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Abstract

Understanding how the dynamics of neural networks is shaped by the computations
they perform is a fundamental question in neuroscience. Recently, the framework
of efficient coding proposed a theory of how spiking neural networks can compute
low-dimensional stimulus signals with high efficiency. Efficient spiking networks
are based on time-dependent minimization of a loss function related to information
coding with spikes. To inform the understanding of the function and dynamics
of biological networks in the brain, however, the mathematical models have to
be informed by biology and obey the same constraints as biological networks.
Currently, spiking network models of efficient coding have been extended to include
some features of biological plausibility, such as architectures with excitatory and
inhibitory neurons. However, biological realism of efficient coding theories is
still limited to simple cases and does not include single neuron and network
properties that are known to be key in biological circuits. Here, we revisit the
theory of efficient coding with spikes to develop spiking neural networks that are
closer to biological circuits. Namely, we find a biologically plausible spiking
model realizing efficient coding in the case of a generalized leaky integrate-and-
fire network with excitatory and inhibitory units, equipped with fast and slow
synaptic currents, local homeostatic currents such as spike-triggered adaptation,
hyperpolarization-activated rebound current, heterogeneous firing thresholds and
resets, heterogeneous postsynaptic potentials, and structured, low-rank connectivity.
We show how the complexity of E-E connectivity matrix shapes network responses.

1 Introduction

Complex biological systems are thought to be shaped through evolution to perform optimally a set of
desired functions within the constraints of their biological features. A bulk of previous influential
work [34, 25, 9] has proposed that the organization of the mammalian cortex, the most sophisticated
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biological organ, makes no exception and follows too the general principles of evolution towards
optimality under biological constraints.

One prominent theory is that the function of the cerebral cortex is organized for efficient coding, in
that it optimizes the encoding of information under a number of biological constraints such as the
metabolic expenditure, the speed and the timing of information coding. Imposed constraints can be
formalized with a loss function.

To understand biological neural networks that operate in animal’s brains, the mathematical description
of networks optimizing functionally relevant loss functions has to include as many features of biolog-
ical realism as possible, so that the constraints satisfied by the model network will be informative of
those obeyed by biological neural circuits. Thus, all elements of the model should have a counterpart
in biological circuits [15] and be directly relatable to them. It is still unclear how to derive efficient
coding theories of biologically plausible neuronal networks.

An influential proposal of efficient coding in cortical circuits has been that visual cortical circuits
extract statistical regularities from static natural images with a sparse set of basis functions, which
yielded basis functions that resemble receptive fields in primary visual cortex (V1) [34, 35]. A
related proposal in the domain of auditory processing yielded auditory circuits that extract statistical
regularities of natural sounds with a set of basis functions that resemble the tuning properties of
auditory nerve fibers [25]. In these studies, the goal of efficient coding is to learn sparse spatial or
temporal filters that enables optimal information encoding about the stimulus by the activity of each
single neuron. Analyses of cortical networks, however, show that neurons are recurrently connected
and that information processing tends to be distributed across neurons [18]. In recurrently connected
circuits, neuron-to-neuron interactions typically strongly impact on the information encoded in the
spiking activity [43] as well as on how this information is transmitted to and read out by downstream
structures to produce relevant behavioral outputs [44, 48, 37]. Moreover, analyses of spike trains
recorded in the cerebral cortex show that millisecond precision of spike timing of sensory neurons
carries information about both static [40, 36] and dynamic stimuli [20, 32], which suggests that the
temporal information in spiking activity is highly relevant for the information processing in the cortex.
Thus, analyses of empirical neural data strongly suggest that biologically relevant theories of coding
in the cerebral cortex must rely on spiking neuron models and on population codes.

To address this issue, models of how to optimally perform a given coding function have been extended
to spiking dynamics [3]. Models of efficient coding with spikes are developed from a loss function
that includes a quadratic error between the desired signal and its estimate (see the Supplementary
material). Equations for the subthreshold dynamics of membrane potentials and firing thresholds
are analytically derived by assuming that the error is minimized with every spike [1, 5]. However,
the efficient coding with spikes, and the related theory of predictive coding [51], have been so far
developed as abstract mathematical frameworks that lack biological realism. Namely, these models
are not consistent with the observation that a single neuron can be either excitatory or inhibitory,
but not both (Dale’s principle, [11, 19]). Very recently, progress has been made in this direction by
deriving efficient coding with spiking networks with a more biologically plausible neural circuit
architecture with interacting excitatory (E) and inhibitory (I) neurons [26], opening the possibility to
model neural computations with biologically relevant models.

Here, we make major further progress by deriving a mathematically well-defined extension of efficient
coding for considerably more biologically plausible spiking neural network models of cortical circuits.
We develop a recurrently connected neural circuit with E and I neurons that performs a generic linear
transformation between its inputs and its outputs. We impose the E-I architecture and recover a
network with low-rank and structured connectivity that maximizes the information transmission
about the stimulus with every spike. Here, we derive a solution of the spiking network model from
optimality principles that includes many desirable and biologically realistic properties. Our solution
takes the form of a biologically plausible generalized leaky integrate-and-fire (LIF) neuron model and
satisfies the principle of functional specificity of excitatory and inhibitory neurons (Dale’s principle).
Our solution also prescribes faster membrane time constant of I compared to E neurons, compatible
with the biophysical properties of pyramidal neurons and fast-spiking inhibitory interneurons. Our
derivations prescribe subthreshold dynamics, firing thresholds and resets after spiking, thus giving a
complete description of a spiking neural network along with network’s computation. Importantly,
all elements of the model are biologically plausible and directly relatable to empirically measurable
currents in neurons.
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The paper is structured as follows. We first introduce the loss functions and explaining how the spike
timing is conditioned on a minimization of loss functions of E and I neurons in every time step. We
then outline the analytical treatment of loss functions that leads to expressions of membrane potentials
and firing thresholds of a generalized LIF network model with structured, low-rank connectivity.
Further, we provide a description and biologically plausible interpretation of derived currents. Finally,
we simulate the network with biologically plausible parameters and analyze the behavior of the
network with respect to the complexity of E-E synaptic connections.

2 Results

2.1 Minimization of the loss function with spiking neurons

From a spiking network of NE excitatory and N I inhibitory neurons, we define a linear population
readout of the spiking activity of E and I neurons:

˙̂xy(t) = − 1

τy
x̂y(t) +WY fy(t), y ∈ {E, I}, (1)

with τy > 0 the time constant of the population readout. In the population readout, the decoding
matrix Wy weights the vector of spikes fy(t) = [fy

1 (t), . . . , f
y
Ny

(t)]⊺. The M -by-Ny matrix Wy

associates each of the NE excitatory (NI inhibitory) neurons with M weights, Wy = (wy
mi);m =

1 . . . ,M, i = 1, . . . , Ny , where Ny is the number of neurons of the cell type y, and M is the number
of stimulus features estimated by the network. The population readout in eq. (1) is an estimate of the
desired signal x(t), that is not directly accessible to the network.

We assume that the desired signal x(t) is a linear function of stimulus features s(t) =
[s1(t), . . . , sm(t), . . . , sM (t)]⊺ and is defined as follows:

ẋ(t) = Ax(t) + s(t), (2)

where A = (amn); m,n = 1, ...,M is a square matrix determining the linear transformation between
the input features s(t) and the desired signal x(t). We will refer to the transformation between
the features and the desired signal as network’s computation. If A is a diagonal matrix, network’s
computation operates independently across features, while a non-diagonal matrix A implements
linear mixing of features.

We hypothesize that the objective of the excitatory network is to minimize the distance between
the desired signal and the population readout of E neurons, while the objective of the inhibitory
population is to minimize the distance between the readout of the E and I populations [3, 7]. Besides
the coding error, we also take into account the metabolic cost on spiking, since spiking activity in the
brain is energetically expensive [33]. These objectives are formalized by two loss functions with a
quadratic coding error and a quadratic regularizer [16], relative to E and I cell type:

LE(t) =

M∑
m=1

(xm(t)− x̂E
m(t))2 + µE

NE∑
i=1

(rEi (t))
2 (3a)

LI(t) =

M∑
m=1

(x̂E
m(t)− x̂I

m(t))2 + µI

NI∑
i=1

(rIi (t))
2, (3b)

where constants µE , µI > 0 are weighting the relative contribution of the metabolic cost over the
coding error. The low-pass filtered spike train of the neuron i is defined as

ṙyi = − 1

τ r,yi

ryi (t) + fy
i (t), y ∈ {E, I}, (4)

with τ r,yi > 0 the time constant of the low-pass filter. Gathering the variables ryi (t) across neurons,
we define a vector of time-dependent neural activities ry(t) = [ry1(t), . . . , r

y
Ny

]⊺. Note that an
alternative to the loss function in eq. (3b) would be to minimize the distance between the readout of
the I population and the signal. However, such a formulation, without further approximations, leads
to a network where E and I neurons are unconnected.
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We assume that neuron i of cell type y will fire a spike at time t = t+ if and only if this decreases the
loss function, i.e.

Ly

(
t+|

[
fy
i (t

+) = 1
]
+ ηyi (t

+)
)
< Ly

(
t−|

[
fy
i (t

−) = 0
])

, (5)

with the noise term ηyi (t) = σy
i ξ

y
i (t). Gaussian random variable ξyi (t) has zero mean and covariance

⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′), and σy
i is the noise intensity. Contrary to previous approaches where the

noise is added in the membrane potential [3, 23], we here assume noise in the condition for spiking
(eq. 5). While the noise in the membrane potential models synaptic inputs that are unrelated to the
coding function of the network, the noise as in eq. 5 captures the noise in spike generation for a
given membrane potential, a source of noise that characterizes spike generation in biological neurons
[12]. In biological neurons, a spike is initiated when a sufficient fraction of sodium channels in the
neural membrane is opened, and the fraction of open channels for a given membrane potential is
probabilistic.

Assuming that a spike in neuron i at time t+ is only fired if this decreases the loss function in eq. (5),
we apply an analytical treatment of eqs. 3a-3b similar to [3, 23], and obtain the following expressions:

w⊺
E (x(t)− x̂E(t))− µEr

E
i (t) >

1

2

(
∥wE

i ∥22 + µE

)
+ σE

i ξ
E
i (t)

w⊺
I (x̂E(t)− x̂I(t))− µIr

I
i (t) >

1

2

(
∥wI

i ∥22 + µI

)
+ σI

i ξ
I
i (t)

(6)

with ∥wy
i ∥22 the squared length of decoding vector of the neuron i, ∥wy

i ∥22 =
∑M

m=1(w
y
mi)

2. Since we
assumed threshold crossing, we interpret the left-hand side of eq. (6) as the membrane potential and the
right-hand side as the firing threshold of the neuron i. Note that the firing threshold has a deterministic
and a stochastic part. Collecting membrane potentials across neurons, uy(t) = [uy

1(t), . . . , u
y
Ny

(t)]⊺

with y ∈ {E, I}, we express them with vector notation as follows:

uE(t) ≡ W ⊺
E (x(t)− x̂E(t))− µErE(t)

uI(t) ≡ W ⊺
I (x̂E(t)− x̂I(t))− µIrI(t).

(7)

To express the temporal dynamics of the membrane potentials, u̇E(t) and u̇I(t), we take the time-
derivative of all time-dependent terms in eq. (6). Contrary to previous approaches and without loss
of generality, we express the mixing matrix A as a difference of a square matrix B and a diagonal
matrix λEI

MxM ,
A = B − λEI

MxM , (8)
with I the identity matrix. Seen that loss functions minimize the distance between the signal and
the E estimate (eq. 3a), and between the E and the I estimates (eq. 3b), we use the approximations
x(t) ≈ x̂E(t) and x̂E(t) ≈ x̂I(t). Moreover, we remove synaptic connections that violate Dale’s law
(see the Supplementary material). After re-arranging the terms and without further approximations,
interestingly, the network model can be expressed as a generalized LIF model with structured
connectivity.

2.2 Generalized integrate-and-fire network with low-rank structured connectivity

Due to substitutions of the signal and the estimates, we write the membrane potential as uy
i (t) ≈

V y
i (t). The subthreshold dynamics of E and I neurons is then dependent on the following currents:

τE V̇
E
i (t) = −V E

i (t) + I ff
i (t) + IEE

i (t) + IEI
i (t) + I local E

i (t) + I rebound
i (t), (9a)

τI V̇
I
i (t) = −V E

i (t) + IIEi (t) + IIIi (t) + I local I
i (t), (9b)

and complemented with fire-and-reset rule: if V y
i (t

−) ≥ ϑy
i (t

−) → V y
i (t

+) = V reset y
i . For

simplicity, we set the resting potential of all neurons to V rest = 0, but a biologically plausible resting
potential can be introduced in eqs. (9a)-(9b) without affecting network’s dynamics. From eq.(6), the
firing threshold that takes into account the noise in spike generation (eq. 5) is the following:

ϑy
i (t) =

1

2
(µy + ∥wy

i ∥
2
2) + σy

i ξ
y
i (t), y ∈ {E, I}, (10)

while the reset potentials for E and I cell types are
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V reset E
i = −1

2
(µE − ∥wE

i ∥22)

V reset I
i = −1

2
(µI + ∥wI

i ∥22).
(11)

The firing thresholds in eq. 10 and reset potentials in eq. 11 are thus proportional to the length of
decoding vector of the local neuron ∥wy

i ∥2, and to the regularizer µy that affects equally all the
neurons of the same cell type. Note that if decoding weights wy

mi are heterogeneous across neurons,
firing thresholds and resets are heterogeneous as well.

The membrane equations in eqs. 9a-9b depend on a number of currents that, interestingly, all have a
straightforward counterpart in biological networks. The first currents on the right-hand site of eqs.
9a-9b are leak currents, that result from absorbing of several terms, among others the diagonal matrix
λEI

MxM from eq. 8. The feedforward current to E neurons is given by a weighted sum of external
inputs sk(t),

I ff
i (t) = τE

M∑
m=1

wE
mism(t). (12)

Inhibitory synaptic currents to the postsynaptic neuron i are given by a weighted sum of spikes of
presynaptic neurons,

IIIi (t) = −τI

NI∑
j=1
j ̸=i

CII
ij f

I
j (t), IEI

i (t) = −τI

NI∑
j=1

CEI
ij f I

j (t), (13)

with structured connectivity matrices Cyz
ij , where the strength of synaptic connection is proportional

to the similarity of decoding vectors of the presynaptic neuron j and the postsynaptic neuron i,

Cyz
ij =

{
(wy

i )
⊺wz

j , if (wy
i )

⊺wz
j > 0

0, otherwise.
(14)

Note that synaptic connections between neurons with different selectivity (i.e., neuronal pairs with
negative dot product of decoding vectors, (wy

i )
⊺wz

j < 0), have been set to zero to make the network
consistent with Dale’s law (see the Supplementary material). In particular, we had to ensure that
a particular neuron can only send excitatory or inhibitory currents to other neurons, but not both.
Even though there is no direct fast synaptic connections between E-to-E neurons, effectively, fast
synaptic connectivity implements lateral inhibition between E neurons with similar selectivity. Lateral
inhibition (or competition) between E neurons with similar selectivity is a dynamical effect that is
essential for an efficient neural code [21] and has been demonstrated in biological circuits [8].

While local inhibitory synapses have fast kinetics of spike trains (eq. 13), recurrent excitatory synaptic
currents are slower since they are convolved with the synaptic filter zEj (t):

IEE
i (t) = τE

NE∑
j=1
j ̸=i

DEE
ij zEj (t)

IIEi (t) = τE

NE∑
j=1

CIE
ij fE

j (t) +

(
τE
τI

− 1

) NE∑
j=1

DIE
ij zEj (t), τE > τI

żEj (t) = − 1

τ syn
E

zEj (t) + fE
j (t), τ syn

E = τE ,

(15)

with matrices of synaptic interactions:

DyE
ij =

{
(wy

i )
⊺BwE

j , if (wy
i )

⊺wE
j > 0, B positive semi-def.,

0, otherwise.
(16)

where y = E for E-to-E synapses and y = I for E-to-I synapses. Same as with fast synaptic currents
in eq. (13), the strength of the synapse between the presynaptic neuron j and the postsynaptic neuron
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i in eq. (16) depends on the similarity of decoding vectors of the presynaptic and postsynaptic
neurons, (wy

i ) and wE
j . To make slower synaptic currents consistent with Dale’s law, we removed

connections between neurons with different selectivity, i.e., connections for which the following is
true: (wy

i )
⊺wz

j < 0 (see eq. 16). In addition, slower synaptic currents depend on the matrix B that
was expressed from the mixing matrix A (see eq. 8). To ensure that presynaptic excitatory neurons
always cause an excitatory current in the postsynaptic neuron, we constrained the matrix B to positive
semi-definite. Moreover, the excitatory effect of an E-to-I synapse constrains the following relation
of time constants: τI < τE . Since τE and τI are membrane time constants of the E and I cell type,
respectively, this relation constrains the membrane time constant in E neurons to be slower than in I
neurons, consistent with E cell type modeling pyramidal cells while the I cell type models fast-spiking
interneurons [30]. Fast-spiking (somatostatin) interneurons are a prevalent class of inhibitory neurons
in cortical circuits [47]. As pyramidal neurons account for about 80 % of cortical neurons, and
fast-spiking interneurons account for at least a half of inhibitory neurons in the cortex [49], our
model altogether provides a description for about 90 % of cortical neurons. Note that alternative
solutions for slow currents can be formulated (see the Supplementary Material). These alternative
solutions are, however, of lesser biological relevance since they either result in a network without
E-to-E connections, or lead to a global imbalance of E and I currents in the network. Contrary to
fast connections that are expected to implement lateral inhibition among E neurons with similar
selectivity (see eq. 13), slower E-to-E synaptic connections are expected to implement cooperation
among excitatory neurons with similar selectivity.

The efficient E-I network has low-rank connectivity. The rank of fast synaptic connectivity is, by
definition of the connectivity matrices C (eq. 14) and D (eq. 16), equivalent to the maximal number
of features encoded by the network, M . We assume that the number of active features sm(t) is much
smaller than the number of neurons in the network, M << NE , which gives low-rank connectivity
matrices [29]. Low-rank connectivity constrains the neural activity to a low-dimensional manifold,
and the relevance of the latter for the description of the dynamics of biological neural ensembles has
been strongly suggested by empirical neural recordings [13, 50]. Note also that using heterogeneous
and sparse decoding weights wy

i gives heterogeneous and sparse synaptic connectivity.

Next, we have currents that are triggered by spiking of the local neuron,

I local y
i (t) = −µy

(
1− τy

τ r,yi

)
ryi (t), y ∈ {E, I}, (17)

with ryi (t) the single neuron readout with time constant τ r,yi (eq. 4). While the kinetics of the local
current is given by the single neurons readout, the sign and the strength of the current depend on
the relation of time constants between the population readout τy , and the single neuron readout τ r,yi .
To allow the population readout x̂y(t) to track fast changes of the signal x(t), we consider the case
where that the population readout is fast, while the single neuron readout, related to a homeostatic
readout of single neuron’s firing frequency [10], is a slower process. Such a relation of time constants,
τy < τ r,yi for y ∈ {E, I}, constrains the local current in eq. 17 to spike-triggered adaptation [27]. If,
on the contrary, we assume the following relation: τy < τ r,yi , we get spike-triggered facilitation, a
current that might be relevant during learning and restructuring of synaptic connections [39]. Besides
the difference of time constants between the population and the single neuron readout, the strength
of the local current depends on the regularizer µy. In loss functions, the regularizer weights the
importance of the metabolic cost over the coding error (eq. (3a) -(3b)). A strong regularizer µy

implies that the average firing rate contributes strongly to the loss evaluated by the loss function, a
situation where the spiking frequency should be kept in check to keep the loss as small as possible.
The weighting of the metabolic cost over the coding error in the loss functions is implemented
mechanistically as the local current in eq. 17. Its connection with the loss function makes most sense
when the local current is spike-triggered adaptation. An increase of the regularizer µy increases the
importance of the metabolic cost in the loss functions, mechanistically increasing the amplitude of
adaptation, which reduces the firing frequency of the spiking neuron.

Finally, we derived a depolarizing current triggered by the spike of the local excitatory neuron, that we
termed I rebound

i (t). In the efficient spiking network, the diagonal of the E-to-E recurrent connectivity
matrix DEE (eq. 15) implements a positive “self-connection" - as the neuron spikes, it generates
a local depolarizing current with slower kinetics of the low-pass filtered spike train. We write this
effect as follows:

I rebound
i (t) = τED

EE
ii zEi (t), (18)
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with zEi (t) the synaptic filter as in eq. 15. Since the matrix B is constrained to be positive semi-
definite (see eq. 16), the current in eq. 18 is always depolarizing. After a spike, the local neuron
is reset to its reset potential, which, in E neurons, is necessarily below the resting potential (see
eq. 11; the resting potential is here at 0 mV). Right after the spike, the local neuron is therefore
strongly hyperpolarized, and precisely at this moment, the rebound current activates. The current
I rebound
i (t) thus creates a rebound of the membrane potential after a strong hyperpolarization. In

biology, a current with these properties is the hyperpolarization-activated cation current (also called
h-current [38]), a current important for the generation of network oscillations, spontaneous firing and
in controlling the excitability of cortical neurons [28, 42].

2.3 Effect of complexity of E-E connectivity on network responses

In the following, we analyze the effect of the complexity of E-E connections on network responses
with analytical considerations and with simulations. We start by considering a simplified network
model where we assume the matrix A, that determines the transformation between the external input
s(t) and the internal signal x(t) (eq. 8), to be a diagonal matrix. A simple way to do so is to set the
elements of the matrix B to 0, i.e., B = (bmn); bmn = 0 ∀m,n = 1, . . . ,M , which constrains the
desired signal to a leaky integration of input features that is independent across features,

ẋ(t) = −λEx(t) + s(t). (19)

The time constant of the desired signal x(t) is now equal to the time constant of the population
readout of the E cell type in eq. (1), and such a network is devoid of E-E and slower component of E-I
(eq. 15) synaptic currents, as well as of the rebound current (eq. 18). We further simplify the network
by considering the special case where the time constants of the population and the single neuron
readout are equal, (τ r,yi ) = τy ∀i; y ∈ {E, I}, which sets the local currents in eq. (17) to zero.

To simulate the network (the simplified one or a more complex one), we have to set values for
decoding weights wy

mi, which are free parameters. We use unstructured decoding weights that we
draw from the normal distribution with zero mean and standard deviation σy

w, wy
mi ∼ N (0, σy

w), with
σE
w = 1 and the ratio σI

w : σE
w = 3 : 1. We chose decoding weights in the I cell type to be stronger

than in the E cell type, but the number of I neurons is smaller then the number of E neurons, with
a biologically plausible ratio NE : N I = 4 : 1. Decoding weights then determine the strength of
recurrent synaptic connections (eqs. 14 and 16).

As we stimulate the simplified network with a step input in one of the input features, the network
responds with asynchronous spiking of neurons that are aligned to the active feature (Figure 1B). The
feedforward current to neuron i depends on the alignment of the input s(t) with neuron’s decoding
vector wE

i (see eq. 12). When a single feature is activated, e.g. sn(t) ̸= 0, a positive input, sn(t) > 0,
drives neurons with positive decoding weight for the n−th feature (i.e., neurons with wE

ni > 0),
while a negative input, sn(t) < 0, drives neurons with negative decoding weights (neurons with
wE

ni < 0). If several features are active simultaneously, the feedforward current to E neurons is
given by a linear mixture of features. The simplified network is purely feedforward-driven and
the network response never outlasts the stimulus (Figure 1B). The recurrent connectivity of such a
network consists of structured fast connections between neurons with similar decoding selectivity
(eq. 14), and the stronger the similarity of decoding vectors of neurons i and j, the stronger their
synapse.

We then considered a network with E-E and slower E-I connections. In general, E-E and slower E-I
connections emerge when the matrix A in eq 8 is non-diagonal. The minimal requirement for the
emergence of E-E and slower E-I connections is that at least one diagonal element of the matrix A in
eq. 8 is different than the inverse membrane time constant of E neurons, λE . Recurrent excitatory
(E-E) connections and slower E-I connections, DEE and DIE , are then determined by the similarity
of decoding vectors wE

i and wE
j (same as fast connections), as well as on the matrix B (in contrast

to fast connections; see eqs. 14 and 16). Square matrix B is constrained to be positive semi-definite
to ensure that the network obeys Dale’s law (eq.16), and positive semi-definiteness in turn constrains
the matrix B to be symmetric and to have non-negative eigenvalues. To ensure that these properties
are satisfied, we write the matrix B as follows:

B = aΓΓ⊺, Γ = [b1, . . . , bM ′ ] (20)

with a > 0 a positive constant influencing the strength of E-E and slower E-I con-
nections, and b1, . . . , bM ′ , a set of linearly independent column vectors, with entries
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bn = [bn1, . . . , bnM ]⊺, n = 1, . . . ,M ′, and where the number of vectors is constrained as follows:
1 ≤ M ′ ≤ M . In it important to consider that matrix Γ determines the rank of the matrix B, as M ′

linearly independent column vectors set the rank of B to rank(B) = M ′. The rank of the matrix B in
turn determines the rank of connectivity matrices DEE and DIE through eq. (16).

The response of the network now critically depends on the complexity of recurrent excitatory (E-E)
connections. In the simplest case, beyond the trivial case where all elements of B are set to zero
that we discussed above, Γ is defined with a single column vector, Γ = b1. This sets the matrix B
to the following: B = ab1b1

⊺, and determines the rank of the matrix B, as well as the rank of the
E-E connectivity matrix DEE , to rank(B) = rank(DEE) = 1. We simulate such network, setting
the membrane time constants of E and I cell type to biologically plausible values, with τE = 10
ms for pyramidal neurons, and τI = 5 ms for inhibitory interneurons, as measured empirically in
the cerebral cortex [47]. In addition, we assumed time constants of the single neuron readout to be
longer than the time constants of the population readout, as single-neuron readout is assumed to
be a slower process of homeostatic regulation of the firing rate in single neurons. In particular, we
set the time constant of the single neuron read-out to be twice as long as the time constant of the
population read-out. According to eq. (17), such relation of time constants between the single neuron
and population read-out gives spike-triggered adaptation in E and I neurons.

As we simulated such a network, we found a population-wide oscillation in the network activity
(Figure 1C). Such a population-wide oscillation is in contrast to the response of the simpler network
without E-E connections and without spike-triggered adaptation, where the population firing rate
with constant stimulus converges to a constant value after an initial transient (Figure 1B). Similarly to
the simpler network, however, we still have that only neurons aligned with the input feature are active
(e.g., neurons with wy

1i > 0 when the active stimulus feature is s1(t) > 0).

A B C

s(t)

x(t)

wE
T

x̂E(t)

x̂I(t)

CEI CIE

CII

wE

wI

DEE

DIE

Figure 1: (A) Schema of the E-I network. E neurons (gray) receive a linear sum of external inputs s(t).
E and I (magenta) neurons with similar selectivity are recurrently connected. Inhibitory synapses CEI

and CII have fast kinetics, E-to-I synapses have a fast and a slower component (CIE and DIE), while
E-to-E synapses only have the slower kinetics CII and , as well as through slower synapses DEE

and (green). Linear population readout of the spiking activity of E and I cell types define estimates
x̂E(t) and x̂I(t), respectively. (B) Activity of the simplified network without E-E connections and
without the adaptation current. Top: Step input in the first feature s1(t). The remaining features are
inactive. Middle: Spike trains of E and I neurons aligned with the positive input in the first feature
(black and magenta, respectively), and aligned with the negative input in the first feature (blue and
red, respectively). Bottom: Neuron-averaged firing rate, with the same color code as in the middle
plot. Parameters: M = 3, NE = 400, NE : NI = 4 : 1, τE = τI = τ r,Ei = τ r,Ii = 10 ms ∀i,
bmn = 0 ∀m,n = 1, . . . ,M , µE = µI = 6, σE

i = σI
i = 0.167 ∀i, σE

w = 1, σI
w : σE

w = 3 : 1,
dt = 0.02ms. (C) Same as in B but showing the activity of the network with E-E connections and
where E-I synapses have both fast and slow component. The network also has adaptation current
in both E and I neurons. Parameters: τE = 10 ms, τI = 5 ms, τ r,Ei = 20 ms ∀i, τ r,Ii = 10 ms ∀i,
B = ab1

⊺b1 with a = 0.035 and b1 = [0.5, 0, 0.3]⊺, σE
i = σI

i = 0.25 ∀i. Other parameters as in B.

With higher rank of E-E connectivity, the network response reflects mixing of input fea-
tures. We now define the matrix B with M ′ > 1 linearly independent vectors, where
a1b1 + · · ·+ aM ′bM ′ = 0 if and only if an = 0 ∀n. Linear independence of column vectors bn
implies that the matrix B has rank M ′ > 1. The rank of the matrix B than determines the rank of
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E-E connectivity matrix due to eq. (16). We find that with rank of E-E connectivity bigger than 1,
also neurons that are not aligned with the active input feature participate in the network response. As
shown on Figure 2A-B, with s1(t) > 0, excitatory neurons with a positive decoding weight for the
first feature, wE

1i > 0 (black), have similar firing rate than neurons with negative decoding weight for
the same feature, wE

1i < 0 (blue). Since the feedforward current only drives neurons with decoding
weights aligned to the input feature (eq. 12; here neurons with wE

1i > 0 in black), this means that the
response of misaligned neurons (i.e. neurons with wE

1i > 0), is driven by the E-E connectivity. In
summary, E-E connectivity with rank 1 only drives neurons that are aligned with the active stimulus
feature, while higher rank of E-E connectivity also drives misaligned neurons.

For a fixed strength of E-E connectivity, increasing the noise results in longer duration of network’s
response to the stimulus, and in spontaneous activation of the network long after the external input
is turned off (Figure 2B). In the absence of the external stimulus, such a network responds with
rhythmic spontaneous activation (Up state), followed by a period of silence (Down state; Figure 2C).
Up states are triggered by the noise at threshold, that by itself occasionally leads to a spike of a single
neuron (see eq. 10). A random spike is amplified by the recurrent excitatory synaptic activity, and
spontaneous activity is suppressed by the adaptation current.

B

C

A

Figure 2: (A) Same as in Figure 1C, but using the matrix B with rank bigger than 1. To construct
the matrix B, we impose the rank M ′ = M = 3 and use the following column vectors: b1 =
[0.4, 0.1, 0.1]⊺, b2 = [0.1, 0.4, 0.1]⊺, b3 = [0.1, 0.1,−0.4]⊺. Other parameters as in Figure 1C. (B)
As in A, but with increased strength of the noise. Parameters: σE

i = σI
i = 0.3 ∀i. Other parameters

as in A. (C) Same as in B, but without the external stimulus, sm(t) = 0 ∀m, t. In the network with
rank of E-E connectivity matrix larger than 1, all neurons participate in the population responses.

3 Discussion

We developed an E-I spiking network that makes information coding efficient under biologically
relevant constraints. Our model is made efficient by minimizing two loss functions comprising a
quadratic estimation error and a quadratic regularizer, and assuming an arbitrary linear input/output
transformation. The general solution of an online minimization of loss functions with spikes is a
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generalized LIF model with a specific set of structural and dynamical features. Structural features
include low-rank structured connectivity [46, 22, 24], where fast synapses between E and I neurons
implement competition between neurons with similar decoding selectivity and slower synapses
implement cooperation. Moreover, structural features resulting from optimization with spikes are
external inputs that are shared across neurons, spike-triggered adaptation currents in single neurons
and hyperpolarization-triggered rebound current in E neurons. Assuming heterogeneous decoding
weights, all currents with the exception of leak currents are heterogeneous across neurons, increasing
the biological plausibility of the model.

Similarly to the seminal paper by Boerlin and colleagues [3], the spiking network proposed here
assumes that spikes are fired if and only if they minimize the quadratic error between the signal
and the population readout. As the network model is analytically developed from such optimization
principles, efficient coding is a build-in property of the network. In earlier works on efficient coding
[5], however, the leak current is not derived exactly but only added to the membrane equation for
biological plausibility. Our derivations define an exact expression for the leak current, similarly
as in [23]. Contrary to most previous works on efficient coding with spikes that use a single loss
function to derive the membrane equations, we here propose two separate loss functions that relate to
the activity of E and I neurons. With this, we impose the E-I architecture and allow for functional
diversity between E and I neurons. A previous proposal that already used separate loss functions for
E and I neurons [7] yielded a network similar to our simplified network, but the behavior or their
network is markedly different than our simplified model, possibly due to very long and unrealistic
synaptic time constants they use.

Most previous proposals on efficient coding [6, 7, 23, 5, 2] assumed a specific neural computation,
namely a leaky integration of external inputs (but see [3, 1]). We here developed the case of the
general linear transformation between the external inputs and the internal signals of the network with
a biologically plausible spiking network. This generalization allowed us to formulate a biologically
plausible expression for E-E connections and to gain insights on how the structure of the mixing
matrix qualitatively changes network responses. Without mixing of features, only neurons that are
aligned to the external stimulus, and consequently driven by the feedforward current, participate in
network responses. With increased complexity of E-E connections, we also observe activation of
neurons that are not driven by the feedforward current, but are instead engaged through recurrent E-E
connections. Moreover, in the absence of the external stimulus and with sufficient background noise,
such a complex network produces spontaneous Up and Down states that could describe spontaneous
Up and Down states observed in biological networks [45].

Our results demonstrate that the minimization of the quadratic loss function with spikes results
in a generalized LIF model, a spiking neuron model that has been shown to provide a good fit
to the spiking dynamics of biological networks [14, 17]. An important advantage of the present
computational framework over previously proposed generalized LIF models is the access to a
functional interpretation of network parameters. In general, a change in a network parameter
can have a strong influence on network’s dynamics. Besides characterizing the effect on neural
dynamics, it is insightful to also have the interpretation of the role of a specific parameter on the
functional/computational level. In the present setting, parameters of the spiking network are directly
related to the variables minimized in loss functions, which allows to connect their effect on dynamics
with their role for network’s computation.

In the present work, we emphasized the theoretical development of an optimization-based approach
towards a biologically plausible spiking neural network with complex, non-linear responses. Future
work could introduce performance measures, for example by measuring the distance between the
signal and the population readout, or by using information-theoretic measures [4, 31, 41]. Moreover,
future work could perform an analysis of network parameters and assess how are particular dynamical
phenomena, such as rhythmic spontaneous Up and Down states [45], related to information processing
in efficient spiking networks.
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