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A Proof of Lemma 1

Define the d× d orthogonal matrix P by

P := blockdiag (J, . . . ,J) , J :=

(
0 −1
1 0

)
.

Since P is orthogonal, we have

B = QGQ⊤ = Q(GP)(QP)⊤ = UΣV⊤,

where U := Q, Σ := diag(g1, g1, . . . , gk, gk) and V := QP. We assume, without loss of generality,
that g1 ≥ · · · ≥ gk ≥ 0. By definition, the (2i− 1)st column vectors of U and V and the 2ith column
vectors of U and V satisfy the relations

(u2i−1,v2i−1) = (q2i−1,−q2i), (u2i,v2i) = (q2i,q2i+1), i = 1, . . . , k.

B Convergence proof for SVD algorithms

Assume B = UΣV⊤ is SVD, singular values in Σ are non-increasing, and B is full rank. Singular
values of anti-symmetric matrix come in pairs, but we will assume for simplicity that there are no two
equal pairs. We prove the convergence by induction, similar to the proof for GHA [2], so we start
from the top singular vector pair. Differential equations for the iterations in Eqs. 8 from the main text
are

du

dt
= Bv − (u⊤Bv)u,

dv

dt
= −Bu+ (v⊤Bu)v. (1)

The variables u,v can be expanded in the column spaces of orthogonal matrices U and V: u = Up,
v = Vq, where p and q are the coefficients of the expansion. Substituting into Eq. (1), we obtain
differential equations in the variables p,q:

dp

dt
= Σq− pp⊤Σq (2)

dq

dt
= Σp− qq⊤Σp (3)

For the vector p we follow the evolution of the ratio of the component p1 corresponding to the top
singular value σ1 and other components pk corresponding to singular values σk < σ1. From the
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equations above:
d(pk/p1)

dt
=
pk
p1

(
σk
qk
pk

− σ1
q1
p1

)
. (4)

For every kth component of vectors p,q we can calculate:
d(qk/pk)

dt
= σk

(
1− (qk/pk)

2
)
. (5)

The solution is
qk(t)

pk(t)
= −1 + C exp (2σkt)

1− C exp (2σkt)
, (6)

and converges to 1 when t goes to infinity since σk > 0. Using this, the expression in parenthesis in
Eq. (4) converges to σk − σ1, which is negative, so pk/p1 goes to zero for every k where σk < σ1.
We are left to show that the norm of the vector is maintained at 1. For that we follow the evolution of
z := u⊤u:

dz

dt
= 2p⊤ dp

dt
= 2p⊤(I− pp⊤)Bq = 2(1− z)p⊤Bq = 0

since we initialized z = 1. We conclude that u converges to U1, top left singular vector. Similarly, v
converges to V1, top right singular vector.

Having the base for the induction, for the induction step i we assume that for all k < i the variables
uk,vk converge correspondingly to U2k−1,V2k−1, columns of U and V. Now need to prove that
ui,vi converge to U2i−1,V2i−1. Differential equations corresponding to Algorithm 1 from the main
text are:

dui

dt
= Bvi − uiu

⊤
i Bvi −

∑
k<i

(
uku

⊤
k + vkv

⊤
k

)
Bvi (7)

dvi

dt
= −Bui + viv

⊤
i Bui +

∑
k<i

(
uku

⊤
k + vkv

⊤
k

)
Bui (8)

Substituting as before ui = Upi,vi = Vqi and multiplying from the left the first equation by U⊤

and the second – by V⊤ gives:
dpi

dt
= Σqi − pip

⊤
i Σqi −

∑
k<i

(
pkp

⊤
k + Jqkq

⊤
k J

⊤)Σqi (9)

dqi

dt
= Σpi − qiq

⊤
i Σpi −

∑
k<i

(
qkq

⊤
k + J⊤pkp

⊤
k J

)
Σpi (10)

where J := U⊤V is a block-diagonal matrix with blocks:
(
0 −1
1 0

)
. The task now is to prove that

pi and qi converge to unit vector with 1 at the (2i− 1)-st component, the rest being zeros.

By the assumption of the induction step, pk,qk for k < i converge to corresponding unit vectors.
Then simple matrix calculations show that we have the following convergence, as fast as the slowest
of pk,qk: ∑

k<i

(
pkp

⊤
k + Jqkq

⊤
k J

⊤) → Γ,
∑
k<i

(
qkq

⊤
k + J⊤pkp

⊤
k J

)
→ Γ, (11)

where Γ is diagonal matrix, with 2(i − 1) ones and the rest zeros. The differential equations now
take the form:

dpi

dt
= Σ(I− Γ)qi − pip

⊤
i Σqi

dqi

dt
= Σ(I− Γ)pi − qiq

⊤
i Σpi

(12)

These are somewhat similar to 2, 3, and we proceed similarly to observe:
d(qik/pik)

dt
= σk(1− γk)

(
1− (qik/pik)

2
)

d(pik/pim)

dt
=

pik
pim

(
σk(1− γk)

qik
pik

− σm(1− γm)
qim
pim

)
.

(13)
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From the first of these equations we conclude that qik/pik converges to 1 when k ≥ 2i−1, i.e. γk = 0.
Then for k > 2i− 1 from the second equation:

d(pik/pi,2i−1)

dt
=

pik
pi,2i−1

(σk − σ2i−1) , (14)

which converges to zero because of the ordering of singular values. For k < 2i− 1 we have:

d(pik/pi,2i−1)

dt
= −σ2i−1

pik
pi,2i−1

, (15)

which converges to zero because singular values are positive. As before, we can show that the norm
of vector pi is maintained at 1, so pi,2i−1 converges to 1. The proof for qi goes along the same lines.

C Experiments on image rotations and evaluation

Here we present extended experiments on image rotations to give a better idea of the factors influenc-
ing the quality of the results. First, we experimented on random images, as in [1]. Images of size
16 × 16 were generated and, again, rotated by random angles using a bi-linear approximation and
ignoring pixels outside the central circle. The top 40 filter pairs obtained from the SVD algorithm
trained on a total of 2× 106 image pairs are shown in Fig. 1(a). We also repeated the experiment on
natural images as in the main text, but this time seeking the top 40 pairs of filters; results in Fig. 1(b).
A duplicate of 20 top pairs results from the main text are included for visual comparison in Fig. 1(c).
As expected, the results on natural images look less clean that those on random images, but visually
similar. Also, filters obtained when only 20 of them were sought for in the algorithm run, are better
than top 20 from the run where 40 filters were sought. This comparison is confirmed by quantitative
evaluation, as described below. All experiments on image rotations were performed on a MacBook
Pro with 3.5 GHz Dual-Core Intel Core i7 processor, each took within 10 minutes.

(a) (b) (c)

Figure 1: Filters obtained by SVD algorithm from rotations of 2D images: (a) On random images, 40
top filter pairs; (b) On natural images, 40 top filter pairs; (c) On natural images as in the main text,
20 top filter pairs. Top row: filters as images, corresponding left and right singular vector estimates
on the upper and lower half of each chart, respectively. Bottom row: power spectrum of angular
component of each filter; numbers indicate how well each filter factorizes into a radial and an angular
component. See text for details.

Next we provide a quantitative evaluation of the obtained filters versus theoretical predictions. The
subtlety here is that the left and right singular vectors are not uniquely determined—there is a
degeneracy due to the fact that there are multiple modes corresponding to the same singular value.
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Indeed, the rotation operator in two dimensions has eigenvectors that factorize between a radial part
g(r), that is unconstrained, and an angular part which needs to have a sinusoidal shape of a single
frequency commensurate with the 2π periodicity of the angle θ:

ψ(r, θ) = g(r)e2πikθ , where k ∈ Z. (16)

The singular vectors that our algorithm learns are the real and imaginary parts of ψ.

To assess to what extent our filters are of the form (16), we need to separate the radial and angular
parts. To do so, we first convert them from Cartesian to polar coordinates, obtaining a matrix Ψ
where the row index corresponds to the radial direction and the column index corresponds to the
angle. The factorization from eq. (16) implies that Ψ should be rank-1, and thus expressible as a
product Ψ = RΘ of a purely radial component R and a purely angular component Θ.

To assess whether our filters approximate the expected factorization, we perform an SVD of Ψ and
calculate the fraction of the variance explained by the top component (that is, the ratio between
the square of the top singular value and the sum of the squares of all singular values). A perfect
factorization as in eq. (16) would lead to a fraction of explained variance equal to 1, corresponding to
a rank-1 Ψ. We show these fractions for the learned filters in the bottom row of Fig. 1.

Finally, we check whether the angular component Θ indeed corresponds to a single sinusoid by taking
the Fourier transform of this angular part. We plot the power spectrum obtained from the Fourier
transform in the bottom row of Fig. 1. A perfect filter would have a sharp peak at a single frequency
in this spectrum.

Not surprisingly, the top filters, corresponding to higher singular values, have sharper spectra and
higher explained-variance numbers. Overall, these results confirm what was observed by visual
inspection of the filters: the quality of the filters from natural images is somewhat weaker than those
from random images, and using a smaller number of filters in the simulation improves the quality of
the top filters.

D Reconstruction of transformed image using network outputs

In this section, we verify that the learned representation of our algorithm is informative of the
transformation by performing reconstruction of the transformed image. The idea is to learn a function
that can predict the transformed image using the initial image together with the output of our algorithm.
We can then apply this function to a completely different image. If the learned function performs
the expected transformation on this new image, we can conclude that the output of our algorithm is
indeed informative of the transformation.

In more detail, as in Appendix C, we run Algorithm 1 from the main text on naturalistic images,
setting output dimension to k = 20 so that we only recover a strict subset of the filters. Now we
train a multi-layer perceptron (MLP) with two hidden layers of rectified linear units. We take the
input to be the concatenation of xt−1 and θ̂t from our algorithm. We train the MLP to reconstruct xt;
specifically, to minimize the mean-squared error

L =
∑
t

|f(xt−1, θ̂t)− xt|2.

Having trained this MLP, we verify that the transformations are correctly learned. To do so, we
apply the transformations f to new images that were not seen during training as xt−1 argument and
varying angle as θt argument, to obtain a sequence x̃t. We use MNIST images for easy visualization
of the transformation, and take for ground truth the rotations performed by generic image processing
algorithm. The results of this experiment can be seen in Fig. 2. Here, the top row represents
f(x̃t−1, θ̂t) and the bottom row represents the ground truth x̃t. Even though we do not use the full
set of filters, we see that a reasonably good reconstruction is achieved.

The training of this network was carried out on an NVIDIA Quadro RTX 6000 GPU and took 45
seconds to complete.
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Figure 2: For each digit, the top row is the reconstruction of the transformed image and the bottom
row is the ground truth.
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