
A List of Symbols

The following table contains a list of symbols that are frequently used in the main paper as well as in
the following supplementary material.

Basics
11{·} indicator function
N set of natural numbers (without 0), i.e., N = {1, 2, 3, . . . }
R set of real numbers
D observation domain (categorical or numerical)
A = [n] set of arms
n number of arms
k maximal possible subset size
B budget for the learner
Q≤k all subsets of A of size ≤ k: {Q ⊆ A | 2 ≤ |Q| ≤ k}
Q≤k(i) all subsets inQ≤k which contain arm i: {Q ∈ Q≤k | i ∈ Q}
Q=k all subsets of A of size k : {Q ⊆ A | |Q| = k}
Q=k(i) all subsets of A of size k which contain arm i : {Q ∈ Q=k | i ∈ Q}
oQ(t) observed feedback vector by querying Q for the t-th time

Modelling related
s relevant statistic for the decision making process
si|Q(t) statistics for arm i ∈ Q derived by the observed feedback at the t-th usage of query set Q
sQ(t) vector of statistics for all arms in the query set Q after its t-th usage: (si|Q)i∈Q(t)
Si|Q limit of the statistics for arm i in query set Q: limt→∞ si|Q(t)
i∗ best arm or generalized Condorcet winner: ∀Q ∈ Q≤k with i∗ ∈ Q it holds that

Si∗|Q > Sj|Q for any j ∈ Q\{i∗}
sBi (t) Borda score of arm i at time t:

∑
Q∈Q=k(i) si|Q(t)/|Q=k(i)|

SB
i limit Borda score of arm i: limt→∞ sBi (t)

i∗B generalized Borda winner: i∗B ∈ argmaxi∈A SB
i

nQ(t) number of times query set Q was used until time t
γi|Q(t) point-wise smallest non-increasing function bounding the difference |si|Q(t)−Si|Q| (rate

of convergence)
γ̄Q(t) maximal γi|Q(t) over all i ∈ Q
γ̄(t) maximal ¯γQ(t) over all Q ∈ Q≤k

γ−1
i|Q(α) quasi-inverse of γi|Q : min{t ∈ N | γi|Q(t) ≤ α}

γ̄−1
Q (t) minimal γi|Q(t) over all i ∈ Q

γ̄−1(t) minimal γQ(t) over all Q ∈ Q≤k

γ̂i(t) rate of convergence of the Borda score for arm i: 1
|Q=k(i)|

∑
Q∈Q=k(i)

γi|Q(t)

γ̂max
i,j (t) max{γ̂i(t), γ̂j(t)}.

∆i|Q gap of the limit statistic of arm i ∈ Q to the limit statistic of the generalized Condorcet
winner: |Si∗|Q − Si|Q| for any Q ∈ Q≤k(i) ∩Q≤k(i

∗)
S(l)|Q, ∆(l)|Q l-th order statistic of {Si|Q}i∈Q for l ∈ {1, 2, . . . , |Q|} and its gap ∆(l)|Q = Si∗|Q −

S(l)|Q
Algorithm related

f function from [k] to [k] specifying the nature of the arm elimination strategy
R,RA number of rounds of the learning algorithm (A)
Pr, P

A
r number of partitions of the learning algorithm (A) in round r

Ar,j j-th partition in round r
Ar(i

∗) the partition in round r containing i∗ (emptyset otherwise)
br budget used in round r for a partition
zA sufficient budget for learning algorithm A to return i∗ (or i∗B if A is ROUNDROBIN)
ROUNDROBIN the naïve algorithm introduced in Section C
CSE the generic combinatorial successive elimination algorithm (Algorithm 1)
CSWS the combinatorial successive winner stays algorithm resulting by using f(x) = 1 in CSE
CSR the combinatorial successive rejects algorithm resulting by using f(x) = x− 1 in CSE
CSH the combinatorial successive halving algorithm resulting by using f(x) = ⌈x/2⌉ in CSE
SH the successive halving algorithm for pure exploration settings in standard multi-armed

bandits (cf. [25])
GBW Generalized Borda winner
GCW Generalized Condorcet winner

15

B Proofs for Section 3

In this section, we prove the general lower bounds on the necessary budget for identifying the
generalized Condorcet winner (GCW), the generalized Borda winner (GBW) or the generalized
Copeland winner (GCopeW). For this purpose, let us first fix some further notation. If Alg is a
possibly probabilistic algorithm and s is fixed, we write Alg(s) for the output of Alg executed on
the instance s. We restrict ourselves only to algorithms whose output is solely determined by the
sequence of observations it has received as well as the corresponding statistics. Moreover, for
Q ∈ Q≤k, we write BQ(Alg, s) ∈ N ∪ {∞} for the number of times Alg queries Q when started
on instance s. Note that Alg(s) as well as BQ(Alg, s) and B(Alg, s) =

∑
Q∈Q≤k

BQ(Alg, s) are
random variables, because they depend on the innate randomness of Alg.
Given s, let us write GCW(s), GBW(s) and GCopeW(s) for the set of all GCWs, GBWs and
GCopeWs of s, respectively. In case |GCW(s)| = 1, |GBW(s)| = 1 resp. |GCopeW(s)| = 1, with
a slight abuse of notation, we may denote by GCW(s), GBW(s) resp. GCopeW(s) simply the only
GCW, GBW resp. GCopeW of s. Recall that the GCW, the GBWs and the GCopeWs of s only
depend on the limits S = (Si|Q)Q∈Q≤k,i∈Q with Si|Q = limt→∞ si|Q(t).

Definition B.1. Let Alg be a (possibly probabilistic) sequential algorithm.

(i) Alg solves PGCW(S,γ) if P(Alg(s) ∈ GCW(s)) = 1 for any s in S(S,γ).

(ii) Alg solves PGBW(S,γ) if P(Alg(s) ∈ GBW(s)) = 1 for any s in S(S,γ).

(iii) Alg solves PGCopeW(S,γ) if P(Alg(s) ∈ GCopeW(s)) = 1 for any s in S(S,γ).

B.1 Proof of Theorem 3.1 (i): Lower Bound for GCW Identification

The proof of (i) in Theorem 3.1 is prepared with the next lemma.
Lemma B.2. Let Alg be a deterministic solution to PGCW(S,γ) and s, s′ ∈ S(S,γ).

(i) If Alg(s) ̸= Alg(s′), then

∃Q ∈ Q≤k, i ∈ Q, t ∈ {1, . . . ,min{BQ(Alg, s), BQ(Alg, s′)}} : si|Q(t) ̸= s′i|Q(t).

(ii) If s and s′ coincide on {t < B′} and on Q̃ ⊆ Q≤k in the sense that

∀Q ∈ Q≤k,∀i ∈ Q,∀t < B′ : si|Q(t) = s′i|Q(t) (1)

and
∀Q ∈ Q̃,∀i ∈ Q,∀t ∈ N : si|Q(t) = s′i|Q(t), (2)

then Alg(s) ̸= Alg(s′) implies

∃Q ∈ Q≤k \ Q̃ : min{BQ(Alg, s), BQ(Alg, s′)} ≥ B′.

Proof. (i) To prove the contraposition, suppose that

∀Q ∈ Q≤k, i ∈ Q, t ∈ {1, . . . ,min{BQ(Alg, s), BQ(Alg, s′)}} : si|Q(t) = s′i|Q(t)
(3)

holds.
Claim 1: BQ(Alg, s) = BQ(Alg, s′) for any Q ∈ Q≤k.
Proof: Assume this was not the case. Let Q ∈ Q≤k be the first set, for which Alg exceeds
its budget on one of s, s′ but does not reach it on the other instance, and suppose w.l.o.g.
BQ(Alg, s) > BQ(Alg, s′). Since Alg has observed until this point exactly the same
feedback on s as on s′, this is a contradiction as Alg is deterministic. ■
Combining Claim 1 and (3) yields that Alg observes on s exactly the same feedback as on
s′ until its termination. Since Alg is deterministic, this implies Alg(s) = Alg(s′).

(ii) If Alg(s) ̸= Alg(s′), then (i) together with (2) yields

∃Q ∈ Q≤k \ Q̃, i ∈ Q, t ≤ min{BQ(Alg, s), BQ(Alg, s′)} : si|Q(t) ̸= s′i|Q(t),

16

and thus (1) implies

∃Q ∈ Q≤k \ Q̃ : min{BQ(Alg, s), BQ(Alg, s′)} ≥ B′.

Lemma B.2 is the main ingredient for the proof of Theorem 3.1, as we first analyze the lower bound
for deterministic algorithms and then apply Yao’s minimax principle [51] to infer the lower bound for
any randomized algorithm.

Proof of Theorem 3.1 (i). We split the proof into two parts.

Part 1: The statement holds in case Alg is a deterministic algorithm.
Abbreviate B′ := minQ∈Q≤k

minj∈Q γ
−1
j|Q

(
S(1)|Q−S(|Q|)|Q

2

)
. Fix a family {πQ}Q∈Q≤k

of per-
mutations πQ : Q 7→ Q such that SπQ(1)|Q = S(1)|Q holds for any Q ∈ Q≤k(1), and define
s = (si|Q(t))Q∈Q≤k,i∈Q,t∈N via

si|Q(t) :=

{
S(1)|Q+S(|Q|)|Q

2 , if t < B′,

SπQ(i)|Q, if t ≥ B′.

Regarding our assumption on S, GCW(s) = 1 holds by construction. For t < B′ ≤
γ−1
i|Q

(
S(1)|Q−S(|Q|)|Q

2

)
, which implies γi|Q(t) ≥

S(1)|Q−S(|Q|)|Q
2 , we have due to S(1)|Q ≥ Si|Q ≥

S(|Q|)|Q the inequality∣∣si|Q(t)− limt→∞ si|Q(t)
∣∣ = ∣∣∣∣S(1)|Q + S(|Q|)|Q

2
− Si|Q

∣∣∣∣
≤ max

{
S(1)|Q −

S(1)|Q + S(|Q|)|Q

2
,
S(1)|Q + S(|Q|)|Q

2
− S(|Q|)|Q

}
=
S(1)|Q − S(|Q|)|Q

2
≤ γi|Q(t)

for any i ∈ Q. This shows s ∈ S(S,γ).

For any l ∈ {2, . . . , n} define an instance sl = (sli|Q(t))Q∈Q≤k,i∈Q,t∈N such that sl·|Q(·) = s·|Q(·)
for any Q ∈ Q≤k with l ̸∈ Q and

sli|Q(t) :=

S(1)|Q+S(|Q|)|Q

2 , if t < B′,

S(1)|Q, if t ≥ B′ and i = l,

Sl|Q, if t ≥ B′ and i = argmaxj∈QSj|Q
si|Q(t), else,

for all Q ∈ Q≤k(l), i ∈ Q and t ∈ N. According to its definition, we have GCW(sl) = l, and
similarly as above one may check sl ∈ S(S,γ).

Since Alg solves PGCW(S,γ), it satisfies Alg(s) = 1 ̸= 2 = Alg(s2). Regarding that s and s2

coincide on {t < B′} and on {Q ∈ Q≤k | 1 ̸∈ Q or 2 ̸∈ Q} in the sense of (1) and (2), Lemma
B.2 (ii) assures the existence of some Q1 ∈ Q≤k with 1 ∈ Q1 and i1 := 2 ∈ Q1 such that
BQ1

(Alg, s) ≥ min{BQ1
(Alg, s), BQ1

(Alg, si1)} ≥ B′. Let F1 := [n] \ Q1 and fix an arbitrary
i2 ∈ F1. Then, Alg(s) = 1 ̸= i2 = Alg(si2) and since s and si2 coincide on {t < B′} and
{Q ∈ Q≤k | i2 ̸∈ Q}, Lemma B.2 (ii) yields the existence of some Q2 ∈ Q≤k with i2 ∈ Q2

such that BQ2
(Alg, s) ≥ min{BQ2

(Alg, s), BQ2
(Alg, si2)} ≥ B′. From i2 ∈ F1 = [n] \ Q1 and

i2 ∈ Q2 we infer Q1 ̸= Q2. With this, we define F2 := F1 \Q2 = [n] \ (Q1 ∪Q2).

Inductively, whenever Fl ̸= ∅, we may select an element il+1 ∈ Fl and infer from Lemma B.2
(ii), due to Alg(s) = 1 ̸= il+1 = Alg(sil+1) and the similarity of s and sil+1 on {t < B′}
and {Q ∈ Q≤k|il+1 ̸∈ Q}, the existence of a set Ql+1 ∈ Q≤k with il+1 ∈ Ql+1 such that
BQl+1

(Alg, s) ≥ B′, and define Fl+1 := Fl \ Ql+1. Then, il+1 ∈ Fl = [n] \ (Q1 ∪ · · · ∪ Ql)

17

and il+1 ∈ Ql+1 assure Ql+1 ̸∈ {Q1, . . . , Ql}. This procedure terminates at the smallest l′ such
that Fl′ = ∅, and Q1, . . . , Ql′ are distinct. Regarding that |Fl+1| − |Fl| ≤ |Ql| ≤ k for all
l ∈ {1, . . . , l′ − 1}, we have l′ ≥ ⌈nk ⌉. Consequently,

B(Alg, s) ≥
l′∑

l=1

BQl
(Alg, s) ≥

⌈n
k

⌉
B′

holds, which shows the claim for deterministic algorithms with regard to the definition of B′.

Part 2: The statement holds for arbitrary Alg.
Let A be the set of all deterministic algorithms3 and s be the instance from the first part. Write δs
for the probability distribution on {s}, which assigns s probability one, i.e., the Dirac measure on s.
Note that for any randomized algorithm Alg there exists a probability distribution P on A such that
Alg ∼ P . By applying Yao’s minimax principle [51] and using part one we conclude

E[B(Alg, s)] = EAlg′∼P [B(Alg′, s)] ≥ infAlg∈A Es′∼δs [B(Alg, s′)]

= infAlg∈AB(Alg, s) ≥
⌈n
k

⌉
B′,

where B′ is as in part one.

Remark B.3. (i) The above proof reveals even a stronger version of Theorem 3.1 (i). Indeed,
in the proof we explicitly construct n distinct instances s1 := s, . . . , sn ∈ S(S,γ) with
GCW(sl) = l for all l ∈ [n], and in fact show: Any (possibly random) algorithm Alg,
which is able to correctly identify the best arm for any s′ ∈ {s1, . . . , sn} (i.e., Alg does not
necessarily have to solve PGCW(S,γ)) fulfills

E [B(Alg, s)] ≥
⌈n
k

⌉
min

Q∈Q≤k

min
j∈Q

γ−1
j|Q

(
S(1)|Q − S(|Q|)|Q

2

)
.

(ii) Condition (iii) in the definition of S(S,γ) assures that the term S(1)|Q resp. S(|Q|)|Q in
our lower bound from Theorem 3.1 coincides with S′

(1)|Q resp. S′
(|Q|)|Q, when S′

i|Q :=

limt→∞ si|Q(t) for s ∈ S(S,γ).

B.2 Proof of Theorem 3.1 (ii): Lower Bound for GBW Identification

Recall that GBW(s) is the set of elements i ∈ [n], for which the limits Si|Q = limt→∞ si|Q(t) have
the highest Borda score

SB
i =

∑
Q∈Q=k(i)

Si|Q

|Q=k(i)|
=

∑
Q∈Q=k(i)

Si|Q(
n−1
k−1

) .

We call S = (Si|Q)Q∈Q≤k,i∈Q homogeneous if (S(1)|Q, . . . , S(|Q|)|Q) does not depend on Q. Thus,
if S is homogeneous, we may simply write S(l) for S(l)|Q for any Q ∈ Q=k.

The next two lemmata serves as a preparation for the proof of (ii) and (iii) in Theorem 3.1.

Lemma B.4. For anyW ⊆ Q=k we have
∑n

j=1 |Q=k(j) ∩W| = k|W|.

Proof of Lemma B.4. LetW ⊆ Q=k be fixed. For any Q = {i1, . . . , ik} ∈ Q=k ∩W we have that
Q ∈ Q=k(il) ∩W for any l ∈ [k], whereas Q ̸∈ Q=k(j) ∩W for any j ∈ [n] \ {i1, . . . , ik}. Hence,∑n

j=1
|Q=k(j) ∩W| = k

∣∣∣⋃n

j=1
(Q=k(j) ∩W)

∣∣∣ = k
∣∣∣(⋃n

j=1
Q=k(j)

)
∩W

∣∣∣ = k|W|.

Lemma B.5. For any W ′ ⊆ Q=k and W := Q=k \ W ′ with |W ′| < (1−1/n)k
k+n−2

(
n
k

)
there exists

j ∈ [n] \ {1} with |Q=k(j) ∩W| > |Q=k(1) ∩W ′|.
3At any time t ∈ N, a deterministic algorithm Alg ∈ A may either make a query Q ∈ Q≤k or terminate

with a decision X ∈ {1, . . . , n}. Thus, A is a countable set.

18

Proof of Lemma B.5. For j ∈ [n] \ {1} abbreviate aj := |Q=k(j) ∩W| − |Q=k(1) ∩W ′|. Due to

|W| =
(
n

k

)
− |W ′|

>

(
n

k

)
−
(
1− 1

n

)
k

k + n− 2

(
n

k

)
=

(
n

k

)
−
k
(
n
k

)
− k

n

(
n
k

)
k + n− 2

=
1

k + n− 2

((
n− 1

k − 1

)
+ (n− 2)

(
n

k

))
we have

k|W| −
(
n− 1

k − 1

)
− (n− 2)

((
n

k

)
− |W|

)
> 0.

By using Lemma B.4 and the fact that (W ∩ Q=k(1)) ∪ (W ′ ∩ Q=k(1)) = Q=k(1) is a disjoint
union, we obtain∑

j ̸=1
aj =

∑
j ̸=1
|Q=k(j) ∩W| − (n− 1)|Q=k(1) ∩W ′|

=
∑

j∈[n]
|Q=k(j) ∩W| − |Q=k(1) ∩W| − |Q=k(1) ∩W ′| − (n− 2)|Q=k(1) ∩W ′|

= k|W| − |Q=k(1)| − (n− 2)|Q=k(1) ∩W ′|

≥ k|W| −
(
n− 1

k − 1

)
− (n− 2)|W ′|

= k|W| −
(
n− 1

k − 1

)
− (n− 2)

((
n

k

)
− |W|

)
> 0.

Consequently, there exists j ∈ [n] \ {1} with aj > 0.

Proof of Theorem 3.1 (ii). Similarly as in the proof of Theorem 3.1 (i), we proceed in two steps.

Part 1: The statement holds in case Alg is deterministic.
Abbreviate B′ := γ−1

(
S(1)−S(|Q|)

2

)
and fix a family of permutations (πQ)Q∈Q≤k

with S(1)|Q =

SπQ(1)|Q for all Q ∈ Q≤k(1). Exactly as in the proof of Theorem 3.1 (i), we define s =
(si|Q(t))Q∈Q≤k,i∈Q,t∈N via

si|Q(t) :=

{
S(1)|Q+S(|Q|)|Q

2 , if t < B′

SπQ(i)|Q, if t ≥ B′.

In the proof of Theorem 3.1 (i) we have already verified s ∈ S(S,γ). For any j ∈ {2, . . . ,m} and
Q ∈ Q=k(1) ∩ Q=k(j) we have S1|Q > Sj|Q, and using that |Q=k(i

′) \ Q=k(j
′)| is the same for

every distinct i′, j′ ∈ [n] we thus have∑
Q∈Q=k(1)

S1|Q =
∑

Q∈Q=k(1)∩Q=k(j)
S1|Q + S(1) · |Q=k(1) \ Q=k(j)|

>
∑

Q∈Q=k(j)∩Q=k(1)
Sj|Q + S(1) · |Q=k(j) \ Q=k(1)|

>
∑

Q∈Q=k(j)
Sj|Q.

As |Q=k(1)| = |Q=k(j)|, this shows GBW(s) = 1.

In the following, we will show that

W ′ := {Q ∈ Q=k : Alg started on s queries Q at least B′ times}

contains at least (1−1/n)k
k+n−2

(
n
k

)
elements. For this, let us assume on the contrary |W ′| < (1−1/n)k

k+n−2

(
n
k

)
and write W := Q=k \ W ′. Lemma B.5 allows us to fix a j ∈ [n] \ {1} with |Q=k(j) ∩ W| >

19

|Q=k(1) ∩ W ′|. Now, define s′ = (s′i|Q(t))Q∈Q≤k,i∈Q,t∈N via s′·|Q(·) = s·|Q(·) for any Q ∈
(Q≤k \ (Q=k(1) ∪Q=k(j))) ∪W ′ and4

s′i|Q(t) :=

si|Q(t), if t < B′ or {1, j} ̸⊆ Q,
S(1), if i = j ∈ Q and t ≥ B′,

S(|Q|), if i = 1 ∈ Q and t ≥ B′,

S1|Q, if t ≥ B′, i = argminl′∈Q Sl′|Q and 1 ∈ Q ̸∋ j,
Sj|Q, if t ≥ B′, i = argmaxl′∈QSl′|Q and j ∈ Q ̸∋ 1,

Si|Q, otherwise,

for Q ∈ (Q=k(1)∪Q=k(j))∩W . Similarly as for s, we see s′ ∈ S(S,γ). The corresponding limit
values S′

i|Q = limt→∞ s′i|Q(t) fulfill

∀Q ∈ Q=k(1) ∩W : S′
1|Q = S(|Q|) and ∀Q ∈ Q=k(j) ∩W : S′

j|Q = S(1),

and trivially also S(|Q|) ≤ S′
i|Q ≤ S(1) for any Q ∈ Q=k, i ∈ Q. Therefore, by choice of j, the

corresponding Borda scores (S′)Bi for s′ fulfill(
n− 1

k − 1

)
(S′)B1 =

∑
Q∈Q=k(1)

S′
1|Q =

∑
Q∈Q=k(1)∩W′

S(1) +
∑

Q∈Q=k(1)∩W
S(|Q|)

= |Q=k(1) ∩W ′| · S(1) + |Q=k(1) ∩W| · S(|Q|)

< |Q=k(j) ∩W| · S(1) + |Q=k(j) ∩W ′| · S(|Q|)

≤
∑

Q∈Q=k(j)
S′
j|Q =

(
n− 1

k − 1

)
(S′)Bj ,

where we have used that |Q=k(1)∩W ′|+ |Q=k(1)∩W| = |Q=k(1)| = |Q=k(j)∩W ′|+ |Q=k(j)∩
W|. This show 1 ̸∈ GBW(s′). But since s·|·(·) = s′·|·(·) holds on {t < B′} as well as onW ′, Alg

observes for s until termination exactly the same feedback as for s′. Consequently, it outputs for
both instances the same decision. Since GBW(s) = 1 ̸∈ GBW(s′), it makes on at least one of the
instances a mistake, which contradicts the correctness of Alg.
Thus, |W ′| ≥ (1−1/n)k

k+n−2

(
n
k

)
has to hold and we conclude

B(Alg, s) ≥
∑

Q∈W′
BQ(Alg, s) ≥ |W ′| ·B′ ≥

(
1− 1

n

)
k

k + n− 2

(
n

k

)
B′.

Since 1− 1
n ≥ 1/2 and k ≤ n+ 2 hold by assumption, we have in particular

B(Alg, s) ≥ k

4n

(
n

k

)
γ−1

(
S(1) − S(|Q|)

2

)
=

1

4

(
n− 1

k − 1

)
γ−1

(
S(1) − S(|Q|)

2

)
∈ Ω

((
n− 1

k − 1

))
.

Part 2: The statement holds for arbitrary Alg.
Similarly as for the proof of (i) in Theorem 3.1, the proof follows by means of Yao’s minimax
principle.

Remark B.6. (i) To compare the bounds for ROUNDROBIN in Theorem C.1 with the lower
bound from Theorem 3.1 (ii) suppose in the following S to be homogeneous with S(1) > S(2)

and let γ be homogeneous in the sense that γi|Q(t) = γ(t) for all Q ∈ Q=k, i ∈ Q, t ∈ N
for some γ : N → [0,∞). Moreover, let s be the instance from the proof of Theorem 3.1
(ii), and denote by S the family of limits Si|Q = limt→∞ si|Q(t), Q ∈ Q≤k, i ∈ Q. Let
us write SB

(1), . . . , S
B
(n) for the order statistics of {SB

i }i∈[n], i.e., SB
(1) ≥ · · · ≥ SB

(n). Then,
ROUNDROBIN returns a GBW of s ∈ S(S,γ) if it is executed with a budget B at least

zRR =

(
n

k

)
B1 with B1 := γ−1

(
SB
(1) − S

B
(2)

2

)
.

4That is, for constructing s′, we proceed for Q ∈ W as follows: If {1, j} ⊆ Q, we exchange S1|Q with
Sj|Q. If 1 ∈ Q ̸∋ j, we exchange S1|Q with S(Q)|Q. And if j ∈ Q ̸∋ 1, we exchange Sj|Q with S(1)|Q.

20

In comparison to this, the lower bound just shown reveals that any (possibly deterministic)
solution to PGBW(S,γ) fulfills

E[B(Alg, s)] ≥
(
1− 1

n

)
k

k + n− 2

(
n

k

)
B2 with B2 := γ−1

(
S(1) − S(|Q|)

2

)
.

Consequently, the optimality-gap between the upper and lower bound is of the order

B−1
1 B2

(
1− 1

n

)
k

k + n− 2
.

(ii) In the proof of Theorem 3.1 (ii), where we showed that |W ′| ≥ (1−1/n)k
k+n−2

(
n
k

)
leads to

a contradiction, we have constructed an instance s′ ∈ S(S,γ) with GBW(s) = 1 ̸∈
GBW(s′) such that Alg observes on s the same feedback as on s′. To finish the proof,
we have only used that Alg is correct for s and for s′, but we did not require correctness
of Alg on any instance s′′ ∈ S(S,γ) \ {s, s′}. The construction of s′ therein dependeds
on the behaviour of Alg only by means of the choices of W and j in the proof, i.e., we
have the dependence s′ = s′(W, j). Recall that for constructing s′ we used that |W| =
|Q=k| − |W ′| ≥

(
n
k

)
− (1−1/n)k

k+n−2

(
n
k

)
, so that for j ∈ [n] \ {1}, the set{

s′(W, j)
∣∣∣W ⊆ Q=k with |W| ≥

(
n

k

)
− (1− 1/n)k

k + n− 2

(
n

k

)
and j ∈ [n] \ {1}

}
of possible choices for s′ has at most

N := (n− 1)
∑(nk)

l=⌈(nk)− (1−1/n)k
k+n−2 (nk)⌉

((n
k

)
l

)
elements, say s′1, . . . , s

′
N . Thus, the formulation of the theorem may be strengthened in the

following way:
If S is homogeneous and γ fixed, then there exist N + 1 instances s, s′1, . . . , s

′
N with the

following property: Whenever a (possibly probabilistic) sequential testing algorithm Alg
correctly identifies the GBW for any of these N + 1 instances, then

E [B(A, s)] ≥
(
1− 1

n

)
k

k + n− 2

(
n

k

)
γ−1

(
S(1) − S(|Q|)

2

)
.

B.3 Proof of Theorem 3.1 (iii): Lower Bound for GCopeW Identification

Recall that GCopeW(s) is the set of elements i ∈ [n], for which the limits Si|Q = limt→∞ si|Q(t)
have the highest Copeland score

SC
i =

∑
Q∈Q=k(i)

11{Si|Q = S(1)|Q}
|Q=k(i)|

=

∑
Q∈Q=k(i)

11{Si|Q = S(1)|Q}(
n−1
k−1

) .

Proof of Theorem 3.1.(iii). Similarly as in the proofs (i) and (ii) Theorem 3.1, we proceed in two
steps.

Part 1: The statement holds in case Alg is deterministic.
Abbreviate B′ := minQ∈Q≤k

mini∈Q γ−1
i|Q

(
S(1)|Q−S(|Q|)|Q

2

)
and fix a family of permutations

(πQ)Q∈Q≤k
with S(1)|Q = SπQ(1)|Q for all Q ∈ Q≤k(1). Exactly as in the proofs of the lower

bounds for GCW and GBW identification, we define s = (si|Q(t))Q∈Q≤k,i∈Q,t∈N via

si|Q(t) :=

{
S(1)|Q+S(|Q|)|Q

2 , if t < B′

SπQ(i)|Q, if t ≥ B′.

In the proof of the lower bound of GCW identification we have already verified s ∈ S(S,γ). For any
j ∈ {2, . . . ,m} andQ ∈ Q=k(1)∩Q=k(j) we have S1|Q > Sj|Q, and using that |Q=k(i

′)\Q=k(j
′)|

21

is the same for every distinct i′, j′ ∈ [n] we thus have

∑
Q∈Q=k(1)

11{S1|Q = S(1)|Q}

=
∑

Q∈Q=k(1)∩Q=k(j)

11{S1|Q = S(1)|Q}+
∑

Q∈Q=k(1)\Q=k(j)

11{S1|Q = S(1)|Q}

=
∑

Q∈Q=k(1)∩Q=k(j)

11{S1|Q = S(1)|Q}+ |Q=k(1) \ Q=k(j)|

>
∑

Q∈Q=k(1)∩Q=k(j)

11{Sj|Q = S(1)|Q}+ |Q=k(j) \ Q=k(1)|

≥
∑

Q∈Q=k(1)∩Q=k(j)

11{Sj|Q = S(1)|Q}+
∑

Q∈Q=k(j)\Q=k(1)

11{Sj|Q = S(1)|Q}

=
∑

Q∈Q=k(j)

11{Sj|Q = S(1)|Q}.

As |Q=k(1)| = |Q=k(j)|, this shows GCopeW(s) = 1.

Similarly as in the proof of (ii), we will show indirectly that

W ′ := {Q ∈ Q=k : Alg started on s queries Q at least B′ times}

contains at least (1−1/n)k
k+n−2

(
n
k

)
elements. For this purpose, let us assume on the contrary |W ′| <

(1−1/n)k
k+n−2

(
n
k

)
and write W := Q=k \ W ′. Lemma B.5 allows us to fix a j ∈ [n] \ {1} with

|Q=k(j) ∩W| > |Q=k(1) ∩W ′|. Now, define s′ = (s′i|Q(t))Q∈Q≤k,i∈Q,t∈N analogously as in the
proof of (ii), i.e., via s′·|Q(·) = s·|Q(·) for any Q ∈ (Q≤k \ (Q=k(1) ∪Q=k(j))) ∪W ′ and

s′i|Q(t) :=

si|Q(t), if t < B′ or {1, j} ̸⊆ Q,
S(1)|Q, if i = j ∈ Q and t ≥ B′,

S(|Q|)|Q, if i = 1 ∈ Q and t ≥ B′,

S1|Q, if t ≥ B′, i = argminl′∈Q Sl′|Q and 1 ∈ Q ̸∋ j,
Sj|Q, if t ≥ B′, i = argmaxl′∈QSl′|Q and j ∈ Q ̸∋ 1,

Si|Q, otherwise,

for Q ∈ (Q=k(1)∪Q=k(j))∩W . Similarly as for s, we see s′ ∈ S(S,γ). The corresponding limit
values S′

i|Q = limt→∞ s′i|Q(t) fulfill

∀Q ∈ Q=k(1) ∩W : S′
1|Q = S(|Q|)|Q and ∀Q ∈ Q=k(j) ∩W : S′

j|Q = S(1)|Q,

22

and trivially also S(|Q|)|Q ≤ S′
i|Q ≤ S(1)|Q for any Q ∈ Q=k, i ∈ Q. Therefore, by choice of j, the

corresponding Copeland scores (S′)Ci for s′ fulfill(
n− 1

k − 1

)
(S′)C1 =

∑
Q∈Q=k(1)

11{S′
1|Q = S′

(1)|Q}

=
∑

Q∈Q=k(1)∩W′

11{S′
1|Q = S′

(1)|Q}+
∑

Q∈Q=k(1)∩W

11{S′
1|Q = S′

(1)|Q}

=
∑

Q∈Q=k(1)∩W′

11{S1|Q = S(1)|Q}+
∑

Q∈Q=k(1)∩W

11{S(|Q|)|Q = S(1)|Q}

= |Q=k(1) ∩W ′|
< |Q=k(j) ∩W|

=
∑

Q=k(j)∩W

11{S(1)|Q = S(1)|Q}

=
∑

Q=k(j)∩W

11{S′
j|Q = S′

(1)|Q}

≤
∑

Q=k(j)∩W

11{S′
j|Q = S′

(1)|Q}+
∑

Q=k(j)∩W′

11{S′
j|Q = S′

(1)|Q}

=
∑

Q∈Q=k(j)

11{S′
j|Q = S′

(1)|Q}

=

(
n− 1

k − 1

)
(S′)Cj ,

where we used that S(1)|Q = S′
(1)|Q. This shows 1 ̸∈ GCopeW(s′). But since s·|·(·) = s′·|·(·) holds

on {t < B′} as well as onW ′, Alg observes for s until termination exactly the same feedback as
for s′. Consequently, it outputs for both instances the same decision. Since GCopeW(s) = 1 ̸∈
GCopeW(s′), it makes on at least one of the instances a mistake, which contradicts the correctness
of Alg.
Thus, |W ′| ≥ (1−1/n)k

k+n−2

(
n
k

)
has to hold and we conclude

B(Alg, s) ≥
∑

Q∈W′
BQ(Alg, s) ≥ |W ′| ·B′ ≥

(
1− 1

n

)
k

k + n− 2

(
n

k

)
B′.

Since 1− 1
n ≥ 1/2 and k ≤ n+ 2 hold by assumption, we have in particular

B(Alg, s) ≥ k

4n

(
n

k

)
min

Q∈Q≤k

min
i∈Q

γ−1
i|Q

(
S(1)|Q − S(|Q|)|Q

2

)
=

1

4

(
n− 1

k − 1

)
min

Q∈Q≤k

min
i∈Q

γ−1
i|Q

(
S(1)|Q − S(|Q|)|Q

2

)
∈ Ω

((
n− 1

k − 1

))
.

Part 2: The statement holds for arbitrary Alg.
Similarly as for the proofs of the lower bound of (i) and (ii) of this theorem, the proof follows by
means of Yao’s minimax principle.

C Generalized Borda Winner Identification

Let ROUNDROBIN be the algorithm, which enumerates all possible subsets of the fixed subset size k,
chooses each subset in a round-robin fashion and returns the arm with the highest empirical Borda
score sBi after the available budget is exhausted. It is a straightforward baseline method, which
we analyze theoretically in terms of the sufficient and necessary budget to return a generalized
Borda winner (GBW) i∗B. For this purpose, let γ̂i(t) = 1

|Q=k(i)|
∑

Q∈Q=k(i)
γi|Q(t) and γ̂max

i,j (t) =

max{γ̂i(t), γ̂j(t)}.

23

Theorem C.1. ROUNDROBIN returns i∗B if it is executed with a budget B ≥ zRR, where

zRR :=

(
n

k

)
max

ρ∈A,ρ̸=i∗B

(
γ̂max
i∗B,ρ

)−1
(
SB
i∗B
− SB

ρ

2

)
.

The latter bound is tight in a worst-case scenario, as the following result shows (cf. Sec. D.1 for the
proofs).

Theorem C.2. For any asymptotical Borda scores SB
1 , . . . , S

B
n , there exists a corresponding instance

s such that if B < zRR then ROUNDROBIN will not return i∗B.

Thus, ROUNDROBIN is already nearly-optimal (up to a factor O(n/k)) with respect to worst-case
scenarios due to Theorem 3.1 (see Rem. B.6 for a more detailed discussion.).

D Proofs of Section 4

In this section we provide the detailed proofs of Section 4. We assume throughout that B

(nk)
is a natural

number, i.e., the budget is a multiple of
(
n
k.

)
D.1 Proof of Theorems C.1 and C.2

Proof of Theorem C.1. After relabeling the arms in round r we may assume w.l.o.g. i∗B = 1. We will
prove the theorem by contradiction and therefore assume

ρ = argmaxi∈A sBi

(
B(
n
k

)) ̸= 1

⇒ sB1

(
B(
n
k

)) < max
j=2,...n

sBj

(
B(
n
k

)) = sBρ

(
B(
n
k

))

⇒ SB
1 − SB

ρ < sBρ

(
B(
n
k

))− SB
ρ + SB

1 − sB1

(
B(
n
k

))

=
1

|Q=k(ρ)|
∑

Q∈Q=k(ρ)

(
sρ|Q

(
B(
n
k

))− Sρ|Q

)
+

1

|Q=k(1)|
∑

Q∈Q=k(1)

(
S1|Q − s1|Q

(
B(
n
k

)))

⇒ SB
1 − SB

ρ < γ̂ρ

(
B(
n
k

))+ γ̂1

(
B(
n
k

))

⇒ SB
1 − SB

ρ < 2 · γ̂max
1,ρ

(
B(
n
k

)) ,
where γ̂i(t) = 1

|Q=k(i)|
∑

Q∈Q=k(i)
γi|Q(t) and γ̂max

i,j (t) = max{γ̂i(t), γ̂j(t)}. With this, however,
we can derive

⇒ zRR =
(
γ̂max
1,ρ

)−1

(
SB
1 − SB

ρ

2

)(
n

k

)
≥ B,

which contradicts the assumption we make on the budget B. Thus, it holds that the returned arm is
ρ = 1.

Proof of Theorem C.2. Let β(t) be an arbitrary, monotonically decreasing function of t with
limt→∞ β(t) = 0. We define for all j ∈ A with j ̸= i∗B the empirical Borda scores to be
sBj (t) = SB

j + β(t) and sBi∗B
(t) = SB

i∗B
− β(t), where (SB

i)i∈[n] are arbitrary real values such
that SB

i∗B
is the unique maximum for some i∗B ∈ [n]. We can again assume after relabeling all arms

24

that w.l.o.g. that i∗B = 1 and argmaxj=2,...,nS
B
j = 2. Note that γ̂i(t) = β(t) for all i ∈ A. In light

of these considerations, ROUNDROBIN returns 1 as the best arm if and only if

sB1

(
B(
n
k

)) > max
j=2,...,n

sBj

(
B(
n
k

)) ⇔ SB
1 − γ̂1

(
B(
n
k

)) > max
j=2,...,n

SB
j + γ̂j

(
B(
n
k

))

⇔ SB
1 − γ̂1

(
B(
n
k

)) > SB
2 + γ̂2

(
B(
n
k

))

⇔ γ̂1

(
B(
n
k

))+ γ̂2

(
B(
n
k

)) < SB
1 − SB

2

⇔ 2 · γ̂max
1,2

(
B(
n
k

)) < SB
1 − SB

2

⇔ B ≥
(
n

k

)(
γ̂max
1,2

)−1
(
SB
1 − SB

2

2

)
.

Thus, the necessary budget is zRR in this case concluding the claim.

D.2 Proofs of Theorem 4.1 and 4.2

Proof of Theorem 4.1. For the sake of convenience, let us abbreviate [R] := {1, . . . , R} and Arj :=
Ar,j in the following. By possibly relabeling the arms and query sets queried by the algorithm, we
can assume w.l.o.g. i∗ = 1 and Ar(1) = Ar1 for all r ∈ [R] in the following. In particular, we have
S1|Ar1

= S(1)|Ar1
for all r ∈ [R]. We prove the correctness of the algorithm indirectly. Thus, we start

by assuming that the best arm is not contained in the last partition (i.e., the remaining active arm):

AR+1 ̸= {1}
⇔∃r ∈ [R] : 1 /∈ Ar+1 ∧ 1 ∈ Ar

⇒∃r ∈ [R] :
∑
i∈Ar1

11{si|Ar1
(br) ≥ s1|Ar1

(br)} > f(|Ar1|)

⇒∃r ∈ [R] :
∑
i∈Ar1

11{S1|Ar1
− Si|Ar1

≤ S1|Ar1
− s1|Ar1

(br)− Si|Ar1
+ si|Ar1

(br)} > f(|Ar1|)

⇒∃r ∈ [R] :
∑
i∈Ar1

11{S1|Ar1
− Si|Ar1

≤ |S1|Ar1
− s1|Ar1

(br)|+ |Si|Ar1
− si|Ar1

(br)|} > f(|Ar1|)

⇒∃r ∈ [R] :
∑
i∈Ar1

11{S1|Ar1
− Si|Ar1

≤ 2γ̄Ar1
(br)} > f(|Ar1|)

⇒∃r ∈ [R] : S1|Ar1
− S(f(Ar1)+1)|Ar1

≤ 2γ̄Ar1
(br)

⇒∃r ∈ [R] :

⌊
B

PrR

⌋
= br ≤ γ̄−1

Ar1

(
S1|Ar1

− S(f(Ar1)+1)|Ar1

2

)
⇒∃r ∈ [R] : B ≤ PrR

⌈
γ̄−1
Ar1

(
S1|Ar1

− S(f(|Ar1|)+1)|Ar1

2

)⌉
⇒B ≤ Rmaxr∈[R] Pr

⌈
γ̄−1
Ar1

(
S1|Ar1

− S(f(|Ar1|)+1)|Ar1

2

)⌉
= z (f,R, {Pr}1≤r≤R) ,

which contradicts the assumption we make on the budget B. Thus, it holds that the remaining active
arm in round R+ 1 is i∗ = 1.

Remark D.1. Using the definition of γ̄Q(t) and γ̄(t) we can derive the following more coarser
bounds on the sufficient budget:

z1 (f,R, {Pr}1≤r≤R) = Rmaxr∈[R] Pr

⌈
γ̄−1

(
S1|Ar1

− S(f(|Ar1|)+1)|Ar1

2

)⌉
,

z2 (f,R, {Pr}1≤r≤R) = R
(
maxr∈[R] Pr

)
maxQ∈Q≤k

⌈
γ̄−1

(
S1|Q − S(f(|Q|)+1)|Q

2

)⌉
.

25

Proof of Theorem 4.2. After relabeling, we may suppose w.l.o.g. i∗ = 1. Let β : N → (0,∞) be an
arbitrary strictly decreasing function with β(t) → 0 as t → ∞ and{

S1|Q − Sj|Q

2
: Q ∈ Q≤k, j ∈ Q

}
⊆ β(N).

Then, β is invertible on β(N) and its inverse function β−1 : β(N) → N trivially fulfills β−1(α) =
min{t ∈ N : β(t) ≤ α} for all α ∈ β(N). Define for any Q ∈ Q≤k and i ∈ Q the family of
statistics by means of

si|Q(t) :=

{
Si|Q − β(t), if i = argmaxj∈QSj|Q,

Si|Q + β(t), otherwise,

and note that γQ(t) = β(t) for all Q ∈ Q≤k and t ∈ N. Writing br =
⌊

B
RPr

⌋
we obtain due to the

choice of β that

B < Rmaxr∈[R] Prγ̄
−1
Ar1

(
S1|Ar1

− S(f(|Ar1|)+1)|Ar1

2

)
⇒∃r ∈ [R] : B < RPr min

{
t ∈ N : γ̄Ar1(t) ≤

S1|Ar1
− S(f(|Ar1|)+1)|Ar1

2

}
⇒∃r ∈ [R] : br < min

{
t ∈ N : β(t) ≤

S1|Ar1
− S(f(|Ar1|)+1)|Ar1

2

}
= β−1

(
S1|Ar1

− S(f(|Ar1|)+1)|Ar1

2

)
⇒∃r ∈ [R] : 2β (br) > S1|Ar1

− S(f(|Ar1|)+1)|Ar1
= s1|Ar1

(br) + β(br)−
(
s(f(|Ar1|)+1)|Ar1

(br)− β(br)
)

⇒∃r ∈ [R] : s1|Ar1
(br) < s(f(|Ar1|)+1)|Ar1

(br)

⇒∃r ∈ [R] : 1 ̸∈ Ar+1

⇒1 ̸∈ AR+1.

This shows that z (f,R, {Pr}1≤r≤R) is the necessary budget for returning the best arm i∗ in this
scenario.

D.3 Proof of Corollary 4.3

For sake of convenience, we provide the entire pseudo-code of CSWS in Algorithm 3, which results
by using f(x) = x− 1 as well as PCSWS

r and RCSWS as defined in Section 4.1 in Algorithm 1.

Proof of Corollary 4.3 (CSWS case). Suppose B > 0 to be arbitrary but fixed. First, note that
there are at most ⌈logk(n)⌉ rounds within the first while-loop and at most 1 in the second, so that
we have at most ⌈logk(n)⌉ + 1 many rounds in total. The total number of partitions in round
r ∈ {1, . . . , ⌈logk(n)⌉ + 1} is at most

⌈
n
kr

⌉
. Abbreviating R := RCSWS and Pr := PCSWS

r

for the moment, the budget allocated to a partition in round r is by definition br = ⌊ B
RPr
⌋ =⌊

B

⌈ n
kr ⌉·(⌈logk(n)⌉+1)

⌋
. Hence, the total budget used by CSWS is

⌈logk(n)⌉+1∑
r=1

#{partitions in round r} · br =

⌈logk(n)⌉+1∑
r=1

⌈ n
kr

⌉⌊ B⌈
n
kr

⌉
· (⌈logk(n)⌉+ 1)

⌋
≤ B.

Thus, the stated correctness of CSWS follows directly from Theorem 4.1.

For sake of convenience, we provide the entire pseudo-code of CSR in Algorithm 4, which results by
using f(x) = 1 as well as PCSR

r and RCSR as defined in Section 4.1 in Algorithm 1.

Proof of Corollary 4.3 (CSR case). Suppose B > 0 to be arbitrary but fixed. First, note that there
are at most

⌈
log1− 1

k

(
1
n

)⌉
rounds within the first while-loop and at most k − 1 in the second, so that

we have at most
⌈
log1− 1

k

(
1
n

)⌉
+ k− 1 many rounds in total. The total number of partitions in round

26

Algorithm 3 Combinatorial Successive Winner Stays (CSWS)
Input: set of arms [n], subset size k ≤ n, sampling budget B

Initialization: For each r ∈ {1, . . . , ⌈logk(n)⌉+ 1} let br :=

⌊
B

⌈ n
kr ⌉·(⌈logk(n)⌉+1)

⌋
, A← [n],

r ← 1

1: while |Ar| ≥ k do
2: J = ⌈ n

kr ⌉
3: Ar1,Ar2, . . . ,Ar,J ← Partition(Ar, k)
4: if |Ar,J | < k then
5: R← Ar,J , J ← J − 1
6: else
7: R← ∅
8: end if
9: Ar+1 ← ∅

10: for j ∈ [J] do
11: Play the set Ar,j for br times
12: For all i ∈ Ar,j , update si|Ar,j

(br)

13: Let w ∈ argmaxi si|Ar,j
(br)

14: Ar+1 ← Ar+1 ∪ {w}
15: end for
16: Ar+1 ← Ar+1 ∪R
17: r ← r + 1
18: end while
19: Ar+1 ← ∅
20: while |Ar| > 1 do
21: Play the set Ar for br times
22: For all i ∈ Ar , update si|Ar (br)
23: Let w ∈ argmaxi si|Ar (br)
24: Ar+1 ← Ar+1 ∪ {w}
25: r ← r + 1
26: end while
Output: The remaining item in Ar

r ∈ {1, . . . ,
⌈
log1− 1

k

(
1
n

)⌉
+ k − 1} is at most

⌈
n(1− 1

k)r−1

k

⌉
. The budget allocated to a partition in

round r (i.e., br) is by definition given by

br = ⌊B/(RCSRPCSR
r)⌋ =

 B⌈
n(1− 1

k)r−1

k

⌉(⌈
log1− 1

k

(
1
n

)⌉
+ k − 1

)
 .

Consequently, the total budget used by CSR is⌈
log

1− 1
k
(1

n)
⌉
+k−1∑

r=1

#{partitions in round r} · br

=

⌈
log

1− 1
k
(1

n)
⌉
+k−1∑

r=1

⌈
n(1− 1

k)
r−1

k

⌉ B⌈
n(1− 1

k)r−1

k

⌉(⌈
log1− 1

k

(
1
n

)⌉
+ k − 1

)

≤ B.
Therefore, the statement follows from Theorem 4.1.

For sake of convenience, we provide the entire pseudo-code of CSH in Algorithm 5, which results by
using f(x) = ⌈x/2⌉ as well as PCSH

r and RCSH as defined in Section 4.1 in Algorithm 1.

Proof of Corollary 4.3 (CSH case). Suppose B > 0 to be arbitrary but fixed. First, note that there
are at most ⌈log2(n)⌉ rounds within the first while-loop and at most ⌈log2(k)⌉ in the second, so that

27

Algorithm 4 Combinatorial Successive Reject (CSR)
Input: set of arms [n], subset size k ≤ n, sampling budget B

Initialization: For each r ∈ {0, . . . , ⌈log1− 1
k

(
1
n

)
⌉} let br :=

 B⌈
n(1− 1

k
)r−1

k

⌉(⌈
log

1− 1
k
(1
n)

⌉
+k−1

)
,

A← [n], r ← 1

1: while |Ar| ≥ k do
2: J = ⌈n(1− 1

k
)r−1

k
⌉

3: Ar1,Ar2, . . . ,Ar,J ← Partition(Ar, k)
4: if |Ar,J | < k then
5: R← Ar,J , J ← J − 1
6: else
7: R← ∅
8: end if
9: Ar+1 ← Ar

10: for j ∈ [J] do
11: Play the set Ar,j for br times
12: For all i ∈ Ar,j , update si|Ar,j

(br)

13: Let w ∈ argmini si|Ar,j
(br)

14: Ar+1 = Ar+1\{w}
15: end for
16: Ar+1 ← Ar+1 ∪R
17: r ← r + 1
18: end while
19: Ar+1 ← Ar

20: while |Ar| > 1 do
21: Play the set Ar for br times
22: For all i ∈ Ar , update si|Ar (br)
23: Let w ∈ argmini si|Ar (br)
24: Ar+1 = Ar+1\{w}
25: r ← r + 1
26: end while
Output: The remaining item in Ar

we have at most ⌈log2(n)⌉+ ⌈log2(k)⌉ many rounds in total. The total number of partitions in round
r = 1, . . . , ⌈log2(n)⌉+ ⌈log2(k)⌉ is at most

⌈
n

2r−1k

⌉
. The budget allocated to a partition in round r

is

br = ⌊B/(RCSHPCSH
r)⌋ =

⌊
B⌈

n
2r−1k

⌉
· (⌈log2(n)⌉+ ⌈log2(k)⌉)

⌋
.

In particular, the total budget used by CSH is

⌈log2(n)⌉+⌈log2(k)⌉∑
r=1

#{partitions in round r} · br

=

⌈log2(n)⌉+⌈log2(k)⌉∑
r=1

⌈ n

2r−1k

⌉
·
⌊

Bk

⌈ n
2r−1 ⌉(⌈log2(n)⌉+ ⌈log2(k)⌉)

⌋
≤ B.

Once again, Theorem 4.1 allows us to conclude the proof.

E Proofs of Section 5

E.1 Stochastic Numerical Feedback: Proof of Corollary 5.1

A rich class of statistics can be obtained by applying a linear functional U(F) =
∫
r(x)dF (x),

where F is a cumulative distribution function and r : R → R some measurable function, on the
empirical distribution function [49], i.e., for any x ∈ R and any multiset of (reward) observations O

28

Algorithm 5 Combinatorial Successive Halving (CSH)
Input: set of arms [n], subset size k ≤ n, sampling budget B

Initialization: For each r ∈ {0, . . . , ⌈log2(n)⌉+ ⌈log2(k)⌉} let br :=

⌊
Bk

⌈ n
2r−1 ⌉(⌈log2(n)⌉+⌈log2(k)⌉)

⌋
,

A← [n], r ← 1

1: while |Ar| ≥ k do
2: J = ⌈ n

2r−1k
⌉

3: Ar1,Ar2, . . . ,Ar,J ← Partition(Ar, k)
4: if |Ar,j | < k then
5: R← Ar,j , J ← J − 1
6: else
7: R← ∅
8: end if
9: for j ∈ [J] do

10: Play the set Ar,j for br times
11: For all i ∈ Ar,j , update si|Ar,j

(br)

12: Define s̄← Median({si|Ar,j
(br)}i∈Ar,j)

13: Ar+1 ← {i ∈ Ar,j |si|Ar,j
(br) ≤ s̄}

14: end for
15: Ar+1 ← Ar+1 ∪R
16: r ← r + 1
17: end while
18: Ar ← Ar ∪ {k − |Ar| random elements from [n]\Ar}
19: while |Ar| > 1 do
20: Play the set Ar for br times
21: For all i ∈ Ar , update si|Ar (br)
22: Define s̄← Median({si|Ar (br)}i∈Ar)
23: Ar+1 ← {i ∈ Ar|si|Ar (br) ≤ s̄}
24: r ← r + 1
25: end while
Output: The remaining item in Ar

s̃(O, x) = 1
|O|
∑

o∈O 11{x ≤ o}.

This leads to the statistics

si|Q(t) = U(s̃(oi|Q(1), . . . , oi|Q(t), ·)) =
t∑

s=1

r(oi|Q(s))

t
,

which converge to Si|Q = EX∼νi|Q [r(X)] by the law of large numbers, provided these expected
values exist. In this section we show the following result which generalizes Corollary 5.1 for statistics
of the above kind.

Corollary E.1. Let f , R and {Pr}r∈[R] be as in Theorem 4.1 and suppose that r(oi|Q(t)) are
σ-sub-Gaussian and such that their means Si|Q := EX∼νi|Q [r(X)] satisfy (A2). Then, there is a
function

C(δ, ε, k,R, σ) ∈ O
(
σ2ε−2 ln (kR/δ ln (kRσ/εδ))

)
with the following property: If i∗ is the GCW and supQ∈Q≤k(i∗)

∆(f(|Q|)+1)|Q ≤ ε, then Algorithm
1 used with a budget B larger than C(δ, ε, k,R, σ) · Rmaxr∈[R] Pr returns i∗ with probability at
least 1− δ.

Note that we immediately obtain the proof for Corollary 5.1 as a special case of Corollary E.1 by
using the the identity function r(x) = x.

The following two lemmata serve as a preparation for the proof of Corollary E.1. The proof of
Lemma E.2 is an adaptation of the proof of Lemma 3 in [24].

Lemma E.2. Let X1, X2, . . . ∼ X be iid real-valued random variables and r : R → R such that
r(X) is σ2-sub-Gaussian. For any ϵ ∈ (0, 1) and δ ∈ (0, log(1 + ϵ)/e) one has with probability at

29

least 1− (2+ϵ)
ϵ

(
δ

log(1+ϵ)

)(1+ϵ)

for any t ≥ 1

t∑
i=1

r(Xi)− t · EX∼X [r(X)] ≤ (1 +
√
ϵ)

√
2σ2(1 + ϵ)t log

(
log((1 + ϵ)t)

δ

)
.

Moreover, the same concentration inequality holds for −
(∑t

i=1 r(Xi)− t · EX∼X [r(X)]
)

as well.

Proof. We denote in the following ψ(x) =

√
2σ2x log

(
log(x)

δ

)
and Rt =

∑t
i=1 r(Xi) − t ·

EX∼X [r(X)] and define a sequence of integers (uk) as u0 = 1 and uk+1 = ⌈(1 + ϵ)uk⌉. The
maximal Azuma-Hoeffding Inequality states that for any martingale difference sequence S1, S2, . . .
with each element being σ2-sub-Gaussian, it holds that for any α > 0, n ≥ 1:

P
(
maxi∈[n] Si − S0 ≥ α

)
≤ exp

(
− α2

2
∑n

j=1 σ
2
j

)
.

In the following let F0 = {∅,Ω} be the trivial σ-algebra and for k ∈ {1, . . . , n} let Fk =
σ(X1, . . . , Xk) be the σ-algebra generated by the observations X1, . . . , Xk. Then

E[Rt+1|Ft] = E[r(Xt+1)− EX∼X [r(X)] +Rt|Ft]

= E[r(Xt+1)|Ft]− EX∼X [r(X)] + E[Rt|Ft]

= Rt

which shows the martingale property of Rt. Note, that R0 = 0 and Rt+1 − Rt = r(Xt+1) −
EX∼X [r(X)], which is according to the assumption σ2-sub-Gaussian and has zero mean, for any
t ∈ N. Thus, we can apply the maximal Azuma-Hoeffding inequality for R1, R2, . . . , Rt.

Step 1.
In the first step of the proof we derive a bound for the probability of a lower bound of Ruk

for
k ≥ 1. For this we use the union bound, the maximal Azuma-Hoeffding inequality, the fact that
uk ≥ (1 + ϵ)k, a sum-integral comparison and some simple transformations and obtain

P
(
∃k ≥ 1 : Ruk

≥
√
1 + ϵψ(uk)

)
≤

∞∑
k=1

P
(
Ruk
≥
√
1 + ϵψ(uk)

)
≤

∞∑
k=1

exp

(
− (1 + ϵ)ψ(uk)

2

2ukσ2

)

=

∞∑
k=1

exp

(
−(1 + ϵ) log

(
log(uk)

δ

))

≤
∞∑
k=1

exp

(
−(1 + ϵ) log

(
log((1 + ϵ)k)

δ

))

=

∞∑
k=1

(
δ

k log((1 + ϵ))

)(1+ϵ)

=

(
2δ

log((1 + ϵ))

)(1+ϵ) ∞∑
k=1

(
1

k

)(1+ϵ)

=

(
δ

log((1 + ϵ))

)(1+ϵ)
(
1 +

∞∑
k=2

(
1

k

)(1+ϵ)
)

≤
(

δ

log((1 + ϵ))

)(1+ϵ)
(
1 +

∫ ∞

k=1

(
1

k

)(1+ϵ)
)

30

=

(
δ

log((1 + ϵ))

)(1+ϵ)(
1 +

[
−1

ϵ

(
1

k

)ϵ]∞
1

)
=

(
δ

log((1 + ϵ))

)(1+ϵ)(
1 +

1

ϵ

)
.

Step 2.
Next, we bound the probability that the difference between someRs andRt exceeds a lower bound for
some s = uk, k ∈ N and s ≤ t ≤ uk+1. Note that Rt −Ruk

and Rt−uk
have the same distribution,

such that we obtain

P
(
∃t ∈ {uk + 1, . . . , uk+1 − 1} : Rt −Ruk

≥
√
ϵψ(uk+1)

)
= P

(
∃t ∈ [uk+1 − uk − 1] : Rt ≥

√
ϵψ(uk+1)

)
≤ exp

(
− ϵψ(uk+1)

2

2σ2(uk+1 − uk − 1)

)
= exp

(
− ϵuk+1

uk+1 − uk − 1
log

(
log(uk+1)

δ

))
≤ exp

(
− ϵuk+1

(1 + ϵ)uk + 1− uk − 1
log

(
log(uk+1)

δ

))
= exp

(
−uk+1

uk
log

(
log(uk+1)

δ

))
≤ exp

(
−(1 + ϵ) log

(
log(uk+1)

δ

))
≤
(

δ

(k + 1) log(1 + ϵ)

)1+ϵ

,

where we used once again the maximal Azuma-Hoeffding inequality and that uk+1 ≥ (1 + ϵ)uk
as well as that uk+1

uk
≥ 1 + ϵ. For all possible k ∈ N we get with the union bound and a similar

sum-integral comparison as above

P
(
∃k ∈ N, ∃t ∈ {uk + 1, . . . , uk+1 − 1} : Rt −Ruk

≥
√
ϵψ(uk+1)

)
≤

∞∑
k=1

(
δ

(k + 1) log(1 + ϵ)

)1+ϵ

=

∞∑
k=2

(
δ

k log(1 + ϵ)

)1+ϵ

≤
∫ ∞

k=1

(
δ

k log(1 + ϵ)

)1+ϵ

=

(
δ

log(1 + ϵ)

)1+ϵ
1

ϵ

Step 3.
Finally, by combining Step 1 and 2 we can infer that for any k ≥ 0 and t ∈ {uk + 1, . . . , uk+1 − 1}
it holds

Rt = Rt −Ruk
+Ruk

≤
√
ϵψ(uk+1) +

√
1 + ϵψ(uk)

≤
√
ϵψ((1 + ϵ)t) +

√
1 + ϵψ(t)

≤ (1 +
√
ϵ)ψ((1 + ϵ)t),

with probability at least 1− 2+ϵ
ϵ

(
δ

log(1+ϵ)

)1+ϵ

leading to the first claim of the lemma.

Step 4.

31

Note that R̃t = t ·EX∼X [r(X)]−
∑t

i=1 r(Xi) is a martingale difference sequence with R̃t+1−R̃t =
−Rt + Rt+1 = EX∼X [r(X)] − r(Xt+1), which is according to the assumption σ2-sub-Gaussian
and has zero mean, for any t ∈ N. Thus, repeating Step 1–3 for R̃1, R̃2, . . . , R̃t shows the second
claim of the lemma.

Lemma E.3. Let X1, X2, . . . ∼ X be iid real-valued random variables and r : R → R such that
r(X) is σ2-sub-Gaussian. For any γ ∈ (0, 1) we have

P

(
∃t ∈ N :

∣∣∣∣∣
t∑

i=1

r(Xi)− t · EX∼X [r(X)]

∣∣∣∣∣ > (1 +
√
1/2)

√
3σ2t ln

(
102/3 ln(3t/2)

γ2/3 ln(3/2)

))
≤ γ.

Proof. Let γ ∈ (0, 1) be fixed and ε := 1/2. Then, γ′ :=
(

γ
10

)2/3
ln(3/2) fulfills

2 + ε

ε

(
γ′

ln(1 + ε)

)1+ε

= 5
(
(γ/10)2/3

)3/2
= γ/2

and moreover γ′ < (1/10)2/3 ln(3/2) < e−1 ln(3/2). Consequently, Lemma E.2 yields with

c̃γ(t) := (1 +
√
ε)

√
2σ2(1 + ε)t ln

(
ln((1 + ε)t)

γ′

)
= (1 +

√
1/2)

√
3σ2t ln

(
102/3 ln(3t/2)

γ2/3 ln(3/2)

)
that

P

(
∃t ∈ N :

t∑
i=1

r(Xi)− t · EX∼X [r(X)] > c̃γ(t)

)
≤ γ/2.

as well as

P

(
∃t ∈ N : −

(
t∑

i=1

r(Xi)− t · EX∼X [r(X)]

)
> c̃γ(t)

)
≤ γ/2.

Thus, we obtain

P

(
∃t ∈ N :

∣∣∣∣∣
t∑

i=1

r(Xi)− t · EX∼X [r(X)]

∣∣∣∣∣ > c̃γ(t)

)

≤ P

(
∃t ∈ N :

t∑
i=1

r(Xi)− t · EX∼X [r(X)] > c̃γ(t)

)

+ P

(
∃t ∈ N : −

(
t∑

i=1

r(Xi)− t · EX∼X [r(X)]

)
> c̃γ(t)

)
≤ γ/2 + γ/2 = γ.

We are now ready to prove Corollary E.1.

Proof of Corollary E.1. Recall the definition of c̃γ(t) from the proof of Lemma E.3 and let

cγ(t) :=
2

t
c̃γ(t) = 2(1 +

√
1/2)

√
3σ2

t
ln

(
102/3 ln(3t/2)

γ2/3 ln(3/2)

)
for any γ ∈ (0, 1), t ∈ N. For any fixed γ, cγ : N → (0,∞), t 7→ cγ(t) is strictly monotonically
decreasing with limt→∞ cγ(t) = 0. Contraposition of (1) in [24] states

t >
1

c
ln

(
2 ln((1 + ε)/(cω))

ω

)
⇒ c >

1

t
ln

(
ln((1 + ε)t)

ω

)
∀t ≥ 1, ε ∈ (0, 1), c > 0, ω ≤ 1.

32

For any α > 0 and γ ∈ (0, 1), using this with ω = γ2/3 ln(3/2)
102/3

, c = α2

12(1+
√

1/2)2σ2
and ε = 1/2

reveals

c−1
γ (α) = min {t ∈ N : cγ(t) ≤ α}

= min

{
t ∈ N :

1

t
ln

(
102/3 ln(3t/2)

γ2/3 ln(3/2)

)
≤ α2

12(1 +
√

1/2)2σ2

}
.

Thus, we have c ≥ 1
t ln

(
ln((1+ε)t)

ω

)
and we know, that this statement is true if t ≥

1
c ln

(
2 ln((1+ε)/(cω))

ω

)
. In particular also for the smallest such t, for which holds t ≤⌈

1
c ln

(
2 ln((1+ε)/(cω))

ω

)⌉
+ 1. It follows

c−1
γ (α) ≤

⌈
12(1 +

√
1/2)2σ2

α2
ln

(
2 · 102/3

γ2/3 ln(3/2)
ln

(
18 · 102/3(1 +

√
1/2)2σ2

γ2/3 ln(3/2)α2

))⌉
+ 1,

which is of the order O(σ2α−2 ln ln(α−1σ) ln γ−1).

Now, suppose maxQ∈Q≤k(i∗) ∆(f(|Q|)+1)|Q ≤ ε and that Algorithm 1 is started with a budget B
larger than

c−1
δ/(kR)(ε/2) ·Rmaxr∈[R] Pr.

Recall that γi|Q(t) = |si|Q(t) − Si|Q|, si|Q(t) = 1
t

∑t
s=1 r(oi|Q(s)) and Si|Q = EX∼νi|Q [r(X)].

With this, we obtain for any possible sequence of partitions (Er)r∈[R] ∈ (Q≤k)
R with P(Ar(i

∗) =
Er ∀r ∈ [R]) > 0 that

P
(
∃t ∈ N, r ∈ [R], i ∈ Er : γi|Er (t) ≥ cδ/(kR)(t)

∣∣∣Ar(i
∗) = Er ∀r ∈ [R]

)
≤
∑
r∈[R]

∑
i∈Er

P
(
∃t ∈ N : γi|Er (t) ≥ cδ/(kR)(t)

∣∣∣Ar(i
∗) = Er ∀r ∈ [R]

)

=
∑
r∈[R]

∑
i∈Er

P

(
∃t ∈ N :

∣∣∣1
t

t∑
t′=1

r(oi|Er (t
′))− EX∼νi|Er

[r(X)]
∣∣∣ ≥ cδ/(kR)(t)

∣∣∣Ar(i
∗) = Er ∀r ∈ [R]

)

=
∑
r∈[R]

∑
i∈Er

P

(
∃t ∈ N :

1

t

∣∣∣ t∑
t′=1

r(oi|Er (t
′))− t · EX∼νi|Er

[r(X)]
∣∣∣ ≥ cδ/(kR)(t)

∣∣∣Ar(i
∗) = Er ∀r ∈ [R]

)

=
∑
r∈[R]

∑
i∈Er

P

(
∃t ∈ N :

∣∣∣ t∑
t′=1

r(oi|Er (t
′))− t · EX∼νi|Er

[r(X)]
∣∣∣ ≥ c̃δ/(kR)(t)

∣∣∣Ar(i
∗) = Er ∀r ∈ [R]

)

≤
∑
r∈[R]

∑
i∈Er

δ

kR
≤ δ,

where we used Lemma E.3 for the second last inequality. Using the law of total probability for all
possible sequences of partitions (Er)r∈[R], we see that the event

E :=
{
∃t ∈ N, r ∈ [R], i ∈ Ar(i

∗) : γi|Ar(i∗)(t) ≥ cδ/(kR)(t)
}

occurs with probability

P(E)

=
∑

(Er)r∈[R]

P
(
∃t ∈ N, r ∈ [R], i ∈ Er : γi|Er

(t) ≥ cδ/(kR)(t)
∣∣∣Ar(i

∗) = Er ∀r ∈ [R]
)

× P(Ar(i
∗) = Er ∀r ∈ [R])

≤ δ
∑

(Er)r∈[R]

P(Ar(i
∗) = Er ∀r ∈ [R]) = δ.

On Ec we have γAr(i∗)(t) < cδ/(kR)(t) for all t ∈ N, r ∈ [R] and thus in particular γ−1
Ar(i∗)

(α) ≥
c−1
δ/(kR)(α) for any α ∈ (0,∞). Since maxQ∈Q≤k(i∗) ∆(f(|Q|)+1)|Q ≤ ε, Theorem 4.1 thus lets us

33

conclude

P (Alg. 1 returns i∗) ≥ P
(
B > Rmaxr∈[R] Prγ

−1
Ar(i∗)

(
∆(f(|Ar(i∗)|)+1)|Ar(i∗)

2

))
≥ P

({
B > Rmaxr∈[R] Prγ

−1
Ar(i∗)

(ε/2)
}
∩ Ec

)
≥ P

({
B > Rmaxr∈[R] Prc

−1
δ/(kR) (ε/2)

}
∩ Ec

)
= P(Ec) ≥ 1− δ,

where the equality holds due to the assumption on B. Consequently, we can conclude the proof by
defining

C(δ, ε, k, R) := c−1
δ/(kR)(ε/2)

≤

⌈
48(1 +

√
1/2)2σ2

ε2
ln

(
2(10kR)2/3

δ2/3 ln(3/2)
ln

(
72 · (10kR)2/3(1 +

√
1/2)2σ2

δ2/3ε2 ln(3/2)

))⌉
+ 1

∈ O
(
σ2

ε2
ln

(
kR

δ
ln

(
kRσ

εδ

)))
.

E.2 Stochastic Preference Winner Feedback: Proof of Corollary 5.2

The following two lemmata serve as a preparation for the proof of Corollary 5.2. But first let us
introduce the (k − 1)-simplex

Sk =

{
(pi)i∈[k] ∈ [0, 1]k :

∑k

i=1
pi = 1 ∧ ∀i : pi ≥ 0

}
.

Lemma E.4 (Dvoretzky-Kiefer-Wolfowitz inequality for categorical random variables). Let {Xt}t∈N
be a sequence of iid random variables Xt ∼ Cat(p) for some p ∈ Sk. For t ∈ N let p̂t be the
corresponding empirical distribution after the t observationsX1, . . . , Xt, i.e., p̂ti =

1
t

∑t
s=1 1{Xs=i}

for all i ∈ [k]. Then, we have for any ε > 0 and t ∈ N the estimate

P
(∣∣∣∣p̂t − p

∣∣∣∣
∞ > ε

)
≤ 4e−tε2/2.

Proof. Confer [19, 35] as well as Theorem 11.6 in [29]. Moreover, note that the cumulative dis-
tribution functions F resp. F̂ t of X1 ∼ Cat(p) resp. p̂t fulfill pj = F (j) − F (j − 1) and
p̂tj = F̂ t(j)− F̂ t(j − 1) and thus

|p̂tj − pj | ≤ |F̂ t(j)− F (j)|+ |F̂ t(j − 1)− F (j − 1)|.

for each j ∈ [k].

Lemma E.5. For every β ∈ [1, e/2], c1, c2 > 0 the number

x :=
β

c1

(
ln

(
c2e

cβ1

)
+ ln ln

(
c2

cβ1

))

fulfills c1x ≥ ln(c2x
β).

Proof. This is Lemma 18 in [20].

Proof of Corollary 5.2. For t ∈ N and γ ∈ (0, 1) define

cγ(t) :=

√
4 ln(2π2t2/(3γ))

t

34

and note that, for any fixed γ, the function cγ : N → (0,∞), t 7→ cγ(t) is strictly monotonically
decreasing with limt→∞ cγ(t) = 0. For any α > 0, γ ∈ (0, 1), we obtain via Lemma E.5 with the
choices β = 1, c1 = α2

8 and c2 =
√
2/(3γ)π the estimate

c−1
γ (α) = min

{
t ∈ N : 4 ln(2π2t2/(3γ)) ≤ tα2

}
= min

{
t ∈ N : ln

(√
2/(3γ)πt

)
≤ α2

8
t

}
≤

⌈
8

α2

(
ln

(
8
√
2/(3γ)πe

α2

)
+ ln ln

(
8
√
2/(3γ)π

α2

))⌉
+ 1.

Now, suppose maxQ∈Q≤k(i∗) ∆(f(|Q|)+1)|Q ≤ ε and that Algorithm 1 is started with a budget B
larger than

c−1
δ/R(ε/2) ·Rmaxr∈[R] Pr.

Recall that in this preference-based setting we use as the statistic the empirical mean of the (winner)
observations we obtained for arm i after querying Q (with i ∈ Q) for t many times. In particular, we
set

si|Q(t) =
wi|Q(t)

t
=

1

t

∑t

t′=1
oi|Q(t

′),

where oi|Q(t′) = 1 if arm i is the preferred (or winning) arm among the arms in Q, if Q is queried
for the t′-th time, and 0 otherwise. Thus, wi|Q(t) is the total number of times arm i has won in
the query set Q after t queries. Moreover, γi|Q(t) = |si|Q(t) − Si|Q|, where Si|Q = pi|Q and
oi|Q(t

′) ∼ Cat(pQ). With this, we obtain for any t ∈ N and any possible sequence of partitions
(Er)r∈[R] ∈ (Q≤k)

R with P(Ar(i
∗) = Er ∀r ∈ [R]) > 0 that

P
(
∃r ∈ [R] : γi|Er

(t) ≥ cδ/R(t)
∣∣∣Ar(i

∗) = Er ∀r ∈ [R]
)

≤
∑
r∈[R]

P
(
γi|Er

(t) ≥ cδ/R(t)
∣∣∣Ar(i

∗) = Er ∀r ∈ [R]
)

=
∑
r∈[R]

P

(
maxi∈Er

∣∣1
t

t∑
t′=1

oi|Er
(t′)− Si|Er

∣∣ >√4 ln(2π2t2/(3γ))

t

∣∣∣Ar(i
∗) = Er ∀r ∈ [R]

)

≤ 6δ

π2t2
,

where we used Lemma E.4 in the last inequality. Using the law of total probability for all possible
sequences of partitions (Er)r∈[R], we see that the event

E :=
{
∃t ∈ N, r ∈ [R] : γAr(i∗)(t) ≥ cδ/R(t)

}
occurs with probability

P(E) ≤
∑
t∈N

∑
(Er)r∈[R]

P
(
∃r ∈ [R] : γEr

(t) ≥ cδ/R(t)
∣∣∣Ar(i

∗) = Er ∀r ∈ [R]
)

× P(Ar(i
∗) = Er ∀r ∈ [R])

≤
∑

t∈N

6δ

π2t2

∑
(Er)r∈[R]

P(Ar(i
∗) = Er ∀r ∈ [R]) ≤ δ.

On Ec we have γAr(i∗)(t) < cδ/R(t) for all t ∈ N, r ∈ [R] and thus in particular γ−1
Ar(i∗)

(α) ≥
c−1
δ/R(α) for any α ∈ (0,∞). Since maxQ∈Q≤k(i∗) ∆(f(|Q|)+1)|Q ≤ ε, Theorem 4.1 thus lets us

conclude

P (Alg. 1 returns i∗) ≥ P
(
B > Rmaxr∈[R] Prγ

−1
Ar(i∗)

(
∆(f(|Ar(i∗)|)+1)|Ar(i∗)

2

))
≥ P

({
B > Rmaxr∈[R] Prγ

−1
Ar(i∗)

(ε/2)
}
∩ Ec

)
≥ P

({
B > Rmaxr∈[R] Prc

−1
δ/R (ε/2)

}
∩ Ec

)
= P(Ec) ≥ 1− δ,

35

where the equality holds due to the assumption on B. Consequently, the statement holds with

C(δ, ε, k,R) := c−1
δ/R(ε/2)

≤

⌈
32

ε2

(
ln

(
32
√

2R/(3δ)πe

ε2

)
+ ln ln

(
32
√
2R/(3δ)π

ε2

))⌉
+ 1

∈ O
(

1

ε2
ln

(
R

δε4

))
.

36

F Comparisons of the Algorithms

In the following we summarize the theoretical results obtained for our proposed algorithms in a
concise way. First of all, we give an overview of the individual key quantities of each algorithm in
Table 2, where we assume w.l.o.g. that

(
n
k

)
is a divisor ofB in ROUNDROBIN to make the assignments

of R, Pr and f(s) for ROUNDROBIN well-defined. The maximal number of different query sets is
derived in Section F.1.

Table 2: Comparison of the maximal number of rounds, the maximal number of partitions per
round, the amount of retained arms from each partition and the maximal number of query sets for
ROUNDROBIN and our proposed algorithms CSWS, CSR and CSH.

Alg. R Pr f(x) max#query_sets

ROUNDROBIN 1
(
n
k

)
x 7→ x

(
n
k

)
CSWS ⌈logk(n)⌉+ 1

⌈
n
kr

⌉
x 7→ 1 RCSWS + n ·

(
1−1/k⌈logk(n)⌉+1

k−1

)
CSR

⌈
log1− 1

k

(
1
n

)⌉
+ k − 1

⌈
n(1− 1

k)(r−1)

k

⌉
x 7→ x− 1 RCSR + n

(
1−

(
1− 1

k

)⌈log
1− 1

k
(1

n)⌉+k−1
)

CSH ⌈log2(n)⌉+ ⌈log2(k)⌉
⌈

n
2r−1k

⌉
x 7→

⌈
x
2

⌉
RCSH + 2n

k

(
1− 1/2⌈log2(n)⌉+⌈log2(k)⌉

)

Using Remark D.1 we can derive the following sufficient budgets of the algorithms summarized in
the following table, where π(Q) ∈ Q be the ⌊ |Q|

2 ⌋+ 1- th best arm with respect to (Si|Q)i∈Q.

Table 3: Comparison of the sufficient budget for ROUNDROBIN and our proposed algorithms CSWS,
CSR and CSH.

Algorithm Sufficient budget

ROUNDROBIN
(
n
k

)
maxi∈A,i̸=i∗B

(
γ̂max
i∗B,i

)−1
(

SB
i∗B

−SB
i

2

)
CSWS

⌈
n
k

⌉
(⌈logk(n)⌉+ 1) ·maxQ∈Q≤k:i∗∈Q maxi∈Q\{i∗}

⌈
γ̄−1

(
Si∗|Q−Si|Q

2

)⌉
CSR

⌈
n
k

⌉ (⌈
log1− 1

k

(
1
n

)⌉
+ k − 1

)
·maxQ∈Q≤k:i∗∈Q mini∈Q\{i∗}

⌈
γ̄−1

(
Si∗|Q−Si|Q

2

)⌉
CSH ⌈nk ⌉ (⌈log2(n)⌉+ ⌈log2(k)⌉) ·maxQ∈Q≤k:i∗∈Q

⌈
γ̄−1

(
Si∗|Q−Sπ(Q)|Q

2

)⌉

In Section F.2 we compare these quantities for the special case, in which the gaps ∆i|Q = Si∗|Q−Si|Q
are all equal to some ∆ > 0, while in Section F.3 we derive the sufficient budgets resulting from
Corollaries 5.1 and 5.2 for the reward setting and preference-based setting, respectively, to return
the best arm with high probability in the stochastic setting. Note that if γi|Q(t) = γ(t) and S(2)|Q =
· · · = S(|Q|)|Q are fulfilled for all Q ∈ Q≤k, i ∈ Q and t ∈ N, then the lower bound in Theorem 3.1
(i) matches the above upper bound for CSWS up to a factor C = ⌈logk(n)⌉+ 1.

F.1 Maximal Number of Different Query Sets

The maximal number of required query sets for each algorithm is
∑R

r=1 Pr. Note that this is a
geometric series and thus the partial sum can easily be computed for each of our proposed algorithms.

37

CSWS By using the specified valued of R and Pr for CSWS, we obtain that the number of different
query set is at most

RCSWS∑
r=1

PCSWS
r =

⌈logk(n)⌉+1∑
r=1

⌈ n
kr

⌉

≤ ⌈logk(n)⌉+ 1 +

⌈logk(n)⌉+1∑
r=1

n

kr

= ⌈logk(n)⌉+ 1 + n ·

⌈logk(n)⌉+1∑
r=0

(
1

k

)r

− 1

= ⌈logk(n)⌉+ 1 + n ·

(
1− 1/k⌈logk(n)⌉+2

1− 1/k
− 1

)
= ⌈logk(n)⌉+ 1 + n ·

(
1− 1/k⌈logk(n)⌉+1

k − 1

)
,

where we used for the inequality that ⌈x⌉ ≤ x+ 1 for any x ∈ R.

CSR For CSR we get as an upper bound on the number of different query sets:

RCSR∑
r=1

PCSR
r =

⌈log
1− 1

k
(1

n)⌉+k−1∑
r=1

⌈
n
(
1− 1

k

)r−1

k

⌉

≤
⌈
log1− 1

k

(
1

n

)⌉
+ k − 1 +

⌈log
1− 1

k
(1

n)⌉+k−1∑
r=1

n
(
1− 1

k

)r−1

k

=

⌈
log1− 1

k

(
1

n

)⌉
+ k − 1 +

n

k

⌈log
1− 1

k
(1

n)⌉+k−2∑
r=0

(
1− 1

k

)r

=

⌈
log1− 1

k

(
1

n

)⌉
+ k − 1 +

n

k

(
1−

(
1− 1

k

)⌈log
1− 1

k
(1

n)⌉+k−1
)

(
1−

(
1− 1

k

))
=

⌈
log1− 1

k

(
1

n

)⌉
+ k − 1 + n

(
1−

(
1− 1

k

)⌈log
1− 1

k
(1

n)⌉+k−1
)
.

CSH Similarly, we can obtain for CSH the following maximum number of different query sets:

RCSH∑
r=1

PCSH
r =

⌈log2(n)⌉+⌈log2(k)⌉∑
r=1

⌈ n

2r−1k

⌉

≤ ⌈log2(n)⌉+ ⌈log2(k)⌉+
⌈log2(n)⌉+⌈log2(k)⌉∑

r=1

n

2r−1k

= ⌈log2(n)⌉+ ⌈log2(k)⌉+
n

k

⌈log2(n)⌉+⌈log2(k)⌉−1∑
r=0

(
1

2

)r

= ⌈log2(n)⌉+ ⌈log2(k)⌉+
2n

k

(
1− 1/2⌈log2(n)⌉+⌈log2(k)⌉

)
.

These upper bounds on the maximum number of different query sets are summarized in Table 2. Note
that ROUNDROBIN by design queries the possible query sets of Q=k in a round-robin fashion, so
that the number of different query sets is indeed |Q=k| =

(
n
k

)
.

38

F.2 Comparison of Sufficient Budgets

In order to compare the derived sufficient budgets of the different algorithms (see Table 3), we
consider in the following the setting where the generalized Condorcet winner coincides with the
generalized Borda winner. In addition we assume that the limit statistic Si|Q for each arm i ∈ A
has always the same difference to the limit of the optimal arm Si∗|Q if i∗ ∈ Q. More precisely, for
each arms i ∈ A and each query set Q ∈ Q≤k we have ∆i|Q = ∆ for some fixed ∆ > 0. In this
way, the γ-dependent term present in the sufficient budget for each algorithm is simply

⌈
γ̄−1

(
∆
2

)⌉
.

As a consequence, we can neglect this term as it has no influence on the differences in the desired
budgets for the various algorithms and the remaining term based on the product of the number of
rounds, i.e. R, and the number of partitions in round 1, i.e. P1, is driving the (rough) sufficient budget
bounds (see Table 2). However, the number of partitions in round 1 is the same for all algorithms, so
that we can neglect this term as well. With a slight abuse of denotation, we refer to this remainder
term simply as the sufficient budget in the following. With these considerations, it is easy to see that
ROUNDROBIN requires the highest sufficient budget even for moderate sizes of n if k is sufficiently
lower than n. To get an impression how the sufficient budget behaves for the more sophisticated
algorithms based on the successive elimination strategy, we plot these in Figure 2 as curves depending
on the number of arms n for different subset sizes k. Note, that in contrast to CSWS and CSH, the
sufficient budget of CSR is higher for bigger subset sizes k, since only a smaller proportion of all
arms is discarded after each round. In the case k = 2 the number of rounds are all the same, so that
consequently the sufficient budget is the same for all three algorithms.

Figure 2: Comparison of required budget for our proposed algorithms for different values of the
number of arms n and the subset size k.

39

F.3 Applications to Stochastic Settings

In Table 4 the sufficient budgets for our proposed algorithms in the stochastic setting with reward
feedback and preference-based feedback are listed. Note, that these results are simply derived by
applying Corollary 5.1 and resp. Corollary 5.2 with the specific instantiations of R and Pr for our
algorithms (see Tables 2 and 3).

Table 4: Comparison of the sufficient budgets for our proposed algorithms CSWS, CSR and CSH in
the reward and preference-based setting.

Alg. Budget in reward setting

CSWS 1
ϵ2 ln

(
k(⌈logk(n)⌉+1)

δ ln
(

k(⌈logk(n)⌉+1)
ϵδ

))
· (⌈logk(n)⌉+ 1)

⌈
n
k

⌉
CSR 1

ϵ2 ln

k

(⌈
log

1− 1
k
(1

n)
⌉
+k−1

)
δ ln

k

(⌈
log

1− 1
k
(1

n)
⌉
+k−1

)
ϵδ

 · (⌈log1− 1
k

(
1
n

)⌉
+ k − 1

) ⌈
n
k

⌉
CSH 1

ϵ2 ln
(

k(⌈log2(n)⌉+⌈log2(k)⌉)
δ ln

(
k(⌈log2(n)⌉+⌈log2(k)⌉)

ϵδ

))
· (⌈log2(n)⌉+ ⌈log2(k)⌉)

⌈
n
k

⌉
Alg. Budget in preference-based setting

CSWS 1
ϵ2 ln

(
⌈logk(n)⌉+1

δϵ4

)
· (⌈logk(n)⌉+ 1)

⌈
n
k

⌉
CSR 1

ϵ2 ln

⌈
log

1− 1
k
(1

n)
⌉
+k−1

δϵ4

 · (⌈log1− 1
k

(
1
n

)⌉
+ k − 1

) ⌈
n
k

⌉
CSH 1

ϵ2 ln
(

⌈log2(n)⌉+⌈log2(k)⌉
δϵ4

)
· (⌈log2(n)⌉+ ⌈log2(k)⌉)

⌈
n
k

⌉

40

G Further Experiments

In the following, we present some further experiments comparing our proposed algorithms with each
other on synthetic data including a detailed description of the data generation and the experiment
setting.

G.1 Synthetic Data

For each Q ∈ Q≤k with Q = {i1, . . . , i|Q|} we consider the case where the observation vector oQ is
a random sample from a multivariate Gaussian distribution with mean µQ = (µi1|Q, . . . , µi|Q||Q)

⊤

and a diagonal covariance matrix diag(σi1|Q, . . . , σi|Q||Q). Here, µij |Q are values in [0, 1] for
ij ̸= i∗ and σi|Q in [0.05, 0.2] (all randomly sampled). For any Q with i∗ ∈ Q we set
µi∗|Q = maxj∈Q,j ̸=i∗ µj|Q + ε for some ε > 0, which ensures (A2) to hold for the expected
values. In our experiments we always use a value of ε = 0.1. In the following we vary the values of
n ∈ {50, 100}, k ∈ {2, 4, 6, 8, 10} and B ∈ {50, 100, 200, 300, 500}.
We consider a reward setting and use the empirical mean as the statistic (see Section 5). We do not
force the generalized Borda winner to be the same as the generalized Condorcet winner, but they
naturally coincidence in most of the runs by sampling the observation vector as defined above.

Figure 3: Success rates of our proposed algorithms for varying n, k and budget B in the reward
setting.

The success rates of our proposed algorithms for identifying i∗ given a budget B are shown in Figure
3. It is visible, that in particular for the challenging scenario, where the budget B and the subset size
k are small and the number of arms n is large, both CSH and CSR perform well. Especially CSH has
overall a solid performance.

Reward setting. In contrast to the experiments with reward feedback shown in the main paper,
we try in the following experiments to force the generalized Borda winner to be different from
the generalized Condorcet winner. For this purpose, we fix one random arm i∗B ∈ [n]\{i∗} as the
prospective generalized Borda winner and set its expected value to µi∗B|Q = maxj∈Q,j ̸=i∗B

µj|Q + 2ϵ

for any Q ∈ Q≤k with i∗B ∈ Q and i∗ /∈ Q. Thus, i∗B is likely the generalized Borda winner and is
different from the generalized Condorcet winner. Since our goal is to find the generalized Condorcet
winner i∗, ROUNDROBIN will probably fail most of the times in finding i∗. This is due to the fact
that ROUNDROBIN focuses on identifying i∗B, i.e., the the generalized Borda winner, which, however,
does not coincidence with the generalized Condorcet winner i∗.

This suspicion is confirmed by the results of the experiments shown in Figure 4 illustrating the
empirical success rates for finding the generalized Condorcet winner in the setting described above.
Except for some cases where the subset size k is relatively large in comparison to the total number of
arms, such that the generalized Condorcet winner is already contained in most of the seen subsets
and hence is automatically also the generalized Borda winner, ROUNDROBIN performs poorly in
finding the generalized Condorcet winner and is always outperformed by the algorithms based on the
combinatorial successive elimination strategy in Section 4.1.

Preference-based setting with different GCW and GBW. In the preference-based setting we
ignore the explicit numerical values of the observation vector and only use the information which

41

Figure 4: Success rates of our proposed algorithms for varying n, k and budget B in the reward
setting with different generalized Condorcet winner and generalized Borda winner.

Figure 5: Success rates of our proposed algorithms for varying n, k and budget B in the preference-
based setting with different generalized Condorcet winner and generalized Borda winner.

arm was (not) the winner, i.e., which had (not) the highest observation value in the query set used
, formally sij |Q(t) =

1
t

∑t
s=1 1{oij |Q(s) = maxi=i1,...i|Q| oi|Q(s)}. Additionally, we fix one arm

i∗B ∈ [n]\{i∗} and set µi∗B|Q = maxj∈Q,j ̸=i∗B
µj|Q + 2ε for any Q with i∗B ∈ Q and i∗ /∈ Q. In this

way, i∗B is the generalized Borda winner and different from i∗.

The success rates of our proposed algorithms for identifying i∗ in this setting are shown in Figure 5.
As expected our methods outperform ROUNDROBIN in all scenarios.

Preference-based setting. We now investigate the case, in which we do not force the generalized
Borda winner and the generalized Condorcet winner to be different, thus they will naturally coinci-
dence in most of the cases. This is achieved by considering the problem configuration as in the reward
setting specified in Section 6, and ignoring the explicit numerical values (as in the preference-setting
above).

The resulting success rates for finding the generalized Condorcet winner illustrated in Figure 6 are
similar to the results in the reward setting for matching generalized Condorcet winner and generalized

42

Borda winner. This means that, in particular, when the budget is small, the number of arms is
large and the subset size is small, the algorithms following the combinatorial successive elimination
strategy outperform ROUNDROBIN. Note that this setting is arguably the most relevant setup for
practical applications. Moreover, Figure 6 illustrates the natural effect one would expect for the
number of arms n on success rates, namely that success rates decrease with a larger number of arms.

Figure 6: Success rates of our proposed algorithms for varying n, k and budget B in the preference-
based setting with (mostly) matching generalized Condorcet winner and generalized Borda winner.

43

G.2 Statistics beyond the Arithmetic Mean

We consider in the following the reward setting, where each observation is random sampled from the
following distribution

oQ(t) ∼ N

 µ1|Q

...
µ|Q||Q

 ,

 σ1|Q
...

σ|Q||Q

for µi|Q is sampled randomly from [0, 1] and σi|Q from [0.05, 0.2] for each arm i ∈ Q.

Median An alternative to the arithmetic mean would be to measure the quality of the arms by the
median of the seen observations. In particular, when the observations are prone to outliers, the median
provides a more robust statistic: si|Q(t) = MEDIAN(oi|Q(1), . . . , oi|Q(t)) for each arm i ∈ Q. The
results for this setting are illustrated in Figure 7.

Figure 7: Success rates of our proposed algorithms for varying n, k and budget B in the rewards
setting with (mostly) matching generalized Condorcet winner and generalized Borda winner and
using the median as the statistic.

Power-Mean Another possibility is to use the so called power-mean, which is a compromise
between the maximum and the arithmetic mean for a (multi)set of observations. Since the arithmetic
mean is known to underestimate the true quality of an arm, while the maximum overestimates it,
the power mean is often a good compromise, as it lies between the two. It is defined by si|Q(t) =(

1
t

∑t
t′=1 oi|Q(t

′)q
)1/q

for each arm i ∈ Q and a fixed q ∈ N. We use in the following q = 2. The
results for this setting are illustrated in Figure 8.

Figure 8: Success rates of our proposed algorithms for varying n, k and budget B in the rewards
setting with (mostly) matching generalized Condorcet winner and generalized Borda winner and
using the power mean as the statistic.

44

