
Definition 8 (Low-rank factorization). A transition operator Ph : X ×A → ∆(X ) admits a low-
rank decomposition of dimension dlr if there exists ϕlr

h : X × A → Rdlr and µlr
h : X → Rdlr s.t.

∀x, x′ ∈ X , a ∈ A : Ph(x
′ | x, a) =

〈
ϕlr
h (x, a), µ

lr
h (x

′)
〉
, and additionally ∥ϕlr

h (·)∥2 ≤ 1 and
∀f ′ : X → [−1, 1], we have

∥∥∫ f ′(x)µlr
h (x)dx

∥∥
2
≤
√
dlr. We say M is low-rank with embedding

dimension dlr, if for each h ∈ [H], the transition operator Ph admits a rank-dlr decomposition.

Here superscript and subscript lr imply that the notations are related to low-rank MDPs. As in Modi
et al. (2021), we consider low-rank MDPs in a representation learning setting, where we are given
realizable feature class Φlr rather than the feature ϕlr = (ϕlr

0 , . . . , ϕ
lr
H−1) directly:
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Assumption 3 (Realizability of low-rank feature class). We assume that a finite feature class
Φlr = Φlr

0 × . . . × Φlr
H−1 satisfies ϕlr

h ∈ Φlr
h , ∀h ∈ [H]. In addition, ∀h ∈ [H], ϕh ∈ Φlr

h ,
∥ϕh(·)∥2 ≤ 1.

Similar to the linear completeness setting (Section 3.1.2), we construct F(Φlr) = F0(Φ
lr, H − 1)×

. . . ×FH−1(Φ
lr, 0), where Fh(Φ

lr, Bh) = {fh(xh, ah) = ⟨ϕh(xh, ah), θh⟩ : ϕh ∈ Φlr
h ,∥θh∥2 ≤

Bh

√
dlr, ⟨ϕh(·), θh⟩ ∈ [−Bh, Bh]}. In Proposition 4, we show that the V-type Bellman Eluder

dimension of F(Φlr)−F(Φlr) in this case is Õ (dlr) which leads to the following corollary:
Corollary 4 (Informal, parametric case). Fix δ ∈ (0, 1). Consider a low-rank MDP M of embedding
dimension dlr with a realizable feature class Φlr (Assumption 3) and a reward class R. With
probability at least 1 − δ, for any R ∈ R, V-type RFOLIVE (Algorithm 1) with F(Φlr) outputs a
policy π̂ that satisfies vπ̂R ≥ v∗R − ε . The required number of episodes is

Õ
((
H8d3lr log(|Φlr|) +H5d2lrdR

)
K log(1/δ)/ε2

)
.

We defer the full statement and detailed proof of the corollary to Appendix D.3. In the low-rank
MDP setting, Modi et al. (2021) propose a more computationally viable algorithm, but additionally
require a reachability assumption. Our result shows that reachability is not necessary for statistically
efficiency, which opens an interesting avenue for designing an algorithm that is both computationally
and statistically efficient without reachability. Moreover, our result significantly improves upon their
sample complexity bound. The detailed comparisons are deferred to Appendix A and Appendix D.3.
Notice that here K shows up in our bound. As another corollary, in the linear MDP (Definition 8
plus ϕlr is known), Q-type RFOLIVE yields a K independent bound. The details can be found in
Appendix C.5.

3.3 Intuition and proof sketch for RFOLIVE

We first provide the intuition. Since the online phase of RFOLIVE is equivalent to running OLIVE with
0 reward function, any policy πf attains zero value (i.e., V πf

0,0(x0) = 0,∀f ∈ Fon). By the policy loss
decomposition lemma (Jiang et al., 2017), the value error for the greedy policy, Vf (x0)− V

πf

0,0(x0),
is small when the algorithm stops (line 6). Therefore, all f ∈ Fon which predict large values Vf (x0)
must have been eliminated before OLIVE terminates. This implies that, in the online phase, we gather
a diverse set of constraints (roll-in distributions πt) that can witness the average Bellman error of
functions in Fon. In this sense, our algorithm focuses on function space elimination and does not
try to reach all latent states or directions (Modi et al., 2021; Zanette et al., 2020b), which is the key
conceptual difference that enables us to avoid reachability and explorability assumptions.

On the technical side, note that the way we use OLIVE in the offline setting is novel to our knowledge
and is crucial to getting a good sample complexity under our assumptions, as opposed to more
standard FQI style approaches. Because we have to coordinate between the online and offline phases,
the analysis bears significant novelty beyond the original analysis of OLIVE (and its reward-aware
follow-up works), and this is one of our key contributions. The most crucial part is to show that any
bad g ∈ Foff(R) whose average Bellman error is large under the true reward R will be eliminated
in the offline phase. To prove this, we construct f̃ ∈ Fon that has the same average Bellman error
as g and predicts a large positive value Vf̃ (x0), which implies that it will be eliminated during the
online phase. Finally, by our construction, the constraint used to eliminate f̃ directly witnesses the
average Bellman error of g, thus ruling out g in the offline phase. We discuss it in more detail in
Appendix C.3.

4 Hardness result for unknown representation linear completeness setting

In Section 3.1.2, we showed that Q-type RFOLIVE requires polynomial sample for reward-free RL in
the known feature linear completeness setting. For low-rank MDPs, when given a realizable feature
class, we showed V-type RFOLIVE is statistically efficient in Section 3.2.2. A natural next step is to
relax the low-rank assumption on the MDP and show a sample efficiency result for the more general
linear completeness and unknown feature case. However, below we state a hardness result which
shows that a polynomial dependence on the feature class (

∣∣Φlc
∣∣) or an exponential dependence on H

is unavoidable. We first introduce the realizability of a linearly complete feature class.
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Assumption 4 (Realizability of the linearly complete feature class). We assume that there exists a
finite candidate feature class Φlc = Φlc

0 × · · · × Φlc
H−1, such that ∀h ∈ [H], we have ϕlc

h ∈ Φlc
h . In

addition, ∀h ∈ [H], ϕh ∈ Φlc
h ,∀(x, a) ∈ X ×A, we have ∥ϕh(·)∥2 ≤ 1.

Now we state of hardness result for learning in the linear completeness setting with a realizable
feature class (Assumption 4). A complete proof and more discussions are provided in Appendix E.

Theorem 5. There exists a family of MDPsM, a reward class R and a feature set Φlc, such that
∀M ∈ M, the (M,Φlc) pair satisfies Assumption 4, yet it is information-theoretically impossible
for an algorithm to obtain a poly

(
dlc, H, log(|Φlc|), log(|R|), 1/ε, log(1/δ)

)
sample complexity for

reward-free exploration with the given reward classR.

The hardness result in Theorem 5 is also applicable to easier settings: (i) learning with a generative
model (or using a local access protocol, Hao et al. (2022)), (ii) reward-free learning with explorability
(Zanette et al., 2020b) and reachability (Modi et al., 2021) assumptions and (iii) reward-aware learning
asR is a known singleton class. Thus, the result highlights an exponential separation between the
low-rank MDP and linear completeness assumptions by showing that linearly complete true feature
ϕlc ∈ Φlc is not sufficient for polynomial sample efficiency and additional assumptions are required
to account for the unknown representation.

5 Conclusion and discussion

In this paper, we investigated the statistical efficiency of reward-free RL under general function
approximation. The proposed algorithm, RFOLIVE, is the first algorithm to address reward-free
exploration under general function approximation. Contrary to prior works which either try to
reach all states or all directions in the feature space, RFOLIVE follows a value function elimination
template and ensures that the collected exploration data can be used to identify and eliminate non-
optimal value functions for downstream planning. This significantly sets us apart from the existing
reward-free exploration works. Our positive results significantly relax the existing assumptions in
the reward-free exploration framework. Our negative result shows the first sharp separation between
low-rank MDP and the linear completeness settings with unknown representations. In addition, we
provide an algorithm-specific counterexample in Appendix F that shows RFOLIVE can fail when the
completeness assumption is violated. As realizability alone is sufficient for reward-aware RL (Jiang
et al., 2017; Jin et al., 2021; Du et al., 2021), our results also elicit the further question:

Are realizability-type assumptions sufficient for statistically efficient reward-free RL?

We conjecture that the answer is no, and we believe that the hardness between reward-aware and
reward-free RL has a deep connection to the sharp separation between realizability and completeness
(Chen and Jiang, 2019; Wang et al., 2020b, 2021; Xie and Jiang, 2021; Weisz et al., 2021a,b, 2022;
Foster et al., 2021).
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