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A Detailed Derivation and Proofs

A.1 Derivation of Eq. (6)

Since a[t] =
∑t

τ=1 λt−τ s[τ ]∑t
τ=1 λt−τ , â[t] =

∑t
τ=1 λ

t−τs[τ ],al+1[T ] ≈ σ
(

1
Vth

(
Wlal[T ] + bl+1

))
,

dl+1[T ] = σ′
(

1
Vth

(
Wlal[T ] + bl+1

))
,
(
∂Lsr

∂Wl

)
sr

= ∂Lsr

∂aN [T ]

∏l+1
i=N−1

∂ai+1[T ]
∂ai[T ]

∂al+1[T ]
∂Wl , and we

have ∂Lsr

∂âN [T ]
= 1

λT−t
∂Lsr

∂sN [t]
(∀1 ≤ t ≤ T )2, ∂Lsr

∂âN [T ]
= 1

T

∑T
t=1

1
λT−t

∂Lsr

∂sN [t]
, we can obtain:

(∇WlLsr)sr =

(
∂Lsr

∂Wl

)⊤

sr

=

(
∂Lsr

∂aN [T ]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

∂al+1[T ]

∂Wl

)⊤

=

( ∂Lsr

∂aN [T ]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤

⊙ dl+1[T ]

al[T ]
⊤

=

( ∂Lsr

∂âN [T ]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤

⊙ dl+1[T ]

 âl[T ]
⊤

=

T∑
t=1

( 1

T

1

λT−t

∂Lsr

∂sN [t]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤

⊙ dl+1[T ]

 âl[T ]
⊤
.

(1)

A.2 A few notes for the notation of time for multi-layer networks

Please note that the notation of discrete time steps for multi-layer networks may be slightly different
from Eq. (2). We use si+1[t] to denote the (i + 1)-th layer’s response after receiving the i-th
layer’s signals si[t]. Rigorously speaking, there will be synaptic delay td for information propagation
between two layers if we consider the whole network in an asynchronous way, so the precise time
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2Note that we can treat sN [t] independent with each other, if we consider taking the derivative of the

Heaviside step function as 0 in this calculation and therefore ∂sN [t+1]

∂sN [t]
= ∂sN [t+1]

∂uN [t+1]

∂uN [t+1]

∂sN [t]
= 0.
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of si+1[t] or ui+1[t] for layer i + 1 may be t + td compared with si[t] for layer i. To simplify the
notations, we use 0, 1, · · ·T for each layer to represent the corresponding discrete time steps, while
the actual time of different layers at time step t should consider some delay across layers.

A.3 Proof of Theorem 1

In this subsection, we prove Theorem 1 with Assumption 1.

Assumption 1. ∀l = 1, · · · , N, t = 1, · · · , T,diag
(

∂sl+1[t]
∂ul+1[t]

)
= dl+1[T].

Theorem 1. If Assumption 1 holds, Vth = 1, and the errors ϵl[t] = al[t] − al[T ] are small such

that
∥∥∥∑T

t=1 ĝul+1 [t]ϵl[t]
⊤
∥∥∥ <

∥∥∥∑T
t=1 ĝul+1 [t]al[T ]

⊤
∥∥∥− ∥∥∥∑T

t=1
λt(1−λT−t)

1−λT ĝul+1 [t]al[t]
⊤
∥∥∥ when

(∇WlLsr)sr ̸= 0, then we have ⟨∇WlL, (∇WlLsr)sr⟩ > 0.

Proof. As described in Sections 4.1 and 4.2, for gradients of OTTT, we have
∇WlL =

∑T
t=1 gul+1 [t]âl[t]

⊤, L :=
∑T

t=1 L[t] =
∑T

t=1
1
T L
(
sN [t],y

)
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)⊤
; for gradients based on spike representation, we have

(∇WlLsr)sr =
∑T

t=1

((
1
T

1
λT−t

∂Lsr

∂sN [t]

∏l+1
i=N−1

∂ai+1[T ]
∂ai[T ]

)⊤
⊙ dl+1[T ]

)
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Lsr = 1∑T−1
τ=0 λτ
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T−tL(sN [t],y). Let ĝul+1 [t] =
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)⊤
,

we have ∇WlL = 1
T

∑T
t=1 ĝul+1 [t]âl[t]

⊤. With Assumption 1, we have ∂sl+1
i [t]

∂ul+1
i [t]
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). So we

can derive that (∇WlLsr)sr = 1
T

1∑T−1
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⊤
= 1
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We consider ∇̂WlL = 1∑T−1
τ=0 λτ

∇WlL = 1
T

1∑T−1
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⊤
=
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⊤. Since the errors ϵl[t] = al[t] − al[T ] are small such that∥∥∥∑T
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(2)

Then, we can obtain:〈
∇̂WlL, (∇WlLsr)sr

〉
=
〈
∇̂WlL− (∇WlLsr)sr , (∇WlLsr)sr

〉
+ ∥(∇WlLsr)sr∥

2
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〉
> 0.
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Remark 1. As for the assumption of the errors in the theorem, since the weighted firing rate gradually
converges a[t] → a∗ with bounded random error caused by the remaining membrane potential at the
last time step, the order of errors ϵl[t] would be smaller than al[T ] especially when t is large. And
λt(1−λT−t)

1−λT → 0 with t → T is also a small number on the right side of the inequality. So this is a
reasonable assumption.

Remark 2. The above conclusion mainly focuses on the gradients for connection weights Wl. As
for other parameters such as biases bl, the gradients of OTTT do not involve pre-synaptic activities,
so under Assumption 1 they are exactly the same as gradients based on spike representation except a
constant scaling factor 1∑T−1

τ=0 λτ
.

Remark 3. Note that the gradients based on spike representation may also include small errors since
the calculation of SNN is not exactly the same as the equivalent ANN-like mappings. And a larger
time step may lead to more accurate gradients. We connect the gradients of OTTT and gradients
based on spike representation to demonstrate the overall descent direction, and it is tolerant to small
errors, which can also be viewed as randomness for stochastic optimization.

A.4 Proof of Theorem 2

In this subsection, we prove Theorem 2.

Theorem 2. If Assumption 1 holds, Vth = 1,
∥∥Jfθ |a[T ]

∥∥ ≤ η <
σ2

min
σ2

max
, where σmax and σmin are the

maximal and minimal singular value of ∂fθ
∂θ |a[T ], and the errors ϵ1[t] = a[t]− a[T ], ϵ0[t] = x[t]−

x[T ] are small such that
∥∥∥∑T

t=1 ĝu[t]ϵ
l[t]

⊤
∥∥∥ <

σ2
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σmax

∥∥∥∑T
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∂s[t]
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∥∥∥ −∥∥∥∑T
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l[t]

⊤
∥∥∥ (where l = 0, 1, a1[t] and a0[t] represent a[t] and x[t], respectively)

when (∇θLsr)sr ̸= 0, then we have ⟨∇θL, (∇θLsr)sr⟩ > 0, where θ are parameters in the network.

Proof. As described in Sections 4.1 and 4.2 and similar to the proof of Theorem 1, let ĝu[t] =(
∂L(s[t],y)

∂s[t]
∂s[t]
∂u[t]

)⊤
, we have ∇WL = 1

T

∑T
t=1 ĝu[t]â[t]

⊤, ∇FL = 1
T

∑T
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τ=1 λ
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T

∑T
t=1 ĝu[t]. For gradients based on spike representa-
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∂a[T ]

(
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)⊤
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∂θ

)⊤
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∑T
t=1 λ

T−tL(s[t],y), and with Assumption 1

which indicates ∂sl+1
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∂ul+1
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i [T ], we can derive that ˜(∇WLsr)sr = 1

T
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T

∑T
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T

1∑T−1
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∥∥Jfθ |a[T ]

∥∥ ≤ η <
σ2
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σ2
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, where σmax and σmin are the maximal and

minimal singular value of ∂fθ
∂θ |a[T ] (θ ∈ {W,F,b}), and the errors ϵ[t] = a[t] − a[T ]

are small such that
∥∥∥∑T

t=1 ĝu[t]ϵ
l[t]

⊤
∥∥∥ <
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min−ησ2
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∂s[t]

(
I − Jfθ |a[T ]

)−1
∥∥∥ −∥∥∥∑T
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1−λT ĝu[t]a[t]
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∥∥∥∥∥+
∥∥∥∥∥ 1T
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ĝu[t]
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1− λT
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⊤

∥∥∥∥∥
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<
σ2

min − ησ2
max

σmax

∥∥∥∥∥ 1T
T∑

t=1

∂L(s[t],y)
∂s[t]

(
I − Jfθ |a[T ]

)−1

∥∥∥∥∥ . (4)

Then, we have (let v =
(

∂Lsr

∂a[T ]

(
I − Jfθ |a[T ]

)−1
)⊤

= 1
T

∑T
t=1

(
∂L(s[t],y)

∂s[t]

(
I − Jfθ |a[T ]

)−1
)⊤

):

〈
∇̂WL, (∇WLsr)sr

〉
=
〈

˜(∇WLsr)sr, (∇WLsr)sr

〉
+
〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
= v⊤ ∂fθ(a[T ])

∂W

(
∂Lsr

∂a[T ]

∂fθ(a[T ])

∂W

)⊤

+
〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
= v⊤ ∂fθ(a[T ])

∂W

∂fθ(a[T ])

∂W

⊤ (
I − Jfθ |a[T ]

)⊤
v +

〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
=

∥∥∥∥v⊤ ∂fθ(a[T ])

∂W

∥∥∥∥2 − v⊤ ∂fθ(a[T ])

∂W

∂fθ(a[T ])

∂W

⊤
Jfθ |a[T ]

⊤
v

+
〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
≥ σ2

min∥v∥2 − ησ2
max∥v∥2 −

∥∥∥∇̂WL− ˜(∇WLsr)sr

∥∥∥ ∥∥∥∥v⊤ ∂fθ(a[T ])

∂W

∥∥∥∥
> σ2

min∥v∥2 − ησ2
max∥v∥2 −

σ2
min − ησ2

max

σmax
∥v∥ · σmax ∥v∥ = 0. (5)

Therefore, ⟨∇WL, (∇WLsr)sr⟩ =
(∑T−1

τ=0 λτ
)〈

∇̂WL, (∇WLsr)sr

〉
> 0. Similarly, we can

derive that ⟨∇FL, (∇FLsr)sr⟩ > 0. And for ∇bL, we have ∇bL =
(∑T−1

τ=0 λτ
)
(∇bLsr)sr,

so ⟨∇bL, (∇bLsr)sr⟩ > 0. Therefore, for all parameters θ in the network, we have
⟨∇θL, (∇θLsr)sr⟩ > 0 when (∇θLsr)sr ̸= 0.

Remark 4. The above conclusion considers the single-layer condition. It can be generalized
to the multi-layer condition. For example, if we consider multiple feedforward hidden layers
(denote the weight as F l) with a feedback connection from the last hidden layer to the first
hidden layer (denote the weight as W 1), and assume the function is contractive, the equilib-
rium states for each layer are a1

∗
= f1

(
fN ◦ · · · ◦ f2(a1

∗
),x∗) and al+1∗ = fl+1(a

l∗), where

f1(a,x) = σ
(

1
Vth

(W1a+ F1x+ b1)
)

and fl(a) = σ
(

1
Vth

(Fla+ bl)
)

[1]. Then with a similar

condition for the Jacobian of fθ = fN ◦ · · · ◦ f2 ◦ f1 and errors ϵl[t] of each layer as in Theorem 2,
we can prove ⟨∇θL, (∇θL)sr⟩ > 0 when (∇θL)sr ̸= 0 for all parameters θ in the network as
well. More generally, multi-layer networks with arbitrary feedback connections can be written in a
single-layer formulation, i.e. we consider all neurons in different layers as a whole single layer, and
feedforward or feedback connections can be viewed as connections between these neurons, which is
written as a much larger weight matrix with some imposed structures representing the connection
restrictions. Therefore, the conclusion can be directly generalized to these conditions as well.

Remark 5. The assumption
∥∥Jfθ |a[T ]

∥∥ ≤ η <
σ2

min
σ2

max
is also made in previous works [2, 3] and we

consider it as a reasonable assumption in the theoretical analysis. It is a sufficient condition to bound
the worst case, and in practice it is unnecessary to always enforce the restriction, as indicated in [2].

B Pseudocode of the OTTT algorithm

We present the pseudocode of one iteration of OTTT training for a feedforward network in Algorithm 1
to better illustrate our training method.
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Algorithm 1 One iteration of OTTT training for a feedforward network.
Input: Network parameters {Wl}, {bl}; Input data x; Label y; Time steps T ; Other hyperparame-

ters;
Output: Trained network parameters {Wl}, {bl}.

1: for t = 1, 2, · · · , T do
2: for l = 1, 2, · · · , N do // Forward
3: Update membrane potentials ul[t] and generate spikes sl[t] at layer l;
4: Update the tracked presynaptic activities âl[t] = λâl[t− 1] + ŝl[t] at layer l.
5: for l = N,N − 1, · · · , 1 do // Backward
6: Calculate the instantaneous backpropagated errors gul [t];
7: Calculate the instantaneous gradient ∇Wl−1L[t] = gul [t](âl−1[t])⊤.
8: if online update then // OTTTO

9: Update Wl−1 with ∇Wl−1L[t] based on the gradient-based optimizer;
10: Update bl with gul [t] based on the gradient-based optimizer.
11: else // OTTTA

12: Accumulate gradients ∇Wl−1L = ∇Wl−1L+∇Wl−1L[t], ∇blL = ∇blL+ gul [t].
13: if not online update then // OTTTA

14: Update parameters {Wl} with accumulated {∇WlL} based on the gradient-based optimizer;
15: Update parameters {bl} with accumulated {∇blL} based on the gradient-based optimizer.

C Implementation Details

C.1 Scaled Weight Standardization and NF-ResNets

The scaled weight standardization (sWS) is proposed in [4, 5] to replace the commonly used batch
normalization (BN) and realize normalization-free ResNets (NF-ResNets). Different from BN which
standardizes the activation with different samples, sWS standardizes weights by:

Ŵi,j = γ ·
Wi,j − µWi,·

σWi,·

√
N

, (6)

where µWi,· and σWi,· are the mean and variance calculated along the input dimension, and the scale
γ is determined by analyzing the signal propagation with different activation functions. The original
weight standardization is proposed in [6], which is shown to share the similar benefit as BN to smooth
the loss landscape, if combined with other normalization techniques, e.g. group normalization. sWS
further takes the signal propagation into account so that the variance of the signal is preserved during
the forward propagation of neural networks and the mean of the output is 0, which is another property
of BN. Particularly, for the input x that is sampled i.i.d from N (0, 1), considering the ReLU activation
g, [4] derive that we should take γ =

√
2√

1− 1
π

to preserve the variance of signals, i.e. Var(Ŵg(x)) = 1.

This is because the outputs g(x) = max(x, 0) with Gaussian inputs will be sampled from the rectified
Gaussian distribution with variance σ2

g = (1/2)(1− (1/π)) [4]. In this work, to ensure the variance
preserving at each time step of the SNN computation, we derive γ based on the consideration of
the signals after the Heaviside step function H . Particularly, consider the Gaussian input x, when
Vth = 1, the variance of the outputs H(x− Vth) is σ2

H = 1
2erfc( 1√

2
)
(
1− 1

2erfc( 1√
2
)
)

. So we will

take γ = 1
σH

≈ 2.74 to preserve the variance of signals. Additionally, [4] demonstrates that sWS
can incorporate another learnable scaling factor for the weights, which is also taken in common BN
implementations. Therefore, we also adopt this sWS technique, which is the same as the pseudocode
in [4]. For VGG network structures, we directly impose sWS on all weights. For NF-ResNet
structures, we use the same structure as in [4], which is briefly introduced below.

NF-ResNets [4] consider the residual networks xl+1 = xl + αfl(xl/βl), which differs from
ResNets [7] in three aspects: 1. NF-ResNets remove the BN components in ResNets and impose
sWS on all weights; 2. a scaling factor α is added for each residual branch; 3. for the input of each
residual branch, it will first be divided by the term βl that represents the standard deviation of signals.
Note that the third point is because the residual computation xl+1 = xl + αfl(xl/βl) will gradually
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accumulate the variance of the residual branch, i.e. Var(xl+1) = Var(xl) + Var(αfl(xl/βl)), so
dividing βl ensures that the residual branch keeps the identity variance 1 (combined with sWS), and
this also indicates to calculate βl by β2

l+1 = β2
l + α2 after each branch. Also, note that for each

transition block, the identity path with a strided conv will also be first divided by βl, so the variance
is reset after each transition block between two stages. For the implementation details, we mainly
follow the pseudocode in [4] and replace the activation functions by functions of spiking neurons,
and we take α = 0.2. For more illustrations and other details, please directly refer to [4].

C.2 Training Settings

C.2.1 Datasets

We conduct experiments on CIFAR-10 [8], CIFAR-100 [8], ImageNet [9], CIFAR10-DVS [10], and
DVS128-Gesture [11].

CIFAR-10 CIFAR-10 is a dataset of color images with 10 classes of objects, which contains 50,000
training samples and 10,000 testing samples. Each sample is a 32×32×3 color image. We normalize
the inputs based on the global mean and standard deviation, and apply random cropping, horizontal
flipping and cutout [12] for data augmentation. The inputs to the first layer of SNNs at each time step
are directly the pixel values, which can be viewed as a real-valued input current.

CIFAR-100 CIFAR-100 is a dataset similar to CIFAR-10 except that there are 100 classes of
objects. It also consists of 50,000 training samples and 10,000 testing samples. We use the same
pre-processing as CIFAR-10.

The license of CIFAR-10 and CIFAR-100 is the MIT License.

ImageNet ImageNet-1K is a dataset of color images with 1000 classes of objects, which contains
1,281,167 training samples and 50,000 validation images. We adopt the common pre-possessing
strategies, i.e. the training images are first randomly resized and cropped to 224 × 224, and then
normalized after the random horizontal flipping data augmentation, while the testing images are
first resized to 256 × 256 and center-cropped to 224 × 224, and then normalized. The inputs are
also converted to a real-valued input current at each time step. The license of ImageNet is Custom
(non-commercial).

DVS-CIFAR10 The DVS-CIFAR10 dataset is the neuromorphic version of the CIFAR-10 dataset
converted by a Dynamic Vision Sensor (DVS), which is composed of 10,000 samples, one-sixth of the
original CIFAR-10. It consists of spike trains with two channels corresponding to ON- and OFF-event
spikes. The pixel dimension is expanded to 128 × 128. Following the common practice, we split
the dataset into 9000 training samples and 1000 testing samples. As for the data pre-processing, we
reduce the time resolution by accumulating the spike events [13] into 10 time steps, and we reduce
the spatial resolution into 48 × 48 by interpolation. We apply the random cropping augmentation
as CIFAR-10 to the input data, and normalize the inputs based on the global mean and standard
deviation of all time steps (which can be integrated into the connection weights of the first layer).
The license of DVS-CIFAR10 is CC BY 4.0.

DVS128-Gesture The DVS128-Gesture dataset is a neuromorphic dataset that contains 11 kinds of
hand gestures from 29 subjects under 3 kinds of illumination conditions recorded by a DVS camera.
It is composed of 1176 training samples and 288 testing samples. Following [13], we pre-possess the
data to integrate event data into 20 frames. The license of DVS128-Gesture is the Creative Commons
Attribution 4.0 license.

C.2.2 Training Hyperparameters

For our SNN models, we assume the neurons of the last classification layer will not spike or reset,
and do classification based on the accumulated membrane potential, which is the same as [1]. That is,
the final output is uN [t] = WN−1sN−1[t] + bN at each time step. The classification is based on the
accumulated uN =

∑T
t=1 u

N [t], and the loss during training is also calculated based on uN [t], i.e.
L(uN [t],y).
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For CIFAR-10, CIFAR-100, and DVS-CIFAR10, models are trained by SGD with momentum 0.9 for
300 epochs with the default batch size 128, and the initial learning rate is set as 0.1 with a cosine
annealing learning rate scheduler to 0 (for the experiments of training with batch size 1, the initial
learning rate is linearly rescaled to 0.1

128 ). For DVS-CIFAR10, we apply dropout on all layers with
dropout rate as 0.1. As for the loss function, inspired by [14], we combine cross-entropy (CE) loss
and mean-square-error (MSE) loss, i.e. L(uN [t],y) = (1 − α)CE(uN [t],y) + αMSE(uN [t],y),
where α is taken as 0.05 for CIFAR10 and CIFAR100 while 0.001 for DVS-CIFAR10.

For ImageNet, models are trained by SGD with momentum 0.9 for 100 epochs with the default batch
size 256, and the initial learning rate is set as 0.1, which is decayed by 0.1 every 30 epochs. We set
the weight decay as 2× 10−5, and no dropout is applied. The loss function takes the cross-entropy
loss.

For DVS128-Gesture, models are trained by the Adam optimizer for 300 epochs with batch size 16,
and the initial learning rate is set as 0.001 with a cosine annealing learning rate scheduler to 0. No
dropout is applied. As for the loss function, we set α = 0.001 following DVS-CIFAR10.

The code implementation is based on the PyTorch framework [15], and experiments are carried out
on one NVIDIA GeForce RTX 3090 GPU.

D Additional Experiment Results

D.1 Firing Rate Statistics on ImageNet
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Figure 1: The average firing rates for the model trained by OTTTA on ImageNet.

In this section, we supplement the firing rate statistics of the NF-ResNet-34 model trained by OTTTA

on ImageNet, as shown in Fig. 1. Overall the firing rate is around 0.24 and with 6 time steps each
neuron averagely generate 1.46 spikes. Note that we can also reduce the time steps to realize a
trade-off between accuracy and energy, as shown in Fig. 3 in Section 5.5. For example, with 2 time
steps each neuron only averagely generate 0.48 spikes, with around 2.5% accuracy drop.

D.2 Comparison between OTTT and BPTT with Feedback Connections

In this section, we supplement the results to compare the performance of OTTT and BPTT with
feedback connections. As shown in Table 1, feedback connections can improve the performance for
both OTTT and BPTT, and the improvement of OTTT from feedback connections is more significant
than that of BPTT.
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Table 1: Performance on CIFAR-100 for VGG and VGG-F trained by OTTTO and BPTT.
Method Network structure Params Mean±Std (Best)

OTTTO (ours) VGG 9.3M 71.05±0.06% (71.11%)
OTTTO (ours) VGG-F 9.6M 72.63±0.23% (72.94%)

BPTT VGG 9.3M 69.06±0.07% (69.15%)
BPTT VGG-F 9.6M (69.49%)

D.3 Experiments on Fully Recurrent Structures

In this section, we supplement an experiment to use a recurrent spiking neural network to classify the
Fashion-MNIST dataset [16]. The input is flattened as a vector with 784 dimensions, and is connected
to 400 spiking neurons with recurrent connections, which are then connected to a readout layer for
classification. We apply weight standardization for connection weights from inputs to hidden neurons.
Models are trained by 100 epochs with batch size 128 and SGD with momentum 0.9. The initial
learning rate is set as 0.1 with a cosine annealing learning rate scheduler to 0. Dropout is set as 0.2,
and weight decay is set as 5e-4 for BPTT and OTTTA while 1e-4 for OTTTO (since OTTTO update
more times for each iteration). As for the loss function, we set α = 0.05 following CIFAR-10. As
shown in Table 2, for this relatively simple model, the results of OTTT and BPTT are similar and
BPTT performs slightly better.

Table 2: Performance on Fashion-MNIST.
Method Network structure Time steps Accuracy

ST-RSBP [17] 400 (R400) 400 90.00±0.14% (90.13%)
IDE [1] 400 (R400) 5 90.07±0.10% (90.25%)
BPTT 400 (R400) 5 90.58%

OTTTA (ours) 400 (R400) 5 90.36%
OTTTO (ours) 400 (R400) 5 90.40%

E Discussion of Limitations and Social Impacts

This work focus on online training of spiking neural networks, and therefore limits the usage of some
techniques on network structures such as batch normalization along the temporal dimension. In this
work, we adopt the scaled weight standardization as an alternative, which may require additional
regularization to fully catch up the best performance of batch normalization as shown in the results
of ANNs [4]. It may require exploration of more techniques that is specific for SNNs to improve
the performance and meanwhile compatible with more natural properties of SNNs, e.g. the online
property.

As for social impacts, since this work focuses only on training methods for spiking neural networks,
there is no direct negative social impact. And we believe that the development of successful energy-
efficient SNN models could broader its applications and alleviate the huge energy consumption by
ANNs. Besides, understanding and improving the training of biologically plausible SNNs may also
contribute to the understanding of our brains and bridge the gap between biological neurons and
successful deep learning.
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