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Abstract

Out-of-distribution (OOD) detection is a critical task for ensuring the reliability
and safety of deep neural networks in real-world scenarios. Different from most
previous OOD detection methods that focus on designing OOD scores or intro-
ducing diverse outlier examples to retrain the model, we delve into the obstacle
factors in OOD detection from the perspective of typicality and regard the feature’s
high-probability region of the deep model as the feature’s typical set. We propose
to rectify the feature into its typical set and calculate the OOD score with the typical
features to achieve reliable uncertainty estimation. The feature rectification can be
conducted as a plug-and-play module with various OOD scores. We evaluate the
superiority of our method on both the commonly used benchmark (CIFAR) and the
more challenging high-resolution benchmark with large label space (ImageNet).
Notably, our approach outperforms state-of-the-art methods by up to 5.11% in the
average FPR95 on the ImageNet benchmark 3.

1 Introduction

Deep neural networks have been widely applied in various fields. Apart from the success of deep
models, predictive uncertainty is essential in safety-critical real-world scenarios such as autonomous
driving [1, 2], medical [3], financial [4], etc. When encountering some examples that the deep model
has not been exposed to during training, we hope the model raises an alert and hands them over
to humans for safe handling. Such a challenge is usually referred to as out-of-distribution (OOD)
detection and has gained significant research attention recently [5–8].

Most of the existing research [5–7, 9–12] worked on designing suitable OOD scores for the pre-
trained neural network, hoping to assign higher scores to the in-distribution (ID) examples and lower
scores to the out-of-distribution (OOD) examples. However, these methods overlook the obstacle
factors in OOD detection caused by the model’s internal mechanisms. In this paper, we rethink the
OOD detection from a perspective of feature typicality. We observed that the distribution of the deep
features of the training dataset on different channels is approximately consistent with the Gaussian
distribution (See examples in Appendix J). Accordingly, we divide these features into typical features
(fall in the high-probability region) and extreme features (fall in the low-probability region). Extreme
features rarely appear in training and attract less attention from the classifier than the typical features.
We hypothesize the classifier can model the typical features better than the extreme features, and the
extreme features may lead to ambiguity and imprecise uncertainty estimation. Given the potential
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negative impact, properly dealing with these extreme features is a key to improving the performance
of OOD detection.

In this paper, we propose to rectify the features into their typical set and then calculate the OOD
score with these typical features. In this way, the model conservatively utilizes the typical features to
make decisions and alleviates the damage caused by extreme features, which can be beneficial to the
OOD scores derived from the pre-trained classifier [5–7, 12]. Then the problem is how to estimate
the feature’s typical set on different channels since this requires a sufficient number of in-distribution
examples and is time-consuming. Luckily, the commonly used operation Batch Normalization
can shed light on a shortcut to selecting the feature’s typical set and we name our approach Batch
Normalization Assisted Typical Set Estimation (BATS). The Batch Normalization layer endeavors to
normalize the features of the training dataset to Gaussian distributions, which can be used to estimate
the typical set for ID features. Typical features are more common in training, while extreme features
are rare, which leads to difficulties for the model to estimate extreme features well. We truncate the
deep features with the guidance of the Batch Normalization, rectifying the extreme features to the
boundary values of typical sets. We illustrate the distribution of the OOD scores for ID (ImageNet)
and OOD (four different datasets) examples in Fig. 1. Rectifying the features into the typical set with
our BATS contributes to improving the separability between ID and OOD examples.

(a) iNaturalist (b) SUN (c) Places (d) Textures
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Figure 1: The distribution of the scores for ID (ImageNet) and OOD examples on ResNet-50. We use
the energy score [5] as the OOD score. "Energy" means calculating the OOD score with the original
features. "Ours" means calculating the OOD score with the typical features.

Theoretically, we analyze the benefit of BATS and the bias-variance trade-off influenced by the
strength of the hyperparameter. A proper strength of BATS contributes to improving the estimation
accuracy of the reject region. Empirically, we perform extensive evaluations and establish superior
performance on both the large-scale ImageNet benchmark and the commonly used CIFAR bench-
marks. BATS outperforms the previous best method by a large margin, with up to a 5.11% reduction
in the false positive rate (FPR95) and a 1.43% improvement in AUROC. Moreover, BATS can also
slightly improve the test accuracy and robustness of the pre-trained models.The main contributions of
our paper are summarized as follows:

• We provide novel insights into OOD detection from the perspective of typicality and propose
to rectify the features into the typical set. We design a concise and effective approach to
select the feature’s typical set named Batch Normalization Assisted Typical Set Estimation
(BATS).

• We provide theoretical analysis and empirical ablation on the benefit of BATS from the
perspective of bias-variance trade-off to improve the understanding of our approach.

• Extensive experiments show that BATS establishes a state-of-the-art performance among
post-hoc methods on a suite of OOD detection benchmarks. Moreover, BATS can boost the
performance of various existing OOD scores with typical features.

2 Related work

The literature related to OOD detection can be broadly grouped into the following themes: post-hoc
detection methods [5–8, 11–13], confidence enhancement methods [9, 10, 14–19], and density-based
methods [20–25]. Post-hoc detection methods focus on improving the OOD uncertainty estimation
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by utilizing the pre-trained classifiers rather than retraining a model, which is beneficial for adopting
OOD detection in real-world scenarios and large-scale settings. MSP [6] observes that the maximum
softmax probability of ID examples can be higher than that of the OOD examples and provide a
simple baseline for OOD detection. ODIN [7] introduces a sufficiently large temperature factor and
input perturbation to separate the ID and OOD examples. Liu et al. [5] analyze the limitations of
softmax function in OOD detection and propose to use energy score as an indicator. The examples
with high energy are considered OOD examples, and vice versa. ReAct [8] hypothesizes that the
OOD examples can trigger the abnormal activation of the model and propose to clamp the activation
value larger than the threshold to improve the detection performance. GradNorm [12] shows that the
gradients of the categorical cross-entropy loss can be an effective test statistic for OOD detection.
Different from these methods, our BATS proposes to calculate the OOD scores with the typical
features, which benefits the estimation of the reject region and can improve the detection performance.

3 Preliminaries

3.1 Out-of-distribution detection

In this section, we provide a summary of the out-of-distribution detection from the perspective
of hypothesis testing [26–30]. We consider a classification problem with K classes and denote
the labels as Y = {1, 2, . . . ,K}. Let X be the input space. Suppose that the in-distribution data
Din = {(xi, yi)}ni=1 is drawn from a joint distribution PX,Y defined over X × Y. We denote the
marginal distribution of PX,Y for the input variable X by P0. Given a test input x ∈ X , the problem
of out-of-distribution detection can be formulated as a single-sample hypothesis testing task:

H0 : x ∼ P0, vs. H1 : x ≁ P0. (1)

Here the null hypothesis H0 implies that the test input x is an in-distribution sample. The goal of
OOD detection here is to design criteria based on Din to determine whether H0 should be rejected.
OOD detection tasks need to determine a reject region R such that for any test input x ∈ X , the
null hypothesis is rejected if x ∈ R. Generally, the reject region R is formulated by a test statistic
and a threshold. Let f : X 7→ RK be a model pre-trained from Din, which is used to predict the
class label of an input sample. One can use the model f or a part of f (e.g., feature extractor) to
construct a test statistic T (x; f), where x is the test input. Then the reject region can be written as
R = {x : T (x; f) ≤ γ}, where γ is the threshold.

3.2 OOD detection with energy score

For a classifier f and a data point (x, y), we use f(x)[k] to represent the kth output of the last layer.
With reference to [5, 31, 32], the marginal density p(x) of the classifier can be expressed as: p(x) =
exp(−E(x))

Z =
∑K

k=1 exp(f(x)[k])

Z , where Z is the normalizing factor and is independent to x. E(x)

represents the energy of x and is modeled by neural network as E(x) = − log
∑K

k=1 exp(f(x)[k]).
See Appendix C for details. Considering that Z is a constant and is independent to x, Liu et al. [5]
propose an energy score that uses the opposite of the energy E(x) as a test statistic to detect OOD
examples. A higher energy score means a higher marginal density p(x).

4 Methods

In this paper, we delve into the obstacle factor for the post-hoc OOD detection from the perspective
of typicality, which aims to boost the performance of the existing OOD scores and is orthogonal to
the methods of designing different OOD scores. Given that the energy score [5] is provably aligned
with the density of inputs and performs well, we mainly use the energy score as the OOD score. (See
Appendix I for other OOD scores).

4.1 Motivation

For a classifier trained on the ID data f = fw,b ◦ g where g is a feature extractor mapping input x to
its deep feature z. Let d-dimensional vector z = [z1, ..., zd]

⊤ = g(x) denote the deep features of x
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extracted by g, and zi indicate the i-th element of z. fw,b(z) = w · z+ b is a fully connected layer
mapping the deep feature z to output logits. The energy can be expressed as:

E(x) = − log

K∑
k=1

exp(f(x)[k]) = − log

K∑
k=1

exp((w · z+ b)[k]). (2)

The test statistic can be expressed as T (x; f) := −E(x) = log
∑K

k=1 exp((w · z+ b)[k]), which
depends on the extracted deep features and the mapping operation of the fully connected layer (FC).
Assuming that the distribution of the deep features is consistent with the Gaussian distribution (see
examples in Appendix J), there are high-probability regions and low-probability regions in deep
features. We name the features that fall in high-probability regions as typical features, and the
corresponding regions are called feature’s typical sets. In contrast, we regard the features that fall
in low-probability regions as extreme features. Extreme features are rarely exposed to the training
process, which leads to difficulties for the classifier to model these features and unreliable estimations
in the inference process. Reducing the influence of extreme features on test statistics can be a key to
improving OOD detection performance.

4.2 Batch Normalization Assisted Typical Set Estimation

Instead of designing new OOD scores to detect the abnormality, we provide a novel insight into OOD
detection from a perspective of typicality. We propose to rectify the features into the feature’s typical
set and then use these typical features to calculate the OOD score. Consider a commonly used layer
structure in deep convolutional networks:

z′ → BN(z′;µ, σ) → ReLU → z, (3)
where z′ is the feature vector extracted from the convolutional layer of g. To identify the typical set
of z′ for each channel, we should apply its feature map to a sufficient number of ID examples and
further calculate the empirical distribution of z′ over the ID examples. If the number of features is
large, the inference procedure is time-consuming. Here we propose a simple and effective post hoc
approach that leverages the information stored in f to infer the typical set without estimating the
distribution of z′. Suppose the pre-trained deep neural network uses batch normalization (BN). We
denote the BN unit in f as:

BN(z′;µ, σ) = σ
z′ − E(z′)

Std(z′)
+ µ, (4)

where µ, σ are two learnable parameters. After the pre-training, all the four parameters µ, σ, E(z′),
Std(z′) are known and stored in the weights of f.4 The Batch Normalization normalizes features of
the training dataset to a distribution with a mean of µ and standard deviation of σ, which means that
the features fall in the interval [µ − λ ∗ σ, µ + λ ∗ σ] appear more frequently in training than the
features in the complement of this interval. The parameter λ controls the range of the interval. Thus
we use the information in the Batch Normalization to identify the in-distribution feature’s typical
set and rectify the features into the typical set before calculating the OOD score. The uncertainty
estimated with the typical features can be more reliable.

In practice, we propose a truncated activation scheme to bound the output features of the BN unit.
First, we introduce the truncated BN unit by:

TrBN(z′;µ, σ, λ) =


µ+ λσ, if z′ − µ ≥ λσ;

BN(z′;µ, σ), if − λσ < z′ − µ < λσ;

µ− λσ, if z′ − µ ≤ −λσ,

(5)

where λ is a tuning parameter. We replace the BN unit in the layer structure (Eq.(3)) with the TrBN
unit and write the rectified final features as z̄ and the new classifier as f̄ . Then test statistic with the
energy score can be expressed as:

T (x; f̄) = log

K∑
k=1

exp((w · z̄+ b)[k]) (6)

4In general, E(z′) and Std(z′) are estimated on a mini-batch of the training data. Finally, the pre-trained
model outputs moving average estimators at each iteration.
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and take the reject region by R = {x : T (x; f̄) ≤ γ}. We name our approach Batch Normalization
Assisted Typical Set Estimation (BATS). In comparison to the standard BN, the outputs of TrBN are
concentrated toward the feature’s typical set of ID data. This makes an ID example less susceptible
to being mistakenly detected as an OOD example and buffers the negative impact of the extreme
features. Fig. 1 compares the distribution of the OOD scores from the original energy score and the
energy score with typical features.

4.3 Theoretical analysis

The truncation threshold λ is a key hyperparameter. Our method reduces the variance of z′ and also
introduces a bias term since it changes the distribution of BN(z′;µ, σ). The variance reduction means
that our method is robust to the rare ID examples, while the introduced bias can lead to degradation
of the model performance. In this section, we assume z′ follows a normal distribution and analyze
the bias-variance trade-off in our method.

4.3.1 Understanding the benefits of BATS from the perspective of variance reduction

The variance reduction happens at the BN step. The variance of BN(z′;µ, σ) is σ2 since the
distribution of the ID features z′ is rescaled to N(µ, σ2). While the TrBN unit truncates the extreme
values and the variance of TrBN(z′;µ, σ, λ) becomes:

σ2C(λ) := σ2
(

erf(
λ√
2
)−

√
2√
π
λ exp(−λ2

2
) + λ2(1− erf(

λ√
2
))
)
, (7)

where erf(x) = (2/
√
π)

∫ x

0
exp(−t2)dt is the Gauss error function. The value of C(λ) represents

the degree of variance reduction. In Eq.(7), C(0) = 0, dC(λ)/dλ > 0, and C(λ) → 1 as λ → +∞.
Therefore, C(λ) is a monotonically increasing function and 0 ≤ C(λ) < 1 for 0 ≤ λ < +∞. In
summary, the smaller λ, the smaller the variance. See Appendix D for the proof.

OOD detection is a single-sample hypothesis testing problem (in Eq.(1)), and the in-distribution
P0 is unknown. So the reject region is determined by the empirical distribution of the test statistic
T (x; f) over the ID data. The extreme features increase the uncertainty and lead to more unusual
values of T (x; f). This implies that the reject region may be underestimated due to the heavy tail
property of T (x; f). Our BATS aids this problem by reducing the variance of the deep features,
which contributes to constraining the uncertainty of f and T (x; f) and improving the estimation
accuracy of the reject region.

4.3.2 The bias introduced by BATS

BATS rectifies the features into the typical set, which reduces the variance of the deep features.
However, this operation can also introduce a bias term, which can reflect the change in the distribution
of the features. A large bias can damage the performance of the model. The distribution of the output
feature z = ReLU(BN(z′;µ, σ, λ)) is a one-side rectified normal distribution over [0,+∞). The
expectation of z is:

E(z) = µ+ σ
( 1√

2π

(
exp(− µ2

2σ2
)
)
− µ

2σ
(1 + erf(− µ√

2σ
))
)
. (8)

For our method, the distribution of the output feature z̄ = ReLU(TrBN(z;µ, σ, λ)) is a two-sided
rectified normal distribution over [0, µ+ λσ] and the expectation of z̄ is:

E(z̄) = µ+ σ
( 1√

2π

(
exp(− µ2

2σ2
)− exp(−λ2

2
)
)
− µ

2σ
(1 + erf(− µ√

2σ
)) +

λ

2
(1− erf(

λ√
2
))
)
. (9)

Then the bias caused by the truncation is:

E(z̄)− E(z) = σ
(
− exp(−λ2

2
) +

λ

2
(1− erf(

λ√
2
))
)
=

(
λ− λΦ(λ)− ϕ(λ)

)
σ, (10)

where ϕ(·) and Φ(·) are the probability density function (pdf) and cumulative distribution function
(cdf) of the standard normal distribution. One can find that the bias term E(z̄)− E(z) converges to
zero as λ → ∞. In other words, if λ is large enough, the bias can be very small. Thus, there exists a
bias-variance trade-off. See Appendix D for the proof.
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A proper selection of λ can improve the detection performance by significantly reducing the uncer-
tainty (variance reduction) and slightly changing the distribution of the features (small bias). If λ
is large, T (x; f̄) uses more extreme features in both the ID and OOD data. As λ tends to infinity,
T (x; f̄) converges to T (x; f). Then BATS is the same to the original energy detection. If λ is small,
extreme features are removed from the test statistic T (x; f̄) while introducing a non-negligible bias.
Because of the change in feature distribution, the detection method loses its power to identify OOD
examples. Fig. 2 illustrates the distribution of OOD scores with different λ, which empirically verifies
this trade-off.

（a）λ= 0.70 （d）λ= 3.00（c）λ= 1.25（b）λ= 0.85

Figure 2: Bias-variance trade-off in BATS. We illustrate the OOD score for ID (ImageNet) and OOD
(Textures) examples. Smaller λ contributes to variance reduction which benefits the estimation of
the reject region. But smaller λ causes a larger bias, which can drastically alter the distribution of
features and damage the performance of the model in distinguishing ID and OOD examples.

5 Experiments

In this section, we first introduce our experiment implementation. Then, we evaluate our methods
both on the large-scale OOD detection benchmark [33] and the CIFAR benchmarks [6]. After
that, the ablation studies compare the influence of applying rectification on different layers and
show the influence of the hyperparameter. Moreover, our BATS can also slightly improve the test
accuracy of the pre-trained models (in Appendix H). We consider the out-of-distribution detection as
a single-sample hypothesis testing task and only test one sample at a time.

5.1 Implementation

Dataset. For evaluating the large-scale OOD detection performance, we use ImageNet-1k [33] as
the in-distribution dataset and consider four out-of-distribution datasets, including (subsets of) the
fine-grained dataset iNaturalist [34], the scene recognition datasets Places [35] and SUN [36], and
the texture dataset Textures [37] with non-overlapping categories to ImageNet-1k.

As for the evaluation on CIFAR Benchmarks, we use the CIFAR-10 and CIFAR-100 [38] as the
in-distribution datasets using the standard split with 50,000 training images and 10,000 test images.
We consider four OOD datasets: SVHN [39], Tiny ImageNet [40], LSUN [41] and Textures [37].

Baselines. We consider different kinds of competitive OOD detection methods as baselines, including
Maximum Softmax Probability (MSP) [6], ODIN [7], Energy [5], Mahalanobis [11], GradNorm [12]
and ReAct [8]. MSP is a simple baseline for OOD detection and ReAct is a state-of-the-art method
that achieves strong detection performance. All methods use the pre-trained networks post-hoc.

Metrics. FPR95: the false positive rate of OOD (negative) examples when the true positive rate of
in-distribution (positive) examples is as high as 95%. Lower FPR95 indicates better OOD detection
performance and vice versa. AUROC: the area under the receiver operating characteristic curve
(ROC). Higher AUROC indicates better detection performance. See Appendix E for more details.

5.2 Evaluation on the large-scale OOD detection benchmark

We first evaluate our method on a large-scale OOD detection benchmark proposed by Huang and
Li [33]. [33] revealed that OOD detection methods designed for the CIFAR benchmark might not
effectively be adaptable for the ImageNet benchmark with a large semantic space. Recent literature
[8, 12, 33] proposes to evaluate OOD detection performance on images that have higher resolution and
contain more classes than the CIFAR benchmarks, which is more relevant to real-world applications.

In Tab. 1, we compare our method with the existing methods and show the OOD detection per-
formance for each OOD test dataset and the average over the four datasets. We consider different
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Table 1: OOD detection performance comparison on different architectures: ResNet-50 (RN50) [42],
DenseNet-121 (DN121) [43] and MobileNet-V2 (MNet) [44]. We use the pre-trained models in
PyTorch [45] trained on ImageNet. All methods are post hoc and can be directly used for pre-trained
models. The best results are in Bold. The up arrow indicates that the higher the value, the better the
performance, and vice versa.

Model Method
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

RN50

MSP[6] 51.44 88.17 72.04 79.95 74.34 78.84 54.90 78.69 63.18 81.41
ODIN[7] 41.07 91.32 64.63 84.71 68.36 81.95 50.55 85.77 56.15 85.94
Energy[5] 46.65 91.32 61.96 84.88 67.97 82.21 56.06 84.88 58.16 85.82

Mahalanobis[11] 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
GradNorm[12] 23.73 93.97 42.81 87.26 55.62 81.85 38.15 87.73 40.08 87.70

ReAct[8] 17.77 96.70 25.15 94.34 34.64 91.92 51.31 88.83 32.22 92.95
BATS(Ours) 12.57 97.67 22.62 95.33 34.34 91.83 38.90 92.27 27.11 94.28

DN121

MSP[6] 47.65 89.09 69.95 79.64 72.53 78.74 69.69 77.06 64.96 81.13
ODIN[7] 30.72 93.66 57.90 86.11 63.16 83.54 53.51 83.88 51.32 86.80
Energy[5] 33.16 93.81 53.79 86.70 61.01 83.83 55.42 84.06 50.85 87.10

Mahalanobis[11] 97.36 42.24 96.21 41.28 97.32 47.27 62.78 56.53 88.42 46.83
GradNorm[12] 22.88 94.40 43.12 87.55 55.80 82.00 47.58 85.16 42.35 87.28

ReAct[8] 15.93 96.91 40.41 90.13 48.87 87.98 36.58 92.48 35.45 91.88
BATS(Ours) 14.63 97.13 30.45 93.03 41.35 89.24 31.72 93.40 29.54 93.20

MNet

MSP[6] 63.09 85.71 79.67 76.01 81.47 75.51 75.12 76.49 74.84 78.43
ODIN[7] 45.61 91.33 63.03 83.44 70.01 80.85 52.45 85.61 57.78 85.31
Energy[5] 49.52 91.10 63.06 84.42 69.24 81.42 58.16 84.88 60.00 85.46

Mahalanobis[11] 62.04 82.37 54.79 86.33 53.77 83.69 88.72 37.28 64.83 72.42
GradNorm[12] 33.70 92.46 42.15 89.65 56.56 83.93 34.95 90.99 41.84 89.26

ReAct[8] 37.08 93.41 53.13 86.04 54.15 83.31 42.45 89.42 46.70 88.05
BATS(Ours) 31.56 94.33 41.68 90.21 52.43 86.26 38.69 90.76 41.09 90.39

architectures, including the widely used ResNet-50 [42], DenseNet-121 [43] and a lightweight model
MobileNet-v2 [44]. Compared with the Energy Score [5], the difference in our approach is rectifying
the features that deviate from the feature’s typical set. Our method outperforms the Energy Score on
ResNet-50 by 31.05% in FPR95 and 8.46% in AUROC. Furthermore, our method reduces FPR95 by
5.11% and improves AUROC by 1.33% compared to the state-of-the-art method [8] on ResNet-50.
Here the models are pre-trained in a standard manner. We also show that BATS can boost the OOD
detection when using the adversarially pre-trained classifiers in Appendix F.

Simultaneously, we observe that existing methods have different performances on different archi-
tectures. Specifically, the performance of the GradNorm [12] in FPR95 is 7.86% worse than that of
ReAct [8] on the ResNet-50, but surpasses ReAct on MobileNet-V2 by 4.86%. Our method achieves
the best performance on different architectures. Appendix K shows that our method also outperforms
the existing methods when choosing the natural adversarial examples [46] as OOD examples.

(a) ResNet-50 (b) MobileNet-V2

Figure 3: The FPR95 for different methods on ImageNet (lower is better) on ResNet-50 and
MobileNet-V2. We illustrate the average performance on four OOD datasets. "Vanilla" means
the original method and "Vanilla+BATS" means applying our BATS on the method.

Our experiments mainly use the energy score as the test statistic. In Fig. 3, we show that BATS is
also compatible with various OOD scores and BATS can boost the performance of various OOD
scores. Applying our BATS on GradNorm [12] (a gradient-based OOD score) can even achieve better
performance than "Energy+BATS" but this method needs to derive the gradients of the model, which
costs more than "Energy+BATS." See Appendix I for detailed performance.
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Table 2: OOD detection performance on CIFAR-10 and CIFAR-100 [38]. All methods are post hoc
and can be directly used for pre-trained models. The best results are in Bold.

Dataset Method
SVHN Tiny-Imagenet LSUN_resize Texture Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

CIFAR10
RN18

MSP[6] 59.60 91.29 50.01 93.02 52.15 92.73 66.63 88.50 57.10 91.39
ODIN[7] 59.71 88.52 10.95 98.08 9.24 98.25 52.06 89.16 32.99 93.50
Energy[5] 54.03 91.32 15.18 97.28 23.53 96.14 55.30 89.37 37.01 93.53

GradNorm[12] 82.45 79.85 19.23 96.77 48.99 90.67 69.40 81.72 55.02 87.25
ReAct[8] 46.87 92.54 22.80 96.10 18.31 96.92 47.39 91.58 33.84 94.29

BATS(Ours) 38.42 93.53 17.75 96.91 19.85 96.59 43.81 92.32 29.96 94.84

CIFAR10
WRN

MSP[6] 63.24 86.66 39.57 94.60 44.31 93.82 60.71 88.90 51.96 91.00
ODIN[7] 61.13 82.49 12.79 97.61 12.49 97.50 61.13 80.18 36.89 89.45
Energy[5] 56.05 86.63 17.58 96.99 28.44 95.29 61.74 85.68 40.95 91.15

GradNorm[12] 88.55 49.14 41.25 90.68 91.02 48.94 90.83 46.28 77.91 58.76
ReAct[8] 58.35 86.67 18.85 96.62 16.52 97.04 50.89 89.27 36.15 92.40

BATS(Ours) 50.60 89.50 25.17 95.66 11.98 97.70 45.30 91.18 33.26 93.51

CIFAR100
RN18

MSP[6] 81.79 77.80 68.32 83.92 82.51 75.73 85.12 73.36 79.44 77.70
ODIN[7] 40.82 93.32 69.34 86.28 79.62 82.12 83.61 72.36 68.35 83.52
Energy[5] 81.24 84.59 40.12 93.16 73.56 82.98 85.87 74.94 70.20 83.92

GradNorm[12] 57.65 87.77 25.77 95.12 89.60 63.25 79.08 68.89 63.03 78.76
ReAct[8] 70.28 88.25 45.62 91.02 55.57 89.32 61.01 87.57 58.12 89.04

BATS(Ours) 61.48 90.63 44.41 91.27 52.68 90.04 52.36 89.72 52.73 90.42

CIFAR100
WRN

MSP[6] 78.43 77.74 61.33 87.46 81.69 72.69 85.07 75.46 76.63 78.34
ODIN[7] 35.69 94.84 82.68 79.17 87.48 74.53 86.97 65.40 73.21 78.49
Energy[5] 75.57 83.05 40.87 92.99 65.90 82.78 87.98 71.21 67.58 82.51

GradNorm[12] 83.24 72.55 45.20 90.43 78.62 68.80 92.59 46.99 74.91 69.69
ReAct[8] 72.94 86.89 42.07 91.97 60.87 85.90 84.18 76.22 65.02 85.25

BATS(Ours) 71.01 87.50 41.93 91.97 57.01 88.04 80.46 78.42 62.60 86.48

5.3 Evaluation on CIFAR benchmarks

We further evaluate our method on CIFAR benchmarks and use CIFAR-10 and CIFAR-100 [38] as
the in-distribution datasets respectively. Tab. 2 compares our method with the baseline methods
and shows the OOD detection performance for each OOD test dataset and the average over the four
datasets. We evaluate our method on the ResNet-18 (RN18) [42] and WideResNet-28-10 (WRN)
[47]. The models are trained for 200 epochs with a batch size of 128. The starting learning rate is 0.1
and decays by a factor of 10 at epochs 100 and 150.

ODIN [7] performs the best in the baselines methods on CIFAR-10 with an FPR95 of 32.99% on
ResNet-18. Our method outperforms ODIN by 3.03% and outperforms the simple baseline method
MSP [6] by 27.14% in FPR95. As for using CIFAR-100 as the in-distribution dataset, ReAct [8]
is the best baseline method. Our approach surpasses the ReAct by 5.39% in FPR95 on ResNet-18.
Our method achieves the best performance on both CIFAR-10 and CIFAR-100. Our approach is also
effective when using the WideResNet model, outperforming the existing methods.

5.4 Ablation studies

5.4.1 Rectifying the features of the early layers

In our experiments, we rectify the features of the penultimate layer (the layer before the fully
connected layer), which is convenient and efficient. However, what will happen if we rectify the
features of the early layers with BATS? The early layers refer to the layers close to the input [48].
In particular, the original ResNet-50 [42] consists of four residual blocks. Block1 is close to the input
and Block4 is close to the output. In Tab. 3, we show the influence of applying feature rectification
on the output of different blocks. Applying feature rectification to the early blocks (from Block1 to
Block3) has little effect on the performance of OOD detection, while the last block plays a vital role.
Applying feature rectification on all the blocks performs the best in our experiments, which is 0.99%
higher than the "Block4" in FPR95 and 32.04% higher than "Without" in FPR95. Considering that the
latest block has a more significant impact on the OOD detection performance than the other blocks,
we just rectify the features of the penultimate layer with BATS for the simplicity of the method.

To find out why the last block has a significant influence on the OOD detection while the other blocks
contribute little, we visualize the feature embeddings extracted by different blocks in ResNet-50
using t-SNE [49] in Fig. 4. We choose the iNaturalist as the OOD dataset and the ImageNet as the ID
dataset. The features extracted by the early blocks of the ID and OOD examples are similar, which
has little benefit in distinguishing the ID and OOD examples. In contrast, the last block can extract
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Table 3: Ablation study of the influence of feature rectification on different blocks. "Without" means
applying no rectification on any blocks. "Block1-4" means applying rectification on all blocks.

Blocks iNaturalist SUN Places Textures Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Without 46.65 91.32 61.96 84.88 67.97 82.21 56.06 84.88 58.16 85.82
Block1 49.72 90.73 62.67 84.62 68.30 82.03 55.62 85.04 59.08 85.61
Block2 41.78 92.36 63.73 84.67 69.45 81.95 55.53 85.45 57.62 86.11
Block3 40.76 92.55 58.37 86.56 64.78 83.82 51.45 86.77 53.84 87.43
Block4 12.57 97.67 22.62 95.33 34.34 91.83 38.90 92.27 27.11 94.28

Block1-2 43.63 91.92 63.22 84.61 69.28 81.84 53.67 85.72 57.45 86.02
Block1-3 38.05 93.04 59.47 86.47 66.30 83.49 49.72 87.50 53.39 87.63
Block1-4 12.76 97.54 21.15 95.51 33.01 91.91 37.55 92.54 26.12 94.38

perfectly separable features for the ID and OOD examples. This may be due to the fact that deep
neural networks focus on similar general features (edges, lines, and colors) in the early layers and
pay more attention to specific features related to classification in the late layers [48, 50]. The late
layer can contribute more to the OOD detection than the early layer. See more in Appendix B.

(a) Block1 (b) Block2 (c) Block3 (d) Block4

Figure 4: t-SNE visualizations. We illustrate the t-SNE plots for the features of in-distribution
examples (ImageNet) and out-of-distribution examples (iNaturalist) from different blocks.

5.4.2 The influence of the hyperparameter

In Sec. 4.3, we theoretically analyze the bias-variance trade-off in our method. Our proposed
BATS can reduce variance, which benefits OOD detection, but can also introduce a bias. Here, we
empirically show the influence of the hyperparameter λ in Fig. 5. As λ tends to infinity, BATS
approaches to the Energy Score (the horizontal lines). Very small λ will damage the performance.

(a) ImageNet (b) CIFAR-100

Figure 5: (a) The influence of the hyper-parameter λ on the OOD detection on ImageNet. The model
is ResNet-50. We illustrate the average performance on four OOD datasets. (b) The influence of the
hyper-parameter λ on the OOD detection on CIFAR-100. The model is WideResNet. The horizontal
line indicates the OOD detection performance without feature rectification.

6 Conclusion

In this paper, we provide novel insight into the obstacle factor in OOD detection from the perspective
of typicality and hypothesize that extreme features can be the culprit. We propose to rectify the
features into the typical set and provide a concise and effective post-hoc approach BATS to estimating
the feature’s typical set. BATS can be applied to various OOD scores to boost the OOD detection
performance. Theoretical analysis and ablations provide a further understanding of our approach.
Experimental results show that our BATS can establish state-of-the-art OOD detection performance
on the ImageNet benchmark, surpassing the previous best method by 5.11% in FPR and 1.43% in
AUROC. We hope that our findings can motivate new research into the internal mechanisms of deep
models and OOD detection and uncertainty estimation from the perspective of feature typicality.
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Limitations and societal impact. This paper proposes to rectify the feature into its typical set to
improve the detection performance against OOD data and provides a plug-and-play method with
the assistance of BN. The limitation of our method can be that the BN layers are required in the
model architecture in our approach. BN layers are widely used in convolutional neural networks to
alleviate covariate shifts, but there are also architectures without BN. A set of training images can
contribute to selecting the feature’s typical set and alleviate this limitation. We also anticipate some
other information in the model is conducive to selecting the feature’s typical set and improving the
post-hoc OOD detection performance. We leave this as future work. Although truncating features
into a typical set can improve OOD detection, a potential negative impact of the proposed process is
that it inherently introduces a bias and causes some information loss which may be important to the
model in real-world scenarios.
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