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Abstract

In medical image analysis, often we need to build an image recognition system for
a target scenario with the access to small labeled data and abundant unlabeled data,
as well as multiple related models pretrained on different source scenarios. This
presents the combined challenges of multi-source-free domain adaptation and semi-
supervised learning simultaneously. However, both problems are typically studied
independently in the literature, and how to effectively combine existing methods is
non-trivial in design. In this work, we introduce a novel MetaTeacher framework
with three key components: (1) A learnable coordinating scheme for adaptive
domain adaptation of individual source models, (2) A mutual feedback mechanism
between the target model and source models for more coherent learning, and (3)
A semi-supervised bilevel optimization algorithm for consistently organizing the
adaption of source models and the learning of target model. It aims to leverage
the knowledge of source models adaptively whilst maximize their complementary
benefits collectively to counter the challenge of limited supervision. Extensive
experiments on five chest x-ray image datasets show that our method outperforms
clearly all the state-of-the-art alternatives. The code is available at https://
github.com/wongzbb/metateacher.

1 Introduction

Despite the great stride made by existing deep learning methods on medical image classification
results [32, 53, 67], their performances often degrade drastically when applied to a new unseen
scenario. This is mainly due to the domain shift challenge between the training and test data, caused
by different environments, different instruments, and different acquisition protocols. Unlike natural
images, annotating medical images requires special clinical expertise. It is hence more difficult to
obtain large-scale medical image datasets with high-quality labels at every single scenario. Domain
adaptation is a feasible solution, but comes with several limitations. Firstly, medical data is often
under strict privacy and license constraints. That means the source domain data is usually inaccessible
during domain adaptation. Secondly, medical data is typically multi-labeled which means that there
are multiple labels for a sample, and the multiple categories are not mutually exclusive. It has more
prominent different characteristics in different scenarios. Considering these practical constraints, we
propose a new Semi-supervised Multi-source-free Domain Adaptation (SMDA) problem setting in
the context of medical image classification. Our proposed setting has three key conditions: (1) There
are multiple source domain models trained on respective multi-label medical image datasets; (2) All
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the source domain data is inaccessible for adaptation; and (3) The target domain data has only a small
number of labelled samples along with abundant unlabeled data.

In medical image classification, there are limited domain adaptation works, with a need of accessing
the source domain data [5, 19, 24, 34, 45, 55, 57, 62]. Further, they usually consider a single source
domain. On the other hand, for employing multiple source domains, existing Multi-Source Domain
Adaptation (MSDA) methods typically learn a common feature space for all source and target
domains [58] or use ensemble methods combined with source classifiers [8]. However, all of these
MSDA methods require access to the source domain data. Regarding multi-label medical image
classification, there exists a solution which extends the standard classifier network by conditional
adversarial discriminator networks [46]. But it is still not source-free. Indeed, there have been
extensive study on Source-Free Domain Adaptation (SFDA) [35, 64]. However, they are not directly
applicable to our problem. Firstly, most of them assume a single source domain [35, 64]. Using a
SFDA method to transfer each source domain model to the target domain separately and average
their predictions, this strategy cannot reveal the complementary information between different source
domains. Secondly, the source model is often domain biased. Different hospitals are featured with
different populations, leading to a situation that the source datasets focus on a specific set of class
labels. The existing SFDA methods can not assess the credibility of a source domain model with
different labels.

To address the above SMDA’s limitations, employing knowledge distillation from multi-source
models to the target domain can be considered [18, 42, 65, 69, 70]. This forms a multi-teacher and
one-student scheme. In our problem setting, a few labels of the target domain are provided to judge
the credibility of multi-source models in different labels. In reality, it is common to exploit a few
labeled data in the target domain. Recent works [25, 29, 50, 51] have shown that a few labeled
data from the target domain can significantly improve the performance of the model. Inspired by
meta-learning approaches [40, 47, 49], we consider a bilevel optimization strategy to update both
the teachers and students. This is because different models vary in reliability and there is a need for
optimizing the update direction for each source model. This offers an opportunity of leveraging the
complementary and collaboration of different source models during model optimization, critical for
solving the low-supervision challenge.

Based on the above analysis and consideration, we propose a novel framework, namely MetaTeacher.
Specifically, it is based on multi-teacher and one-student models. Each teacher model is pre-trained
on a specific labeled source data. The student model is initialized by a randomly chosen teacher. In
order to provide different update directions for multiple teachers, a coordinating weight learning
method is proposed to determine the contribution of each teacher for each target sample. In addition to
knowledge transfer from multiple teachers, when adapting a specific teacher model, we also explore
the feedback from the student and other teachers in a semi-supervised meta learning manner [16, 47].
Unlike the previous MSDA approaches, MetaTeacher can adapt each teacher in different directions
according to the learned coordinating weight. This enables us to fully use different characteristics
of source models, whilst avoiding the problem of insufficient training samples for multi-label
classification to some extent.

Our contributions are summarized as follows: (1) We propose a new problem setting, i.e., semi-
supervised multi-source-free domain adaptation for multi-label medical image classification. To
our best knowledge, our work is the first attempt at multi-source-free and semi-supervised domain
adaptation in the field of transfer learning. (2) A novel framework, MetaTeacher, based on a multi-
teacher and one-student scheme is introduced to solve the proposed SMDA problem. A mutual
feedback mechanism is designed based on meta-learning between the target model and the source
models for more coherent learning and adaptation. The knowledge from multiple source models
are sufficiently leveraged. (3) A coordinating weight learning method is derived for dynamically
revealing the performance differences of different source models over different classes. It is integrated
with the semi-supervised bilevel optimization algorithm for consistently updating the teacher and
student models. Extensive experiments on five well-known chest radiography datasets show that our
approach outperforms state-of-the-art alternatives clearly, along with in-depth ablation studies for
verifying the design of our model components.
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2 Relate Works

Unsupervised domain adaptation for medical image classification. There exist shallow UDA
and deep UDA approaches in the literature. Shallow UDA approach adapts two routes, i.e., source
domain instance weighting [55, 57] and feature transformation [24, 34]. All of these methods need to
access source domain data. Similarly, there are also two routes for deep UDA approach. They are
domain alignment based [19, 62] and pseudo-labeling based [5]. The first strategy solves the UDA
problem by minimizing the domain difference between the source domain and target domain, and
is currently the most popular method. Gao et al. [19] used the central moment difference matching
to perform adaptation of classifying brain MRI data. The second strategy generates dummy data
to retrain target model. For multi-label medical image classification, there exists a work based on
domain alignment with a multi-label regularization term [46]. Bermúdez Chacón et al. [5] used the
normalized cross-correlation to generate soft labels for the target domain. The above UDA methods
do not update the source domain model, and they are all based on single-source domain. However,
the situation of multi-source domains is very common in practical situations.

Source-free domain adaptation. Source-free domain adaptation methods can be roughly divided
into two routes, i.e., generative approach [27, 28, 33, 63] and pseudo-label approach [4, 26, 35, 56].
The generation approach generates target-style training samples to train the prediction model. Since
learning to generate features is difficult, this approach is extremely limited. The pseudo-label
approach generates pseudo-labels through the source domain model, which is simple and general and
has recently achieved good results in the machine learning community. The research of source-free
domain adaptation in the medical image analysis field mainly focuses on image segmentation. Bateson
et al. [4] maximized the mutual information between the target images and their label predictions
to perform spine, prostate and cardiac segmentation. Vibashan et al. [56] implemented source-free
domain adaptive image segmentation by generating pseudo-labels and applied self-training methods
for task-specific representation. These works are all conducted in the single-source domain case.
Currently, the research on multi-source-free domain adaptation is extremely limited, and most of the
works adapt the method of generating trusted pseudo-labels [1, 14].

Multi-source domain adaptation for medical image classification. In machine learning commu-
nity, MSDA works mainly have two strategies, i.e. distribution alignment [43, 74] and adversarial
learning [61, 71, 72]. The first strategy computes the statistical discrepancy between multi-source
domains and target domain, and then combines all predictions. The second strategy trains a domain
discriminator and forces the feature extraction network to learn domain-invariant features to confuse
the domain discriminator. For medical image classification, there only exist several shallow DA
models. Wang et al. [58] proposed to map multiple source and target data to a common latent space
for autism spectrum disorder classification. Cheng et al. [8] constructed a multi-domain transfer
classifier for the early diagnosis of Alzheimer’s disease. All of these strategies require to access
source domain data and are not suitable for solving the proposed SMDA problem. To the best of our
knowledge, current teacher-student domain adaptation methods in the medical and machine learning
communities only consider the single-source domain case. When extended to the multi-source
domain, it will face a challenging multi-objective optimization problem [10, 41].

Semi-supervised domain adaptation (SSDA). Our problem is also related to SSDA which assumes
a small number of labeled samples in the target domain. Compared to UDA, using a few labeled
samples of the target domain allows to further achieve better domain alignment [31, 44, 66]. Due
to the shift of domain distribution, directly applying classical semi-supervised learning methods to
the SSDA problem will lead to sub-optimal performance. Representative SSDA works are based
on subspace learning [44, 66], entropy minimization [20, 50], label smoothing [13, 48] and active
learning [48, 52]. However, all of these methods assume a single source domain with the source
domain data accessible. Unlike these works, our method incorporates meta-learning and uses the
performance on the labeled target data as a feedback signal.

Teacher-student domain adaptation models in medical image analysis. Usually, teacher-student
domain adaptation model proposes multiple consistencies to solve UDA problem. To the best of
our knowledge, teacher-student based domain adaptation methods have received little attention on
medical image analysis. Perone et al. [45] proposed a semi-supervised learning based UDA method
for medical image segmentation, which minimizes the consistency loss of the predicted results
between the student model and the teacher model for unlabeled samples in the target domain during
the training process. The network is updated by the exponential moving average of the student
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Figure 1: Overview of our proposed MetaTeacher architecture. (a) Learning the coordinating weight
mapping which will be used subsequently to provide guidance for updating the teacher models. (b)
Alternately updating the teacher and student models. Each teacher is updated with feedback signals
from the student and other teachers.

network weights (mean-teacher [54]). The method is experimentally performed on the SCAM (Spinal
Cord Anatomy MR Image) dataset to demonstrate its effectiveness. There are several approaches on
teacher-student domain adaptation in the field of machine learning. French et al. [17] made some
modifications to the mean-teacher scheme for the challenging domain adaptation of natural image
classification. Cai et al. [7] proposed multiple consistency regulations to solve cross-domain detection
problem. Deng et al. [12] combined the idea of feature alignment and data augmentation based
on mean-teacher scheme. These methods all assume single-source domain, and to our knowledge,
there is currently no work on multi-source teacher-student domain adaptation. Additionally, the
mean-teacher approach does not sufficiently use the feedback signal from the target domain, so the
performance improvement is limited.

3 Methodology

Problem statement. Suppose DT = {(Xt
L, Y

t
L) , X

t
U} where Y t

L denotes label annotations for a
small amount of target domain samples Xt

L and Xt
U for target domain samples without any label

annotations. The dimension of label vector is m. DSi
=

{(
Xi

L, Y
i
L

)}
where Y i

L denotes label
annotations for i-th source domain samples Xi

L. For the proposed semi-supervised multi-source-free
domain adaptation problem, when the pretrained source classifiers fTi

is applied to the target domain,
the source dataset DSi is not accessible for i = 1, · · · , n. Given the source classifiers fTi for
i = 1, · · · , n and the target data DT , the objective is to find a target-domain mapping fS : Xt

U → Y t
U

where Y t
U denotes the predicted labels for target domain samples Xt

U .

Overview. As shown in Fig.1, our framework is based on a multi-teacher and one-student scheme.
First, multiple teacher models are pretrained according to each source domain, and then the student
model is initialed using a randomly chosen teacher model. They are all composed of a feature
extractor (e.g., Resnet50 [21]) and a multi-label classifier. The classifier consists of a fully connected
layer, where the input is an one-dimensional expanded feature, and the output is the probability of
each label. The objective function is the error loss between the predicted output and the ground truth.

Compared with traditional teacher-student models, our method is featured with two unique parts: (1)
Coordinating weight learning; (2) Bilevel optimization. For the first part, a mapping is trained based
on labeled target domain samples, which fuses the multi-teacher predictions adaptively for each target
sample. This mapping will be used in the second part. In the initial iteration, the mapping and student
model are trained based on labeled target samples. In the subsequent iterations, this part will only
optimize the mapping while the student model will be updated by bilevel optimization. In the bilevel
optimization part, the student and teacher models are updated alternately in a meta-learning manner.
Specifically, for an unlabeled target sample, a coordinating weight is generated, which provides
optimization direction for each teacher model. Finally, these two parts will be iteratively undated
until convergence.
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3.1 Coordinating Weight Learning

As mentioned earlier, the teacher models are trained on different source domain data. Due to different
distributions, they often present different characteristics. Therefore, for a target domain sample, the
classification probability of each teacher model could be inconsistent. When we want to optimize a
teacher model based on the target domain samples, the optimization direction of each teacher model
should be different. So it is necessary to obtain the contribution weight of each teacher model to the
final classification results. We call this coordinating weight. Fortunately, we can obtain the weight
mapping with the labeled samples in the target domain.

As shown in Fig.1(a), for obtaining the coordinating weight, we first input the labeled target sample
xtl into the student network, and get the output B = g(xtl) from feature extraction network g, where
B ∈ Rc×h×w, with c, h, and w the number of channels, height, and width respectively. Then, we
perform a maximum pool operation on the feature map B to get ψ ∈ R1×c which retains the most
important information of each channel. Our mapping consists of two learnable variables µ and ν,
where µ ∈ Rn×1, ν ∈ Rc×m. Then, we define a mapping ϕ = µψν ∈ Rn×m for the target sample
xtl . After normalizing, we get the coordinating weight matrix W where

Wj,k =
exp(ϕj,k)∑n
z=1 exp(ϕz,k)

. (1)

Suppose for the sample xtl , the predictions of all teachers are formed as a matrix P ∈ Rn×m. By
taking the Hadamard product between the teacher predictions and the coordinating weight matrix, we
obtain the fused prediction as the following,

ȳtl = Sum(P ◦W ) (2)

where Sum(·) means adding by rows. Denoting ȳsl = fS(x
t
l ; θS) as the student prediction on the

target sample xtl , we train the weight mapping and initialize student network using the following loss,

LW = L (ȳsl , yl) + αLKL

(
ȳtl , ȳ

s
l

)
+ β (∥µ∥+ ∥ν∥) (3)

where L (ȳsl , yl) = 1
m

∑m
i=1[yl,ilog(ȳ

s
l,i) + (1 − yl,i)log(1 − ȳsl,i)] represents the BCE (Binary

Cross Entropy) loss, yl is the ground truth, θS is the parameter of student network. LKL (ȳtl , ȳ
s
l ) =∑m

i=1 ȳ
t
l,i log(ȳ

t
l,i/ȳ

s
l,i) represents the KL (Kullback-Leibler divergence) loss which measures the

distribution difference between the fused teacher prediction and student prediction. α and β are two
balance parameters.

Remark. The mapping ϕ generates coordinating weight with Eq.(1). It not only reveals the
complementarity of different teachers on different instances, but also, more interestingly, participates
in the derivation of the update formula of teacher models in the bilevel optimization process (see
Appendix), providing a reference for the update direction of different teachers.

3.2 Bilevel Optimization

The bilevel optimization problem [6, 9] was first proposed in the field of game theory. It includes
an upper-level optimization task and a lower-level optimization task, where the former contains the
latter as a constraint. Here, the upper-level optimization task (student) provides feedback signals
to the lower-level optimization tasks (teachers) through the performance on labeled data and the
coordinating weight mapping. For an unlabeled target sample xtu, suppose the pseudo-label based on
the learned coordinating weight mapping ϕ from multi-teachers Eq.(2) is ȳtu and the corresponding
coordinating weight matrix is Wu, we can define a loss function Γu as follows,

Γu(θT1
, · · · , θTn

, θS) = L(ȳtu, ȳsu) (4)

where ȳsu = fS(x
t
u; θS), θTi is the parameter of the i-th teacher network. Similarly, a loss function

Γl (θT1 , · · · , θTn , θS) = L (yl, ȳsl ) is defined for a labeled target samples xtl . In the bilevel optimiza-
tion task, updating θS is the upper-level optimization task objective, while updating θT1 , · · · , θTn is
the lower-level optimization task objective. The upper-level optimization task and the lower-level
optimization task are mutually constrained. To reach the lower-level optimization task objective,
the performance of the upper-level optimization task objective on the labeled target data is utilized
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as feedback signal. We formulate the objective function in lower-level optimization task as the
following,

argmin
θT1

,··· ,θTn

Γl

(
θT1

, · · · , θTn
, θOP

S

)
s. t. θOP

S = argmin
θS

Γu (θT1
, · · · , θTn

, θS) . (5)

Eq.(5) cannot be optimized simply by gradient descent algorithm, because the teacher’s parameters
can not be updated until θS reaches the optimum. To overcome this issue, we resort to the idea of
meta-learning [16, 38, 47] by making a one-step approximation of the problem,

θOP
S ≈ θS − ηS · ∇θsΓu (θT1

, θT2
, · · · , θTn

, θS) (6)

where ηS is the learning rate of the student network. Substituting Eq. (6) into Eq. (5), we obtain a
new optimization objective function

Γl (θT1
, · · · , θTn

, θS − ηS · ∇θsΓu (θT1
, θT2

, · · · , θTn
, θS)) . (7)

By optimizing Eq. (7) (see Appendix), we get the following update rules,

θ′S = θS − ηS · ∇θsΓu, (8)

θ′Ti
= θTi

− ηTi
·
[
(∇θ′

S
Γl)

T · ∇θSΓu

]T · ∇θTi
L
(
ȳiu, ỹ

i
u

)
(9)

for i = 1, · · · , n, where θ′S and θ′Ti
are the updated parameters corresponding to the student and

teachers respectively. ȳiu = fTi
(xtu; θTi

) ·W i
u withW i

u the ith-row coordinating weight vector ofWu

w.r.t the i-th teacher. We obtain the pseudo label ỹiu by binarizing ȳiu as: ỹiu,j = 0 when ȳiu,j < 0.5

and ỹiu,j = 1 for the other cases.

Additionally, in order to prevent optimizing teachers in the same direction, the predictions of the
updated multiple teachers should be as far away from each other as possible. To that end, we define a
divergence loss as follows,

LD = −ln
n∑

j=1,j ̸=i

L2

(
BTi

(
xtu; θTi

)
, BTj

(
xtu; θTj

))
(10)

where BTi (xu; θTi) represents the max-pooled results of the output feature map of the i-th teacher
network. Here, we apply a max-pooling operation to the output features of multiple teachers and
calculate the distance with L2 norm. By requiring these feature maps to be far away each other, the
optimization direction of teachers will be effectively adjusted. Finally, we update the i-th teacher
network by the following rule,

θ′Ti
= θTi − ηTi ·

([
(∇θS′Γl)

T · ∇θSΓu

]T · ∇θTi
L
(
ȳiu, ỹ

i
u

)
+ γ∇θTi

LD

)
(11)

where γ is a hyperparameter.

Remark. Eq.(11) reveals that the update direction of θTi
is determined by three factors: (1) Coordi-

nating weight confuses the feedback signals from different teachers; (2) Student network parameters
provide the feedback signals and generate coordinating weight; (3) Diversity constraint emphasizes
the characteristic of different teacher networks. Interestingly, these three factors change over time
during the meta-learning process. In addition to alternating updates of the student and teacher models,
we also update the mapping periodically.

3.3 Optimization Process

The optimization process alternates between upper-level optimization and lower-level optimization.
Since the coordinating weight mapping is fixed in the process of bilevel optimization, with the
progress of meta-learning, the coordinating weight Wu can not reflect the internal relationship
between the source domains and the target domain gradually. Therefore, we use the learned teachers
to update the mapping at regular intervals. The training process is summarized in Algorithm 1.

4 Experiments

Datasets. Five publicly available chest x-ray datasets are used to construct our multi-domain
adaptation scenarios. NIH-CXR14 [59] is a large public dataset of chest x-ray, which contains 108,948
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Algorithm 1 Our proposed MetaTeacher method.

Require: Student network parameters S(0), teacher network parameters T (0)
1 ∼ T (0)

n , labeled data
(xtl , yl), unlabeled data (xtu), hyperparameters α, β, γ, mapping updating interval T .

Ensure: Optimized student model S(N).
1: function METATEACHER(S(0), T

(0)
1 ∼ T (0)

n , α, β, γ, T )
2: S(0), mapping← Coordinating Weight Learning
3: for t = 0→ N − 1 do

Upper-level optimization:
4: Compute gradient ∇θ

S(t)
Lu

5: Update the student: θS(t+1) ← θS(t) −ηS∇θStLu ▷ Eq.(8)
Lower-level optimization:

6: Compute gradient∇θ
S(t+1)

Ll

7: for all T (t)
1 ∼ T (t)

n do
8: Compute gradient∇θ

T
(t)
i

L
(
ȳiu, ỹ

i
u

)
9: Compute gradient∇θ

T
(t)
i

LD ▷ Eq.(10)

10: Update the i-th teacher: θ
T

(t+1)
i

← θ
T

(t)
i
− ηTi

· ▷ Eq.(11)

([(∇θ
S(t+1)

Γl)
T · ∇θ

S(t)
Γu]

T · ∇θ
T

(t)
i

L
(
ȳiu, ỹ

i
u

)
+ γ∇θ

T
(t)
i

LD)

11: end for
12: if t%T = 0 then
13: mapping← Coordinating Weight Learning
14: end if
15: end for
16: return S(N)

17: end function

front view x-ray images of 32,717 patients collected from NIH Clinical Center, with a total of 14
disease labels. MIMIC-CXR [23] contains 377,110 images and text reports, corresponding to 227,835
radiological studies conducted by Beth Israel Deaconess Medical Center in Boston, Massachusetts.
CheXpert [22] consists of 224,316 chest x-ray of 65,240 patients. The dataset collected chest x-ray
examinations and related radiology reports performed at inpatient and outpatient centers at Stanford
Hospital from October 2002 to July 2017. Open-i [11] is collected by Indiana University Hospital
through the network from open source literature and biomedical image collection. It contains 3955
radiology reports, corresponding to 7470 frontal and lateral chest films. To be consistent with other
datasets, we filter out the side chest x-ray in Open-I, leaving only 3955 frontal images. Google-Health-
CXR [3] is manually labeled by medical experts for CXR images with high accuracy and contains
about 4000 images. We follow the traditional UDA setting, and choose the disease closed set in these
five datasets as multi classification labels, i.e., Atelectasis, Cardiomegaly, Effusion, Consolidation,
Edema and Pneumonia. Four transfer scenarios are constructed, which are NIH-CXR14, CheXpert,
MIMIC-CXR to Open-i; NIH-CXR14, CheXpert, MIMIC-CXR to Google-Health-CXR; CheXpert,
MIMIC-CXR to NIH-CXR14 and NIH-CXR14, CheXpert to Open-i.

Implementation details. In order to make a compromise between images in different datasets, we
scale the images to 128*128 before feeding them into the network. To expand the training set, several
data augmentation techniques are used, including random cropping and horizontal flipping. SGD with
momentum of 0.9 is used as the optimizer. For the student model, the initial learning rate is 0.01 and
the weight decay is 5e-4. The learning rate for coordinating weight mapping is 0.001; For the teacher
models, the initial learning rate is 0.001 and the weight decay is 5e-6. The values of α, β and γ are
set as 0.5, 0.01 and 0.01 respectively. For the case when the target domains datasets are small-scale,
such as Open-i and Google-Health-CXR, we assume that there are 200 labeled data in the target
domains, and in order to give a good initial condition for training, we randomly select a source model
to initialize the target model. For the case when the target domains datasets are large-scale, such
as NIH-CXR14, we assume that there are 500 labeled data in the target domains. Unless otherwise
specified, the interval for updating coordinating weight mapping is set as 100 iterations. Following
the setting of multi-label medical image classification problems, the evaluation criterion is Area
Under the Receiver Operating Characteristic (AUROC) [15] curve score.
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Table 1: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Open-i. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 83.27 91.55 96.18 97.02 92.74 89.24 91.67
CAiDA [14] 82.45 92.16 95.12 95.92 89.89 90.37 90.99

SHOT-best [35] 81.48 91.22 94.19 95.10 88.96 89.58 90.09

MME [50] 82.44 90.82 95.46 96.07 90.26 87.20 90.38
ECACL [30] 82.60 92.18 96.32 95.97 90.70 89.61 91.23

Source Only(N) 83.09 87.20 96.11 95.10 86.87 77.40 87.63
Source Only(C) 82.26 87.64 94.71 96.61 90.22 75.12 87.76
Source Only(M) 80.63 91.31 94.87 94.53 84.91 82.78 88.05

Fine-tune(average) 82.14 88.71 95.32 95.52 88.77 78.48 88.16

MetaTeacher(w/o mapping) 79.99 92.64 98.22 93.64 95.50 84.54 90.76
MetaTeacher(w/o update) 81.98 90.72 95.76 95.51 89.40 82.53 89.32

MetaTeacher(all ) 81.72 92.59 96.25 97.64 94.52 94.33 92.84

Table 2: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Google-Health-CXR. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 77.24 81.71 85.94 79.03 83.48 83.68 81.85
CAiDA [14] 76.90 81.82 87.55 79.62 85.10 82.72 82.29

SHOT-best [35] 75.43 80.28 86.63 77.88 82.37 81.22 80.64

MME [50] 77.34 84.93 86.17 78.65 85.33 71.28 80.62
ECACL [30] 76.27 84.54 87.06 79.95 85.82 72.66 81.05

Source Only(N) 76.54 84.48 86.36 75.66 83.94 62.59 78.26
Source Only(C) 72.09 76.45 84.55 79.07 68.25 58.39 73.13
Source Only(M) 68.04 79.38 84.17 72.41 68.71 52.60 70.88

Fine-tune(average) 73.48 80.14 85.96 74.17 74.74 60.20 74.78

MetaTeacher(w/o mapping) 75.62 83.91 85.40 80.27 75.13 81.77 80.35
MetaTeacher(w/o update) 76.75 84.30 86.67 78.59 82.31 65.84 79.08

MetaTeacher(all) 77.65 79.52 88.73 78.74 86.73 84.78 82.69

4.1 Comparisons to State-of-the-Art

At present, there does not exist any experimental report on our problem setting. So we choose
four category of methods for compare. The first category is Source only which means directly
applying a teacher model to the target domain. The second category is Fine-tune(average) which
fine-tune each teacher network using labeled target domain data, then average their predicted values.
The third category is the state-of-the-art multi-source-free domain adaptation methods, which are
DECISION [1], CAiDA [14], and SHOT-best. The SHOT-best refers to adapting each source domain
separately through the SHOT [35] method. The model with the best performance on the validation set
is selected. The final category is semi-supervised domain adaptation methods, including MME [50]
and ECACL [30]. For the semi-supervised domain adaptation methods, we assume that the labeled
target data are the same as our method. Since they are single-source based methods, we perform
domain adaptation for each source model and take the best result.

Tables 1-4 show the comparison results on four transfer scenarios. MetaTeacher(all) is our proposed
method. Source Only(N), Source Only(C) and Source Only(M) are the teacher models respect to
the NIH-CXR14, CheXpert and MIMIC-CXR datasets respectively. For the scenario from CheXpert,
MIMIC-CXR to NIH-CXR14, since the dataset NIH-CXR14 contains 108,948 x-ray images, different
from other scenarios, this time we do not need to initialize the target model with the source models.
It can be observed that our method achieves the best performance. The extensive experiments on
four different transfer scenarios verify the adaptability of our method under multi-label chest x-ray
dataset transfer cases. For the scenario from NIH-CXR14, CheXpert to Open-i, as show in Table 4, the
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Table 3: Comparing the state-of-the-art methods on the transfer from CheXpert, MIMIC-CXR to NIH-CXR14.
Metric: AUROC .

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 72.99 80.73 79.37 75.52 82.30 71.38 77.05
CAiDA [14] 72.64 81.12 80.25 74.73 81.02 70.44 76.70
SHOT-best [35] 70.79 79.62 79.24 72.25 80.79 69.65 75.39

MME [50] 72.90 81.73 81.01 73.11 81.03 71.52 76.88
ECACL [30] 72.41 81.98 82.07 72.92 80.82 71.65 76.98

Source Only(N) 72.31 80.52 79.42 69.66 77.95 67.37 74.54
Source Only(C) 70.45 79.66 79.98 68.26 78.01 70.82 73.86

Fine-tune(average) 71.52 80.29 80.08 68.97 78.02 69.05 74.66

MetaTeacher(w/o mapping) 72.05 81.58 78.36 72.94 82.19 69.82 76.16
MetaTeacher(w/o update) 72.24 80.69 79.56 69.80 78.13 70.55 75.16
MetaTeacher(all) 73.63 86.64 80.86 72.24 86.68 66.37 77.74

Table 4: Comparing the state-of-the-art methods on the transfer from NIH-CXR14, CheXpert to
Open-i. Metric: AUROC.

Method Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

DECISION [1] 83.15 90.86 96.12 96.32 92.33 88.79 91.26
CAiDA [14] 82.38 91.97 94.89 95.30 89.81 90.44 90.80
SHOT-best [35] 81.48 91.22 94.19 95.10 88.96 89.58 90.09

MME [50] 81.46 90.40 94.86 97.73 89.79 87.31 90.26
ECACL [30] 82.22 88.76 96.04 96.85 92.43 87.90 90.70

Source Only(N) 83.09 87.20 96.11 95.10 86.87 77.40 87.63
Source Only(C) 82.26 87.64 94.71 96.61 90.22 75.12 87.76

Fine-tune(average) 82.66 87.98 95.85 95.67 88.58 77.02 87.96

MetaTeacher(w/o mapping) 83.73 93.37 96.04 97.30 91.51 82.34 90.72
MetaTeacher(w/o update) 82.70 88.91 95.47 95.48 88.96 78.85 88.40
MetaTeacher(all) 82.11 92.42 96.80 97.07 92.20 91.27 91.98

performance of two source domains is 0.86% lower than that of three source domains. Furthermore,
MetaTeacher also has moderate training time and more clearer background (see Appendix).

4.2 Ablation Analysis and Discussion

Component analysis. In Tables 1-4, MetaTeacher(w/o mapping) represents that our proposed
method removes the part of coordinating weight learning and optimization substituted by average.
MetaTeacher(w/o update) means to remove the bilevel optimization process. In this situation, the
weighted output of teachers is used to supervise the learning of student network. The results in the
last three rows of Tables 1-4 show that these two parts are indispensable. It is worth mentioning
that MetaTeacher(w/o mapping) still obtains promising performance due to the following reasons.
First, for student updating, averaging predictions from multiple teachers is beneficial for student
performance, consistent with the finding by [68]. Second, the fixed W is also involved in the teacher
optimization. It means bilevel optimization contributes more gain to the overall performance than the
coordinating weight learning. However, the coordinating weight learning can judge which disease
category the teacher is good at by weight, knowledge with different weights can be learned from
different teachers. Therefore, the results in each disease category are close to the predictions of the
best teachers, such as Pneumonia in Table 1 and Atelectasis in Table 2 (also see Appendix).

Effects of proportion of labeled target data. Table 5 shows the influence of the amount of labeled
data in the target domain on the transfer scenario of NIH-CXR14, CheXpert, MIMIC-CXR to Open-i.
The experimental results show that the performance slowly improves as the amount of labeled data
increases; a small number of labeled target domain samples can achieve good results.
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Table 5: Effect of the size of labeled target data on the transfer from NIH-CXR14, CheXpert, MIMIC-CXR to
Open-i. Metric: AUROC.

Number(propotion) Atelectasis Cardiomegaly Effusion Consolidation Edema Pneumonia Average

50(1.4%) 82.48 92.22 95.19 96.10 89.96 90.58 91.09
100(2.8%) 82.19 92.50 96.83 97.02 92.43 91.20 92.03
200(5.6%) 81.72 92.59 96.25 97.64 94.52 94.33 92.84
300(8.4%) 82.21 92.97 96.83 97.42 94.07 94.33 92.97
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Figure 2: Effect of different hyperparameters on the transfer from NIH-CXR14, CheXpert, MIMIC-
CXR to Open-i. Baseline: source only(M).

Parameter analysis. We conduct parameter analysis experiment on the transfer scenario of NIH-
CXR14, CheXpert, MIMIC-CXR to Open-i. The basic strategy is to change a parameter while other
parameters are fixed. Our method MetaTeacher has three hyperparameters, i.e., α and β in Eq. (3),
and γ in Eq.(11). Fig.(2)(a) shows performance changing with the parameter α. When α = 0, the
coordinating weight mapping is not trained effectively resulting in the inability to determine the
optimization direction of each teacher. When α gradually increases to around 0.5, the result achieve
optimal performance. Fig.(2)(b) shows the influences of the parameters β. When the β is too large, it
means that the coordinating weight learning part is ineffective and cannot express the relationship
between the source domains. When β is set to 0, coordinating weight learning may overfit, which
may cause coordinating weights to work well on some instances but poorly on other instances; for
this case, the performance is 92.49% about 0.35% lower than the result 92.84% in Table 1. Fig.(2)(c)
shows the influences of the parameter γ on divergence loss. When γ is set to 0.01, the performance
reaches the best, but with the continuous increase of γ, the performance decreases obviously. When
γ = 0, the result is 92.29%, which is 0.55% lower. We can also see that our method is also quite
stable for the parameters α, β and γ in a large interval.

5 Conclusion

In this paper, we have proposed a novel framework, termed as MetaTeacher, for semi-supervised
multi-source-free domain adaptation for medical image classification. The transfer learning process
is modeled as a multi-teacher and one-student scheme. We not only optimize the student, but also
optimize the teachers through the student’s feedback in the target domain. Our optimization is based
on meta-learning with two main parts: coordinating weight learning, and bilevel optimization. The
first part obtains the coordinating weight mapping which is then used to coordinate the teacher outputs
and updates. Bilevel optimization updates the student based on the pseudo-labeled data produced
by the teachers and updates each teacher based on the feedback signal generated by the student and
other teachers. Extensive experiments on multi-label chest x-ray datasets empirically demonstrated
the superiority of our method over many state-of-the-art approaches.
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