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Abstract

Recent work has established that the conditional mutual information (CMI) frame-
work of Steinke and Zakynthinou (2020) is expressive enough to capture general-
ization guarantees in terms of algorithmic stability, VC dimension, and related com-
plexity measures for conventional learning (Harutyunyan et al., 2021, Haghifam
et al., 2021). Hence, it provides a unified method for establishing generalization
bounds. In meta learning, there has so far been a divide between information-
theoretic results and results from classical learning theory. In this work, we take a
first step toward bridging this divide. Specifically, we present novel generalization
bounds for meta learning in terms of the evaluated CMI (e-CMI). To demonstrate
the expressiveness of the e-CMI framework, we apply our bounds to a representa-
tion learning setting, with n samples from n̂ tasks parameterized by functions of
the form fi ◦ h. Here, each fi ∈ F is a task-specific function, and h ∈ H is the
shared representation. For this setup, we show that the e-CMI framework yields a
bound that scales as

√
C(H)/(nn̂) + C(F)/n, where C(·) denotes a complexity

measure of the hypothesis class. This scaling behavior coincides with the one
reported in Tripuraneni et al. (2020) using Gaussian complexity.

1 Introduction

Meta learning, sometimes referred to as learning to learn, is a process by which performance on
a new machine learning task is increased by using knowledge acquired from separate, but related,
tasks [1, 2]. Concretely, the meta learner Â has access to training data from several different tasks,
which are embedded in a common task environment, and aims to extract information from this data.
The goal is to use this information to improve the performance of a base learner A on a new task
from the same task environment. For instance, the task environment can consist of different image
classification tasks, and the goal of the meta learner is to learn a shared representation for the tasks or
to find suitable hyperparameters for a base learner performing image classification.

As in conventional learning, a central goal in meta learning is to bound the gap between the loss on the
training data and the population risk on unseen data. Two current approaches for achieving this goal
are: i) to use techniques from classical learning theory to obtain minimax performance guarantees,
or ii) to use information-theoretic methods to obtain algorithm-, data- and distribution-dependent
guarantees. So far, these two lines of work have evolved largely separately. In this paper, we take
some steps toward unifying them. Specifically, we: i) derive new, tighter information-theoretic
generalization bounds for meta learning, and ii) demonstrate that these bounds are expressive enough
to recover bounds for meta learning from classical learning theory. To concretize the discussion in
this introduction, we assume that the meta learner outputs a member h of a function class H on the
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basis of n samples from n̂ different tasks, and that a base learner selects a member f of a function
class F , on the basis of the output of the meta learner and n samples from a given task.

Classical learning theory for meta learning. The theoretical analysis of the benefits of meta
learning in terms of loss bounds dates back to [3], where the notion of task environment was formally
introduced. More recently, for the setting of representation learning, [4, Thm. 5] derived a risk bound
that scales as1

√
C(H)/n̂ +

√
C(F)/n, where C(·) denotes a complexity measure of the function

class. This demonstrates the benefit of meta learning for tasks that share a common environment.
Indeed, in the conventional single-task learning scenario, the n samples from a given task need to be
used for learning h and f simultaneously, leading to a

√
C(H×F)/n bound. The bound provided

in [4, Thm. 5] was later improved by [5] to a scaling of
√

C(H)/(nn̂) + C(F)/n. This improved
scaling, where C(H) decays with the product nn̂, confirms the intuition that all of the nn̂ samples
that are observed are informative at the environment level. Meta learning has also been extensively
studied in several special cases. For instance, [6, 7, 8] study a setting with linear features and task
mappings, while [9, 10] consider an online convex optimization setting. In this paper, we will mainly
focus on the representation learning setting.

Information-theoretic generalization bounds. For conventional learning, the study of information-
theoretic bounds was initiated by [11, 12], where the average generalization gap of a learning
algorithm is bounded in terms of the information that the algorithm reveals about the training data.
At its heart, this line of work relies on a change of measure technique that relates the training loss
to the population loss. While the first information-theoretic bounds were given in terms of the
mutual information between the output of the learning algorithm and the full training data, recent
works provide bounds in terms of the disintegrated mutual information between the loss that the
algorithm incurs on a single sample pair and a selection variable indicating which sample is used
for training, given a supersample containing both the training and test data. These developments
are due to the samplewise approach of [13], the disintegration introduced in [14], the evaluated
conditional mutual information (e-CMI) notion from [15], and combinations and extensions of these
from [16, 17, 18, 19, 20]. This line of work is also intimately related to PAC-Bayesian generalization
bounds [21, 22], where the generalization gap, averaged over the learning algorithm, is bounded with
high probability over the data in terms of a KL divergence. This is explored further in [23, 24].

Information-theoretic analysis of meta learning. Recently, information-theoretic generalization
bounds have also been applied to meta learning [25, 26, 27]. In parallel, a PAC-Bayesian analysis
of meta learning has also been developed [28, 29, 30, 31, 32, 33]. Generalization bounds obtained
via information-theoretic methods have also been used as training objectives in order to improve
performance [30, 34]. The quantity of interest in meta learning is the meta-population loss, which is
the population loss evaluated on a task that was not observed during the meta learning phase. While
this quantity is unknown, the meta learner has indirect information about it through the observed
meta-training loss, which is the loss that the meta learner incurs on the training samples from each of
the observed tasks during the meta learning phase. The standard approach in the information-theoretic
and PAC-Bayesian analysis of meta learning consists of two steps. The first step involves bounding
the difference between the meta-training loss and a suitably defined auxiliary loss. The second step
involves bounding the difference between the meta-population loss and the auxiliary loss. The two
natural candidates for this auxiliary loss are the population loss of an observed task and the training
loss for an unobserved task. One of these steps (the first or second, depending on the choice of the
auxiliary loss) is purely at the task level, while the other is purely at the environment level. This
makes it possible to view each of these steps as a conventional learning problem, so that a standard
information-theoretic generalization bound can be applied for each step. By the use of the triangle
inequality, the two bounds are then combined to obtain a bound on the meta-population loss in terms
of the meta-training loss. We will refer to this procedure as a two-step derivation. An alternative
approach was recently used by [26], where a one-step procedure was employed. Rather than relying
on an auxiliary loss, [26] immediately bounds the difference between the meta-population loss and the
meta-training loss in terms of a mutual information that captures both task level and environment level

1In the interest of brevity, we suppress logarithmic factors throughout this section.
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dependencies. The environment and task level dependencies can then be obtained by decomposing
this mutual information. The resulting bound turns out to have a better scaling with n̂ than the
two-step bounds. However, the information-theoretic analyses of meta learning reviewed so far do
not provide any rigorous characterization of the scaling behavior of the bounds. In particular, the
dependence of the information measures on the sample size is typically ignored. This precludes a
direct comparison between these information-theoretic bounds and classical learning theory results.

Contributions. Focusing on the meta learning setup, we present novel information-theoretic
bounds based on the e-CMI framework and demonstrate how to recover minimax results from
classical learning theory via these bounds. Our specific contributions are as follows. In Section 3.1,
we derive bounds for the average generalization error in terms of the disintegrated, samplewise e-CMI
of the meta learner and base learner: in Theorem 1 and 2, we provide square-root bounds, which
are shown to be tighter than results in the literature; in Theorem 3, we derive novel bounds in terms
of the binary KL divergence. For low values of the training loss, the binary KL bounds display a
more favorable dependence on the number of data samples than the square-root bounds. Next, in
Section 3.2, we extend these average bounds to obtain high-probability generalization guarantees.
This is necessary to perform comparisons with high-probability bounds from classical learning
theory. Finally, in Section 4, we demonstrate the expressiveness of our bounds by applying them to a
representation learning setting. Under certain assumptions about the hypothesis classes, we provide
upper bounds on the information measures that appear in our bound in terms of complexity measures.
The results that we obtain via this procedure display a scaling behavior that coincides with the one
reported in [5]. This demonstrates that the e-CMI framework is expressive enough to recover the
scaling behavior of generalization guarantees for meta learning obtained via classical learning theory.

2 Problem Setup and Notation

We now introduce the meta learning setup that we consider throughout the paper, as well as the
necessary notation for stating our results. Similar to [3], we consider a task environment formulation
that includes the representation learning setting of [4, 5] as a special case.

Our meta learning setup involves the following quantities. We consider a task distribution D on the
task space T . For a given task τ ∈ T , there is a corresponding in-task distribution Dτ on the sample
space Z . The goal of the meta learner is to output a meta hypothesis U ∈ U . This is done on the
basis of n samples from n̂ tasks. Formally, the meta learner is a mapping Â : Zn×n̂ × R̂ → U ,
where the random variable R̂ ∈ R̂ captures the potential stochasticity of the learner. The goal of the
base learner is to output a hypothesis W ∈ W , given the output of the meta learner and n samples
from a specific task. Formally, the base learner is a mapping A : Zn ×R× U → W . The random
vector R=(R1, . . . , Rn̂)∈Rn̂ has entries that capture the potential stochasticity of each base learner.
The entries are independent from the data and assumed to be identically distributed.2 Here, the
spaces U and W may be function spaces or parameter spaces, depending on the learning algorithms.

Within each task, the training set for the base learner is randomly formed from a supersample
according to the conditional mutual information (CMI) framework of [15]. Specifically, for a given
task τ , let Zτ ∈Zn×2 denote the supersample, which is an n×2 matrix with elements generated
independently from Dτ . For convenience, we index the two columns of Zτ by 0 and 1 and the rows
by 1,. . ., n. The training set Zτ

S is formed on the basis of a membership vector S=(S1, . . . , Sn),
with entries generated independently from a Bern(1/2) distribution. More precisely, the jth element
of Zτ

S is given by [Zτ
S ]j =Zτ

j,Sj
, i.e., the Sj th element from the jth row of Zτ . Furthermore, we

let −S=(1 − S1, . . . , 1 − Sn) denote the modulo-2 complement of S, which we use to form the
test set Zτ

−S , whose jth element is given by [Zτ
−S ]j=Zτ

j,−Sj
. With this construction, we randomly

assign each sample in the supersample to either the training set or test set with equal probability.

We now describe the meta-supersample Z, which contains 2n samples from 2n̂ tasks, as in the
meta-learning extension of the CMI framework provided in [35]. Throughout, we let i ∈ {1, . . . , n̂}
denote a task index, j ∈ {1, . . . , n} denote a sample index, and k, l ∈ {0, 1} denote binary indices

2While identical distributions are not necessary for our results, this assumption simplifies the presentation.
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Figure 1: A graphical representation of our notation. In this example, the meta-supersample contains
two task pairs: Z1, which is marked in blue, and Z2. In turn, Z1 consists of the two in-task
supersamples Z1,0 and Z1,1, which is marked in brown. Next, Z1,1 consists of the four sample
pairs Z1,1

j , where j = 1, . . . , 4. In the figure, Z1,1
1 is marked in purple. Finally, Z1,1

1 consists of
a pair of samples, Z1,1

1,0 and Z1,1
1,1 . When a binary vector is used as subscript or superscript, this

indicates that we should enumerate the meta-supersample according to that vector. To illustrate this,
consider the construction of the meta-training set ZŜ

S . The meta-training set is formed on the basis
of the meta-subset choice Ŝ and the observed-task subset choice SŜ . For instance, from the first
task-pair, Ŝ1 = 1 indicates that we should select task 1. Then, from the first sample pair in this
task, S1,Ŝ1 = 0 indicates that we should select sample 0, which is Z1,1

1,0 , marked in green. Repeating
this for each sample pair in the in-task supersample Z1,1, we can identify the remaining elements
of Z1,Ŝ1

S1 . This procedure is performed for each task index until all samples of ZŜ
S are identified. The

meta-test set Z−Ŝ
−S is formed by an analogous procedure, but is now based on −Ŝ and −S−Ŝ . The

entries from the meta-supersample that are selected for Z−Ŝ
−S are marked in orange.

indicating task membership and sample membership respectively. Formally, the meta-supersample Z
can be viewed as a data structure with 4nn̂ elements. In Figure 1, we illustrate Z as an n × 4n̂
matrix for the case of n̂ = 2 task pairs and n = 4 sample pairs for each task. We decompose Z
as (Z1, . . . , Zn̂), where each element can be seen as a task pair. Specifically, the pair Zi can be
decomposed as (Zi,0, Zi,1), where each element is a task-specific supersample as described above.
The task-specific supersamples are Zi,k = (Zi,k

1 , . . . , Zi,k
n ), where each element is a pair of data

samples. Specifically, each sample pair is Zi,k
j = (Zi,k

j,0 , Z
i,k
j,1 ), where Zi,k

j,l ∈ Z . The elements
of Z are generated as follows. First, we generate τi,k ∼ D. Then, we independently generate the
samples Zi,k

j,l ∼ Dτi,k . This is repeated for all indices to form Z.

Finally, we describe how the meta-training data is selected from the meta-supersample Z. This
is done on the basis of the meta-membership vector Ŝ and the in-task membership vector S.
Specifically, the meta-membership vector Ŝ = (Ŝ1, . . . , Ŝn̂) is an n̂-dimensional vector, while the
sample membership vector S = (S1,0, S1,1, . . . , Sn̂,0, Sn̂,1) is a collection of 2n̂ vectors, where
each Si,k = (Si,k

1 , . . . , Si,k
n ) is an n-dimensional vector. The elements of all these vectors are

generated independently from a Bern(1/2) distribution. For any Bernoulli matrix X , we let −X
denote its elementwise complement modulo 2, i.e., 1−X , where 1 is the all-one matrix.
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These membership vectors are used to form the meta-training set as follows. We use the convention
that, when a binary vector is used as a subscript or superscript of Z, this indicates that we should
enumerate over this vector. Using this convention, the training set for the (i, k)th task is constructed
as Zi,k

Si,k = (Zi,k

1,S
i,k
1

, . . . , Zi,k

n,S
i,k
n

). We will use the shorthands Zi,k
Si = Zi,k

Si,k and Zi,k
1,Si

j
= Zi,k

1,Si,k
j

.

The test set for the (i, k)th task Zi,k
−Si is constructed analogously, but on the basis of −Si,k. The full

meta-training set is ZŜ
S =(Z1,Ŝ1

S1,Ŝi
, . . . , Z

n̂,Ŝn̂

Sn̂,Ŝn̂
), and the meta-test set Z−Ŝ

−S is defined analogously.
With this construction, each task in the meta-supersample is assigned to either the meta-training set
or the meta-test set with equal probability. Then, as before, the samples within each task are assigned
to an in-task training set or test set with equal probability. The meta-training set consists of training
samples within training tasks, while the meta-test set consists of test samples within test tasks.

We denote the output of the meta learner as U = Â(ZŜ
S , R̂) ∈ U and the output of the base learner

for task (i, k) as W i,k = A(Zi,k
Si , Ri, U) ∈ W . The performance of the learners is evaluated through

a loss function ℓ : W × Z → [0, 1]. We denote the losses that the meta learner and base learner
induce on the meta-supersample Z by λ, which inherits the subscript and superscript notation that
we described for Z. Thus, we have λi,k

j,l = ℓ(W i,k, zi,kj,l ). In other words, λi,k
j,l is the loss induced on

the (j, l)th sample in the (i, k)th task.

On the basis of the loss matrix λ and the membership vectors Ŝ and S, we can compute four different
losses. The main quantity that we are interested in bounding is the average meta-population loss LD,
which is the loss on test data for unobserved tasks. The quantity that the meta learner has access to is
the average meta-training loss, L̂, which is the training loss for observed tasks. The other two losses
are the average auxiliary test loss, L̄, which is the loss on test data for observed tasks, and the average
auxiliary training loss L̃, which is the loss on training data for unobserved tasks. In the two-step
derivations, one of these two quantities is used as the auxiliary loss. These four losses are given by

LD =
1

nn̂

n̂,n∑
i,j=1

Eλi
j ,Z

[
λi,−Ŝi

j,−Si
j

]
, L̂ =

1

nn̂

n̂,n∑
i,j=1

Eλi
j ,Z

[
λi,Ŝi

j,Si
j

]
(1)

L̄ =
1

nn̂

n̂,n∑
i,j=1

Eλi
j ,Z

[
λi,Ŝi

j,−Si
j

]
, L̃ =

1

nn̂

n̂,n∑
i,j=1

Eλi
j ,Z

[
λi,−Ŝi

j,Si
j

]
. (2)

Finally, we end this section by introducing some information-theoretic quantities that appear in our
bounds. First, let P and Q be two probability measures such that P is absolutely continuous with
respect to Q. The KL divergence between P and Q is denoted by D(P ||Q). For the special case
where P and Q are Bernoulli distributions with parameters p and q, we let

d(p || q) = D(P ||Q) = p log

(
q

p

)
+ (1− p) log

(
1− p

1− q

)
. (3)

We refer to d(p || q) as the binary KL divergence. The mutual information between the random
variables X and Y is given by I(X;Y ) = D(PXY ||PXPY ), where PXY is the joint distribution
of X and Y and PX and PY are the corresponding marginals. The disintegrated mutual information
between X and Y given a third random variable Z is given by IZ(X;Y ) = D(PXY |Z ||PX|ZPY |Z),
where PXY |Z is the conditional joint distribution of X and Y given Z and PX|ZPY |Z is the product
distribution formed from the corresponding marginals. The expectation over Z of the disintegrated
mutual information is the conditional mutual information I(X;Y |Z) = EZ

[
IZ(X;Y )

]
.

3 Generalization Bounds for Meta Learning with e-CMI

In this section, we present generalization bounds in terms of the e-CMI of the meta learner and base
learner. In Section 3.1, we derive average square-root bounds that tighten results from [26, 35], as well
as novel binary KL bounds. In Section 3.2, we extend these results to obtain novel, high-probability
information-theoretic bounds for meta learning. In Section 4, we demonstrate the expressiveness of
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the e-CMI framework by using the bounds from this section to recover generalization guarantees
from classical learning theory for representation learning.

3.1 Average Bounds

In Theorem 1, we present a square-root bound for the average generalization error obtained through a
two-step derivation. Specifically, one step consists of bounding the unobserved training loss L̃ in
terms of the observed training loss L̂, and the second step bounds the meta-population loss LD in
terms of L̃. Chaining these two bounds, we obtain a bound on LD in terms of L̂. The bound depends
on the information captured by two random variables: the task-level variable λi,−Ŝi

j , which contains
the training loss and test loss for task (i,−Ŝi), as well as the environment-level variable λi

j,Si
j
, which

contains the training losses for both the observed task (i, Ŝi) and the unobserved task (i,−Ŝi). We
provide the proof of this result in Appendix A, along with the proofs of all other results in this paper.

Theorem 1 (Two-step square-root bound). Consider the setup described in Section 2. Then,∣∣∣LD−L̂
∣∣∣≤ 1

nn̂

n̂,n∑
i,j=1

EZ,Si
j

[√
2IZ,Si

j (λi
j,Si

j
; Ŝi)

]
+

1

nn̂

n̂,n∑
i,j=1

EZ,Ŝi

[√
2IZ,Ŝi(λi,−Ŝi

j ;Si,−Ŝi

j )

]
. (4)

The first term captures the environment-level generalization error while the second term captures the
task-level generalization error. In order to clarify the relation between Theorem 1 and results from
the literature, we relax it by upper-bounding the disintegrated individual-sample e-CMI terms by
their integrated, full-sample, parametric CMI counterparts.

Corollary 1. Theorem 1 implies that

∣∣∣LD − L̂
∣∣∣ ≤

√
2I(U ; Ŝ|Z, S)

n̂
+

√
2I(W 1,−Ŝ1 ;S1,−Ŝ1 |Z, Ŝ1)

n
. (5)

This recovers the result of [35, Thm. 1], demonstrating that Theorem 4 is tighter.

Next, we present an alternative square-root bound that is obtained through a one-step derivation. This
bound depends on the information captured by the random variable λi

j , which contains the training
and test loss for both the observed and unobserved tasks.

Theorem 2 (One-step square-root bound). Consider the setup described in Section 2. Then,∣∣∣LD − L̂
∣∣∣ ≤ 1

nn̂

n̂,n∑
i,j=1

EZ

[√
2IZ(λi

j ; Ŝi, Si
j)

]
. (6)

Again, to compare this bound to results in the literature, we relax it by upper-bounding the disinte-
grated individual-sample e-CMI terms by their integrated, full-sample, parametric counterparts.

Corollary 2. Let W i = (W i,0,W i,1) and W = {W i}n̂i=1. Then,

∣∣∣LD − L̂
∣∣∣ ≤

√
2I(W ; Ŝ, S|Z)

nn̂
≤

√
2I(U ; Ŝ, S|Z) + 2n̂I(W 1;S1|Z,U)

nn̂
(7)

≤

√
2I(U ;ZŜ

S ) + 2n̂I(W 1;Z1
S1 |U)

nn̂
. (8)

Up to some constant factors, this recovers the result in [26, Thm. 5.1]. Note that, if Â or A are
deterministic learning algorithms with continuous outputs, the mutual information terms in (8) are
unbounded. In contrast, the CMI terms in (7) are always finite. This is discussed in more detail
in [15]. Furthermore, the bound in (7) compares favorably to [35, Thm. 1], since it decays with the
product nn̂ rather than with n and n̂ separately. This improvement is due to the one-step derivation.
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Finally, in Theorem 3, we present two novel bounds in terms of the binary KL divergence. The
advantage of these bounds, as compared to the square-root bounds in Theorem 1 and 2, is that they
have a more favorable dependence on the number of samples for low training losses. We demonstrate
this improved rate for representation learning in Section 4.

Theorem 3 (Binary KL bounds). For m ≥ 2, q ∈ [0, 1] and c > 0, let

d−1
m (q, c) = sup

{
p ∈ [0, 1] : d

(
q || q + p

m

)
≤ c

}
. (9)

Then,

LD ≤ d−1
2

d−1
2

L̂,
1

nn̂

n̂,n∑
i,j=1

I(λi
j,Si

j
; Ŝi|Z, Si

j)

 ,
1

nn̂

n̂,n∑
i,j=1

I(λi,−Ŝi

j ;Si,−Ŝi

j |Z, Ŝi)

 . (10)

Furthermore,

LD + L̄+ L̃ ≤ d−1
4

L̂,
1

nn̂

n̂,n∑
i,j=1

I(λi
j ; Ŝi, S

i
j |Z)

 . (11)

Interestingly, (11) provides a bound on the sum of the average meta-population loss LD, the test
loss on observed tasks L̄, and the training loss on unobserved tasks L̃. Due to the nonnegativity of
the loss, we can obtain an explicit bound on LD by using the lower bound L̄ + L̃ ≥ 0, which is a
sensible relaxation when LD is the dominant term. By this relaxation, we weaken the bound at most
by a constant factor. As previously mentioned, the bounds in Theorem 3 can have a more favorable
dependence on the number of samples than the square-root bounds in Theorem 1 and 2 when the
training loss is low. In the following corollary, we present a bound on LD for the case where L̂ = 0.

Corollary 3. Assume that L̂ = 0. Then, Theorem 3 implies that

LD ≤ 4− 4 exp

− 1

nn̂

n̂,n∑
i,j=1

I(λi
j ; Ŝi, S

i
j |Z)

 ≤ 4

nn̂

n̂,n∑
i,j=1

I(λi
j ; Ŝi, S

i
j |Z). (12)

Compared to the bound in Theorem 2, there is no square root in Corollary 3. As we show in Section 4,
this can lead to a faster rate of decay with the number of samples.

3.2 High-probability Bounds

In the previous section, we provided bounds on the average generalization error. However, meta
learning bounds obtained via classical learning theory are typically high-probability bounds [4, 5]. In
order to assess the expressiveness of the e-CMI framework in terms of its ability to recover these
results, we now extend the bounds from Section 3.1 to the high-probability setting. For this, we need
some additional notation. We let LD(Z, Ŝ, S) and L̂(Z, Ŝ, S) denote the meta-population loss and
training loss given that the meta-training set is constructed from (Z, Ŝ, S). Specifically,

LD(Z, Ŝ, S) =
1

nn̂

n̂,n∑
i,j=1

ER̂,Ri

[
ℓ(A(Zi,−Ŝi

Si , Ri, Â(ZŜ
S , R̂)), Zi,−Ŝi

j,−Si
j
)
]
, (13)

L̂(Z, Ŝ, S) =
1

nn̂

n̂,n∑
i,j=1

ER̂,Ri

[
ℓ(A(Zi,Ŝi

Si , Ri, Â(ZŜ
S , R̂)), Zi,Ŝi

j,Si
j
)
]
. (14)

We now present a high-probability version of the two-step square root bound in Theorem 1. To
simplify the presentation, we omit explicit constants and assume that Â and A are indifferent to the
order of the data samples. The theorem statement is provided in more general form in Appendix A.
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Theorem 4 (High-probability two-step square-root bound). Let Q1,S1 denote the conditional distri-
bution of λ1,S1

given (Z, Ŝ, S), and let P1,S1
denote EŜ [Q1,S1

]. Furthermore, let Q1,−Ŝ1 denote the

conditional distribution of λ1,−Ŝ1 given (Z, Ŝ1, S
1,−Ŝ1), and let P 1,−Ŝ1 denote E

S1,−Ŝ1

[
Q1,−Ŝ1

]
.

Then, there exist constants C1, C2 such that, with probability at least 1−δ under the draw of (Z, Ŝ, S),

∣∣∣LD(Z, Ŝ, S)− L̂(Z, Ŝ, S)
∣∣∣ ≤ C1

√
D(Q1,S1

||P1,S1
) + log(n

√
n̂

δ )

n̂

+ C2

√
D(Q1,−Ŝ1 ||P 1,−Ŝ1) + log(

√
n
δ )

n
. (15)

The KL divergences in (15) can be interpreted as pointwise e-CMIs. Indeed,

EZ,Ŝ,S [D(Q1,S1
||P1,S1

)] = I(λ1,S1
; Ŝ|S,Z), (16)

EZ,Ŝ,S

[
D(Q1,−Ŝ1 ||P 1,−Ŝ1))

]
= I(λ1,−Ŝ1 ;S1,−Ŝ1 |Z, Ŝ1). (17)

Finally, we present a high-probability version of the one-step square root bound in Theorem 2.
Theorem 5 (High-probability one-step square-root bound). Let Q denote the conditional distribution
of λ given (Z, Ŝ, S), and let P denote EŜ,S [Q]. Then, with probability at least 1− δ under the draw

of (Z, Ŝ, S), ∣∣∣LD(Z, Ŝ, S)−L̂(Z, Ŝ, S)
∣∣∣ ≤
√√√√2

(
D(Q ||P ) + log(

√
nn̂
δ )
)

nn̂− 1
. (18)

Again, the KL divergence can be interpreted as a pointwise e-CMI, since

EZ,Ŝ,S [D(Q ||P )] = I(λ; Ŝ, S|Z). (19)

4 Expressiveness of the Bounds

In Section 3, we presented several new information-theoretic generalization bounds, and demonstrated
that they improve upon known bounds from the literature. We now turn our focus to the expressiveness
of the e-CMI framework. In particular, we show that the bounds from Section 3 can be used to
recover generalization guarantees for meta learning from classical learning theory. Specifically, we
consider the representation learning setting that is analyzed in [5]. We use the following notation.
First, the sample space is the product of an instance space and label space: Z = X × Y . The aim of
the meta learner is to find a representation hU ∈ H, while the base learner outputs a task-specific
function fW ∈ F . Composing these functions, we obtain the mapping fW ◦ hU : X → Y .

4.1 Minimax Generalization Bounds

To obtain explicit minimax bounds, we assume that H has finite Natarajan dimension dN and that F
has finite VC dimension dVC. This allows us to derive bounds on the entropy of the representations
and predictions that the meta learner and base learner induce on the meta-supersample. This, in turn,
leads to bounds on the e-CMI terms that appear in the bounds in Section 3. In the following corollary,
we present the bounds that are obtained by bounding the e-CMI terms in Theorem 1 and 2. These
hold for any learner that outputs hypotheses from the specified classes.
Corollary 4. Assume that the range of H has cardinality N , that the Natarajan dimension of H
is dN , and that the VC dimension of F is dVC. Also, let 2n ≥ dVC + 1 and 2n̂ ≥ dN + 1. Then,

∣∣∣LD−L̂
∣∣∣ ≤

√√√√2dN log
((

N
2

)
2en̂
dN

)
n̂

+

√√√√2dVC log
(

2en
dVC

)
n

, (20)
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∣∣∣LD − L̂
∣∣∣ ≤

√√√√2dN log
((

N
2

)
4enn̂
dN

)
+ 4n̂dVC log

(
2en
dVC

)
nn̂

. (21)

Corollary 4 establishes that, for the average setting, we can use the bounds in Theorems 1 and 2 to
obtain minimax bounds for function classes with bounded Natarajan and VC dimensions. Note that,
in the upper-bound of (20), we have fully decoupled the complexity of the two function classes. This
is made possible by the fact that we used L̃ as the auxiliary loss in the derivation of Theorem 1, rather
than L̄. We discuss this in more detail in Appendix A.

Next, we consider the interpolating setting, where L̂ = 0. Under this assumption, we demonstrate that
we can achieve a better rate of convergence with respect to the number of training samples. The result,
presented in the following corollary, relies on similarly bounding the e-CMI term in Corollary 3.

Corollary 5. Consider the setting of Corollary 4. Furthermore, assume that L̂ = 0. Then,

LD ≤
4dN log

((
N
2

)
4enn̂
dN

)
+ 8n̂dVC log

(
2en
dVC

)
nn̂

. (22)

The result in Corollary 5 demonstrates that, for the interpolating setting, the e-CMI framework
is expressive enough to yield a bound that, ignoring logarithmic factors, decays as 1/(nn̂), often
referred to as a fast rate.

Finally, noting that the bounds in [4] and [5] are high-probability rather than average bounds, we also
derive high-probability generalization bounds. In order to achieve this, we need probabilistic upper
bounds on the KL divergences that appear in Theorem 4 and 5, similar to how the e-CMI terms were
bounded for Corollary 4 and 5. The resulting bounds are presented in the following corollary.
Corollary 6. Consider the setting of Corollary 4. Then, there exist constants C1, C2, C3 such that,
with probability at least 1− δ under the draw of (Z, Ŝ, S),

∣∣∣LD(Z,Ŝ,S)−L̂(Z,Ŝ,S)
∣∣∣≤C1

√√√√dN log
((

N
2

)
n̂
dN

)
+log

(
n
√
n̂

δ

)
n̂

+C2

√√√√dVC log
(

n
dVC

)
+log

(√
n
δ

)
n

,(23)

∣∣∣LD(Z, Ŝ, S)− L̂(Z, Ŝ, S)
∣∣∣ ≤ C3

√√√√dN log
((

N
2

)
nn̂
dN

)
+ n̂dVC log

(
n
dVC

)
+ log

(√
nn̂
δ

)
nn̂

. (24)

We now see that, suppressing logarithmic factors, the upper bound in (25) scales as
√
C(H)/n̂ +√

C(F)/n, whereas the upper bound in (24) scales as
√
C(H)/(nn̂) + C(F)/n. This matches the

rates obtained by [4] and [5], respectively, demonstrating that the e-CMI framework, combined with
the one-step approach, is expressive enough to recover the scaling of these results.

Note that there are some differences between these results and the ones in [4, 5]. First, while the
complexity measures that we use are related to the Natarajan and VC dimension, the results in [5] are
given in terms of Gaussian complexity. Furthermore, while [4, 5] provide excess risk bounds for a
fixed target task with m training samples, the bounds in Corollary 6 are generalization bounds for a
randomly drawn task. In Section 4.2, we extend our analysis to derive excess risk bounds for a fixed
target task.

4.2 Excess Risk Bounds

In order to derive excess risk bounds for a specific target task, as is done in [5], we need to assume
that the meta learner Â and the base learner A are empirical risk minimizers. This is in contrast to
all previous bounds in this paper, which apply to any learning algorithms. Furthermore, we need a
notion of oracle algorithms, which minimize the population loss. Finally, we need to assume that the
tasks contained in the meta-supersample satisfy a notion of task diversity. Intuitively, this means that,
given the output of the empirical risk-minimizing meta learner, the performance of the oracle base
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learner on the tasks in the meta-supersample gives a reasonable indication of the performance of the
oracle base learner on any possible task. Due to space constraints, we state here an informal version
of a high-probability excess risk bound for a specified target task based on the one-step square-root
generalization bound in Corollary 6. A precise statement of this result, along with its proof, is given
in Appendix B.

Corollary 7 (Informal). Consider the setting of Corollary 6 and a fixed task τ0. Let Z0
S0 ∈ Zm be

a vector of m samples generated independently according to the data distribution Dτ0 for task τ0.
Let Â and A be empirical risk minimizers. Let L0(Z, Ŝ, S, Z

0
S0) denote the population loss on task τ0

when applying Â to ZŜ
S and A to (Z0

S0 , Â(ZŜ
S )), and let L∗

0 denote the smallest population loss for
task τ0 that can be obtained using functions from F and H. Finally, assume that the supersample
satisfies a task-diversity assumption with parameters ν, ϵ. Then, there exist constants C1 and C2 such
that, with probability at least 1− δ under the draw of (Z, Ŝ, S, Z0

S0),

L0(Z, Ŝ, S, Z
0
S0)− L∗

0 ≤ C1

√√√√dVC log
(√

m
dVC

)
+log

(√
m
δ

)
m

+ C2ν
−1

√√√√dN log
((

N
2

)
nn̂
dN

)
+ n̂dVC log

(
n
dVC

)
+ log

(√
nn̂
δ

)
nn̂

+ ϵ. (25)

The bound in (25) displays the same scaling as the excess risk bound in [5].

It is possible to derive high-probability bounds based on the two-step square-root generalization
bound in Corollary 6 by suitably substituting the two-step bound in the proof of Corollary 7. The
same can be done using the bounds that are given in terms of information measures, and average
excess risk bounds can also be derived by an analogous procedure. Finally, we note that it is possible
to derive excess risk bounds for a new, random task, rather than a specified target task, without
assuming task diversity. This is done in Corollary 8 in Appendix B.

5 Conclusions

In this paper, we derived new generalization bounds for meta learning using e-CMI, which improve
upon information-theoretic bounds found in the literature. By considering a representation learning
setting, we demonstrated that e-CMI bounds obtained via a conventional two-step approach lead to
rates that coincide with those found in [4]. In contrast, we showed that by combining the e-CMI
framework with a one-step approach, we recover the more favourable scaling found in [5]. Note that,
while the bounds in [5] are uniform over the hypothesis class, the information-theoretic bounds that
we derive are inherently algorithm- and data-dependent. As a consequence, they are nonvacuous when
applied to settings such as classification with deep neural networks [20]. The algorithm-dependence
and expressiveness of our bounds indicate that they can be developed further to guide algorithm
design. However, no recipe for this is provided in this paper. It should also be noted that the
complexity measures that we consider differ from the Gaussian complexity in [5]. An intriguing topic
for further study is to clarify the connection between e-CMI and Gaussian complexity.
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