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Abstract

Data augmentation plays a key role in modern machine learning pipelines. While
numerous augmentation strategies have been studied in the context of computer
vision and natural language processing, less is known for other data modalities.
Our work extends the success of data augmentation to compositional data, i.e.,
simplex-valued data, which is of particular interest in microbiology, geochem-
istry, and other applications. Drawing on key principles from compositional data
analysis, such as the Aitchison geometry of the simplex and subcompositions, we
define novel augmentation strategies for this data modality. Incorporating our data
augmentations into standard supervised learning pipelines results in consistent per-
formance gains across a wide range of standard benchmark datasets. In particular,
we set a new state-of-the-art for key disease prediction tasks including colorectal
cancer, type 2 diabetes, and Crohn’s disease. In addition, our data augmentations
enable us to define a novel contrastive learning model, which improves on previous
representation learning approaches for microbiome compositional data.1

1 Introduction

Data augmentation, i.e., generating synthetic training examples to be used in model fitting, is a core
component of modern deep learning pipelines [54, 17]. In computer vision, augmentations such as
image resizing and shifting have been used since as early as LeNet-5 [35]. These and many other
augmentations have become essential to highly successful state-of-the-art architectures, ranging
from AlexNet [34] and ResNet [29] to recent contrastive learning models such as SimCLR [9]
and MoCo [28]. As such, a growing body of literature has emerged to develop and characterize
data augmentation techniques, particularly in computer vision [45, 66, 13, 10, 11, 65], as well as
natural language processing [53, 12, 17]. However, defining useful data augmentations is highly
domain-dependent, and fewer works have studied augmentations for more general data modalities,
such as tabular data [66, 64]. The goal of our work is to extend the success of data augmentation to a
previously unexplored data modality; namely, compositional data.

Compositional data (CoDa) are those that represent the parts of a whole, and therefore carry only
relative information. Equivalently, we can think of CoDa as a set of datapoints living in the simplex:
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Examples of CoDa arise throughout the sciences, including microbiology (proportions of different
species in a bacterial community) [23, 22, 50, 3], geochemistry (chemical composition of a geological
sample) [5, 4, 42], materials science (components of matter) [40, 1], and many more. As a result,

1Our code is available at https://github.com/cunningham-lab/AugCoDa.
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starting with the seminal work of Aitchison [1], numerous bespoke techniques have been developed
for the statistical analysis of CoDa [44, 43, 18].

A rapidly growing area of application for CoDa is the human microbiome, which comprises the
populations of microorganisms that reside inside and on the human body [59]. Microbiome data
arise from an inexhaustive sampling procedure as a result of high-throughput sequencing [23, 51]. In
particular, each feature typically represents the relative abundance of some species of microorganism;
as such, each observation can be normalized to the simplex prior to downstream analyses [23, 22, 50,
37, 41].

The microorganisms that constitute the microbiome are known to impact human physiology, both
in health and in disease [21, 38, 20]. Thus, a central problem in CoDa is to learn the association
xi 7! yi, where xi 2 �p�1 denotes the microbial composition, and yi denotes the disease status of
the ith subject in a clinical study. For example, the composition of the gut microbiome, as recorded
from a stool sample, can be predictive of colorectal cancer, which is the third most prevalent form
of cancer [16, 33]. This observation offers the potential for a noninvasive alternative to traditional
colonoscopy procedures used for early detection of colorectal cancer [56]. In turn, accurate predictive
models for microbiome CoDa are a key stepping stone towards achieving this potential [39, 33]. Note
that cancer is just one application; the demand for improved predictive models holds more broadly
across medicine and biological science [33, 21]. For example, the microbiome has been linked to
type 2 diabetes, Crohn’s disease, obesity, and others [27, 62, 46, 20].

Classical techniques including logistic regression, support vector machines, and random forests have
been widely used as predictive models for microbiome data [60, 6, 36]. More recently, specialized
deep learning architectures such as DeepCoDa [48], MetaNN [37], and DeepMicro [41] have been
developed. However, the capacity of these deep networks and other expressive models has been
limited by the low sample size and high dimensionality of typical microbiome studies. These
characteristics have also spurred the use of strong regularization through early stopping, weight decay
and dropout, among others [57, 48, 37, 41]. However, no previous works have explored the use of
data augmentation for CoDa,2 which, as we shall demonstrate, provides a cheap and simple technique
for boosting the performance of predictive models for this data modality.

Careful consideration of the sample space will motivate our novel data augmentation strategies for
CoDa. Our work draws on foundational principles from the field of CoDa, such as the Aitchison

geometry of the simplex [1], which we combine with popular techniques from the literature on
data augmentation, such as Mixup [66] and CutMix [65]. This combination will lead us to define
custom data augmentation strategies for CoDa, such as Aitchison Mixup and Compositional CutMix.
In turn, incorporating these novel augmentations into existing supervised learning pipelines will
result in consistent performance gains across a wide range of microbiome datasets, including a
dozen standard benchmarks from the Microbiome Learning Repo [60]. These performance gains
are particularly large for some deep models, for example, DeepCoDa gains more than 10% in test
AUC for discriminating colorectal cancer from healthy controls, and over 20% for type 2 diabetes.
The gains are also significant across other expressive model families, including random forests and
gradient boosting machines. Overall, we set a new state-of-the-art on 8 out of 12 benchmark learning
tasks, including clinically relevant disease prediction tasks. Of the remaining 4 tasks, 2 were easily
separable, with 100% test accuracy irrespective of whether data augmentation was used. Importantly,
our augmentations rarely hurt model performance, and in the few instances that this was the case, the
drops were typically of only 1% in test AUC.

In addition to supervised learning, our novel augmentations will allow us to define contrastive

representation learning for CoDa, which to the best of our knowledge, represents the first contrastive
learning model for compositional data. Our novel data augmentations are at the core of this approach;
the contrastive loss uses randomly augmented training examples to define a self-supervised opti-
mization objective whose labels are generated from unlabelled data [26, 14, 9, 28]. In particular, our
contrastive model is trained to discriminate between compositions that were generated as random
augmentations of the same training example, and those that were generated as random augmentations
of different training examples. Our implementation is adapted from SimCLR [9], but using a smaller
network architecture together with our novel augmentations. Unlike SimCLR, we use our individual

2With the possible exception of dropout, which can be viewed as a form of data augmentation. Note that
applications of dropout to CoDa, such as [37], use standard implementations that do not exploit the special
structure of CoDa.
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augmentation strategies in isolation, and find them sufficient to surpass previous representation
learning approaches for microbiome CoDa [3, 41]. Altogether, we expect our data augmentations
will enable significant future progress, possibly in combination with novel architectures, in both
supervised and representation learning pipelines for microbiome CoDa.

2 Related Work

Data augmentation: numerous data augmentation strategies have been proposed in the context of
image data [54] and text data [17]. LeNet-5 [35] used random shifts and resizing, and AlexNet [34]
used reflections and color distortions, which have become widely adopted in computer vision [29].
More general purpose data augmentations include Mixup, which generates synthetic samples by
taking convex combinations of training examples, and has been applied to both image and tabular
data [66]. Mixup is related to an earlier method called SMOTE [8], which aims to address class
imbalance by generating synthetic samples from the minority class, taken as convex combinations
between nearest neighbors within the minority class. Random masking, whereby random input
features are hidden during training, has also seen a diverse range of applications, including natural
language processing (e.g., BERT [12]), computer vision (e.g., Cutout [13]), and tabular data (e.g.,
VIME [64]). In the context of CoDa, masking is related to subcompositions, which we will use to
define an analogous augmentation on the simplex. CutMix [65] is akin to both masking and Mixup,
in that random patches from different images are pasted together to generate new synthetic images.
We note that a subsequent line of work has developed techniques to automatically select optimal data
augmentations for a given dataset [10, 11], somewhat akin to hyperparameter optimization. While
the data augmentation strategies that we present in the next Section could also be combined and
finetuned in similar ways, such experimentation falls outside the scope of our work and is left to
future research.

Microbiome models: random forests remain a strong baseline across many microbiome studies, due
to their expressivity and robustness [57]. Gradient boosting machines such as XGBoost provide
similarly strong performance and have also enjoyed significant adoption [57]. AutoML [30] has
shown potential for microbiome data, with a recent approach called mAML achieving state-of-the-
art results on several benchmarks [63]. mAML uses cross-validation to automatically select the
best model class and hyperparameters for each learning task. In addition, several specialized deep
learning architectures have been proposed for microbiome CoDa. DeepCoDa [48] introduced the
log-bottleneck layer, which ensures the hidden units remain scale-invariant, a key desiderata in CoDa
models. This architecture obtained strong predictive performance using weight decay regularization.
MetaNN [37] employs a multilayer architecture regularized using dropout [55]. The authors of
MetaNN also considered generating synthetic data from a negative binomial distribution, but found
no performance improvements beyond the use of dropout. DeepMicro [41] uses a deep autoencoder
architecture to learn low-dimensional representations of the microbial composition. In turn, these
representations are fed to a downstream classifier trained with a supervised objective.

Contrastive learning: the goal of contrastive learning is to learn low-dimensional representations
by optimizing some pretext task, where the objective function is similar to those used for supervised
learning, but using labels that are derived from unlabelled data only [26]. Commonly, the pretext
task is to discriminate augmented instances of the same training example from augmented instances
of different training examples [14, 9, 28]. Recent contrastive learning architectures have enjoyed
tremendous success, setting the state-of-the-art across a range of computer vision benchmarks
[9, 28, 31, 7]. We highlight SimCLR [9] for its relative simplicity and strong empirical performance.
This method uses a nonlinear projection head between the representations and the contrastive loss
computed with normalized embeddings. Our own experiments on contrastive learning borrow these
elements from SimCLR, but use a smaller network architecture together with our specialized data
augmentations for CoDa.

3 Methods

In the following subsections, we introduce 3 novel data augmentation techniques for CoDa. Note that
many variations of our augmentation schemes could be considered; the versions we present here are
intended to be as concise as possible. Our goal is not to design augmentations that are empirically
or theoretically optimal, but rather to demonstrate the effectiveness of our novel methodology by
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establishing simple and performant baselines. For instance, whenever a random mixing parameter
is required, we use a U(0, 1) distribution, even though other choices can likely result in increased
performance. For clarity, we will focus on the classification setting; generalizing to regression
problems is straightforward. We will use the notation v,x 2 �p�1 for simplex-valued vectors,
� 2 R a scalar, and D = {xi, yi} our training data.

3.1 Aitchison Mixup

Figure 1: Orthogonal grid on �2, in the
Aitchison sense [44]. The centroid of
the simplex corresponds to the additive
identity. The red lines are parallel and
equally spaced by 1 unit in Aitchison dis-
tance, as are the blue lines. The red lines
are also orthogonal to the blue lines.

Aitchison [1] defined a Hilbert space structure on the sim-
plex, known as the Aitchison geometry, with the following
vector addition, scalar multiplication, and inner product:3
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This geometry provides a principled definition of linear
combinations and a distance metric on the simplex; par-
allel and orthogonal lines are illustrated in Figure 1. The
Aitchison geometry is closely related to the centered-log-

ratio transformation [1], which is an inverse of the soft-
max and defines an isometry between �p�1 and Euclidean
space [44]. Taken together, these properties form the basis
of much of CoDa methodology [1, 44, 43, 18].

Our first data augmentation strategy, which we call Aitchison Mixup, is based on taking linear
combinations of the training points, in the Aitchison sense. While general linear combinations may
be used, for simplicity we focus on intra-class pairwise convex combinations. Namely, each new
datapoint is sampled as follows:

1. Draw a class c from the class prior and draw � ⇠ U(0, 1).
2. Draw two training points i1, i2 such that yi1 = yi2 = c, uniformly at random.
3. Set xaug = (�� xi1)� ((1� �)� xi2) and yaug = c.

Put more succinctly, for each class we generate convex combinations of the points in that class, in
the Aitchison sense. Note this augmentation strategy is a CoDa analogue of Mixup, which generates
Euclidean convex combinations of images and tabular data [66]. Much like Mixup is capable of
boosting predictive accuracy by regularizing models towards a linear decision boundary in the regions
between training examples, Aitchison Mixup aims to enforce the equivalent regularization in the
Aitchison geometry of the simplex.

Note that, once we restrict to convex combinations (as opposed to general linear combinations), our
augmented data will remain inside the simplex regardless of whether we operate in the Euclidean
or the Aitchison geometry. However, we found the latter to be more empirically effective, perhaps
unsurprisingly given the associated vector space structure of the simplex.

We also note that the authors of Mixup [66] sampled � ⇠ Beta(↵,↵), where ↵ is a hyperparameter,
and took inter-class as well as intra-class convex combinations, setting yaug = �yi1 + (1 � �)yi2 .
While Aitchison Mixup can also incorporate such generalizations, we chose not to do so in our
implementation because, as discussed above, our focus was on finding the simplest performant
augmentation strategies for our new data modality.4

3Note that our method makes use of the Aitchison addition and scalar multiplication, but not the inner
product, which is included for completeness.

4Inter-class combinations represent a significant complication to our methods because some classification
libraries, including mAML, do not allow for non-binary outputs (without substantial rewrites) which are obtained
when mixing labels from different classes. We also observed that, on DeepCoDa and MetaNN, using inter-class
combinations did not improve performance.
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3.2 Compositional Feature Dropout

In CoDa, a subcomposition of x 2 �p�1 refers to a lower-dimensional composition, xsub 2 �k�1

with k < p, formed by taking a subset of the elements of x and renormalizing to a unit total. Namely,
if j1, . . . , jk denotes a subset of the indices {1, . . . , p}, the corresponding subcomposition is defined
as:

xsub =
1

xj1 + · · ·+ xjk

[xj1 , . . . , xjk ]. (5)

We can generate augmented data by taking a random subcomposition of the training points; such
a strategy is analogous to masking in language data or cropping in image data, or more generally,
feature dropout [55]. Since our predictive models require inputs of fixed dimension p, rather than
discarding elements of x we simply zero them out. Thus, each new datapoint is generated as follows:

1. Draw � ⇠ U(0, 1). Draw a training point i uniformly at random and set x̃ = xi.
2. For each j 2 {1, . . . , p}, draw Ij

iid⇠ Bernoulli(�), and set x̃j = 0 if Ij = 0.
3. Set xaug = x̃/(

Pp
j=1 x̃j) and yaug = yi.

In short, we zero out random entries of the training points and renormalize. Intuitively, this strategy
encourages our predictive models to become robust to partially observed inputs. Note that, distinc-
tively from feature dropout, our augmentation includes an additional renormalization to a unit total,
and we therefore use the term Compositional Feature Dropout. Importantly, this renormalization
ensures that the augmented samples remain in the support of the training data, i.e., the simplex.

Note that many CoDa models, including mAML and DeepCoDa, apply log transformations to their
inputs, and therefore require that these be non-zero. For this reason, we implement a zero-replacement
step where we add a small positive quantity to all the parts of each composition and renormalize.
This small quantity is set to 1/Li, where Li corresponds to the library size from the high-throughput
sequencing procedure. Li can simply be thought of as a large number such that 1/Li is smaller than
the non-zero components of xi. Note that this transformation is a standard preprocessing step in
CoDa [50].

3.3 Compositional CutMix

Our third augmentation scheme, which we call Compositional CutMix, combines elements of our
previous 2 augmentations. Like in Mixup, we generate new datapoints by combining pairs of training
points from the same class. However, instead of combining these training points linearly (in the
Aitchison sense), we take complementary subcompositions and renormalize. Namely, we generate
each new datapoint as follows:

1. Draw a class c from the class prior and draw � ⇠ U(0, 1).
2. Draw two training points i1, i2 such that yi1 = yi2 = c, uniformly at random.
3. For each j 2 {1, . . . , p}, draw Ij

iid⇠ Bernoulli(�), and set x̃j = xi1j if Ij = 0 or x̃j = xi2j

if Ij = 1.
4. Set xaug = x̃/(

Pp
j=1 x̃j) and yaug = c.

Note this strategy can be thought of as a CoDa analogue of CutMix, whereby new images are formed
by pasting together patches from different training images [65]. Note also that in computer vision,
CutMix and related methods take local image patches as opposed to randomly sampled pixels.
Likewise, one could sample microbial subcompositions according to biologically relevant groupings,
for example using a phylogenetic tree [50]. Such a strategy would require incorporating additional
domain knowledge and is left to future work, but we expect it would further increase the quality of our
data augmentations. This remark applies both to Compositional Feature Dropout and Compositional
CutMix. With regard to inter-class combinations, a similar discussion as in Section 3.1 applies.

4 Experiments

4.1 Supervised learning

We evaluate our augmentation strategies on 12 standard binary classification tasks taken from the
Microbiome Learning Repo [60]. These datasets comprise various disease and phenotype prediction
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Table 1: Evaluation benchmark consisting of 12 binary classification tasks taken from the Microbiome
Learning Repo [60], after filtering to datasets containing at least 100 samples with at least 50 in each
class. For each task we show the number of samples (n), the number of features (p), a description of
the two classes and the number of samples in each, together with a reference to the original studies
that each dataset was obtained from.

Task n p Class 1 / Class 2 # in 1 # in 2 Reference

1 140 992 Crohn’s disease / Without (ileum) 78 62 [20]
2 160 992 Crohn’s disease / Without (rectum) 68 92 [20]
3 2070 3090 Gastrointestinal tract / Oral 227 1843 [38]
4 180 3090 Female / Male 82 98 [38]
5 404 3090 Stool / Tongue (dorsum) 204 200 [38]
6 408 3090 Subgingival / Supragingival plaque 203 205 [38]
7 172 980 Healthy / Colorectal cancer 86 86 [33]
8 124 2526 Diabetes / Without 65 59 [46]
9 130 2579 Cirrhosis / Without 68 62 [47]

10 199 660 Black / Hispanic 104 95 [52]
11 342 660 Nugent score high / Low 97 245 [52]
12 200 660 Black / White 104 96 [52]

tasks, including colorectal cancer [33], type 2 diabetes [46], Crohn’s disease [20], and cirrhosis
[47], as well as multiple body sites including the gut, skin, oral cavity, airways, and vagina [38, 52].
As such, this benchmark provides a comprehensive evaluation for predictive models of the human
microbiome [63, 48, 24]. More details on these 12 learning tasks can be found in Table 1; note this
benchmark is constructed from the original Microbiome Learning Repo by filtering datasets that
contain a minimum sample size of 100, with at least 50 in either class.

For each learning task, we take 20 independent 80/20 train/test splits and we fit Random Forest,
XGBoost, mAML [63], DeepCoDa [48], and MetaNN [37], first to the original training data, then
on 3 augmented training sets obtained using our 3 augmentation strategies. Thus, we train a total of
12⇥ 20⇥ 5⇥ 4 = 4 800 models.5 We evaluate test performance using ROC AUC, and we note that
our datasets do not present severe class imbalance (with the exception of tasks 3 and 11, both of which
were well separated by all our classifiers and therefore had no effect on the overall comparison).

For the augmented training sets, we generated 10 times as many synthetic samples as there were
original training examples. The factor of 10 was chosen so as to obtain a relatively large augmented
sample, in order to reduce the sampling variance from our random augmentations. In turn, we
compensate for the fact that our augmented data is then much more numerous than our original
training data, by downweighting the synthetic samples by a factor of 10; the total weight of the
original and synthetic data is then equal to 1/2 each.

Our results are shown in Table 2 (Aitchison Mixup) in the main text, as well as Tables 5 (Composi-
tional Feature Dropout), and 6 (Compositional CutMix) in the Appendix:

• Table 2 shows that Aitchison Mixup improved the test performance of existing models
across a large majority of learning tasks. On average, we obtained a 5% gain in test AUC for
DeepCoDa, 2% for random forests and XGBoost, and 1% for mAML. MetaNN remained
flat, but this was also the worst performing model overall. Importantly, in the few instances
where Aitchison Mixup hurt the performance of a model, the loss was typically of just 1%.

• Table 5 shows that Compositional Feature Dropout also result in consistent performance
improvements across most models and tasks, though to a slightly lesser degree than Aitchison
Mixup. On average, DeepCoDa enjoyed a 3% gain in test AUC, random forests 2%, and
XGBoost and MetaNN both 1% (mAML remained flat).

• Table 6 shows that Compositional CutMix obtained the strongest classification performance
out of our 3 augmentation strategies on microbiome CoDa. On average, DeepCoDa saw a
5% gain in test AUC, with 2% for random forests and XGBoost, and 1% for mAML and
MetaNN. Moreover, models trained with Compositional CutMix set a new state-of-the-art
on 8 out of 12 tasks, including colorectal cancer (0.76), type 2 diabetes (0.72), and Crohn’s

5We train these models in parallel on a CPU cluster.
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Table 2: Data augmentation performance for Aitchison Mixup. We show the test AUC, averaged over
20 train/test bootstraps, for each learning task and predictive model, trained with and without data
augmentation. Bold numbers indicate whether the version with or without augmentation performed
best. Underlined numbers indicate the overall best model for that task. Models trained with Aitchison
Mixup consistently outperformed those without (with the possible exception of MetaNN, which
performed worst across the board). Error bars are given in Appendix A.

Task RF Aug XGB Aug mAML Aug DeepCoDa Aug MetaNN Aug

1 0.72 0.79 0.76 0.79 0.72 0.74 0.73 0.79 0.74 0.74

2 0.78 0.82 0.81 0.80 0.80 0.80 0.78 0.83 0.74 0.74

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.60 0.64 0.57 0.57 0.56 0.58 0.58 0.58 0.50 0.51

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 0.81 0.83 0.82 0.83 0.84 0.83 0.78 0.82 0.75 0.76

7 0.68 0.67 0.67 0.69 0.73 0.74 0.63 0.73 0.59 0.54
8 0.62 0.65 0.66 0.68 0.64 0.65 0.45 0.70 0.64 0.64

9 0.93 0.93 0.94 0.95 0.92 0.93 0.84 0.90 0.76 0.82

10 0.53 0.60 0.57 0.61 0.61 0.62 0.62 0.63 0.63 0.61
11 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.95
12 0.55 0.61 0.58 0.65 0.61 0.61 0.66 0.65 0.58 0.60

Mean 0.77 0.79 0.78 0.80 0.78 0.79 0.75 0.80 0.74 0.74
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Figure 2: Difference in test AUC between models trained with Compositional CutMix, and those
without, shown as a function of training set size. Each point represents one of our 12 benchmark
learning tasks (note that tasks 3 and 5 are removed from the plot, since they already enjoyed 100%
classification accuracy prior to applying any data augmentation). The linear trendlines show a
somewhat greater outperformance on the smaller datasets relative to the larger datasets.

disease (0.78 and 0.83). Of the remaining 4 tasks, 3 were tied and only on 1 was the best
model one that did not use Compositional CutMix.

Figure 2 shows the effect of data augmentation on test performance as a function of the number of
samples in the training set, for Compositional CutMix. We note that datasets with smaller sample
sizes tended to benefit more from data augmentation. This suggests that our methodology may prove
beneficial to many microbiome research projects, where datasets with low-hundreds of samples are
commonplace. Figure 3 shows a similar scatterplot, as a function of the dataset dimensionality rather
than sample size; the gains from augmentation appear consistent across lower- and higher-dimensional
microbiome CoDa (we observe similar trends Aitchison Mixup and Compositional Feature Dropout,
and we omit the corresponding scatterplots).

In addition, we evaluated the impact of our data augmentations on the expected calibration error (ECE)
[25] of our models. Previous works have noted that increasingly flexible predictive models such
as deep neural networks, while enabling greater predictive accuracy, tend to become overconfident
in their predictions, degrading uncertainty quantification [25]. In Appendix A, we show the ECE
obtained by our models, and we verify that our data augmentations do not hurt model calibration
overall (in fact, some modest improvements are obtained).
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Figure 3: Similar to Figure 2. Difference in test AUC between models trained with Compositional
CutMix, and those without, shown as a function of dataset dimension.

4.2 Contrastive representation learning

We have shown that our novel data augmentation strategies provide consistent performance gains
across supervised training pipelines. Next, we use our data augmentations in order to apply contrastive
representation learning to compositional data for the first time (to the best of our knowledge). Note
that our experiment provides a simple proof of concept showing that contrastive learning is capable of
learning useful representations of microbiome CoDa, which result in better downstream classification
performance than previous deep representation learning approaches. However, more extensive
experiments will be required to validate the performance of contrastive learning across a wider range
of model architectures for CoDa.

As a point of comparison we take DeepMicro [41], a deep autoencoder designed specifically for
microbiome data. DeepMicro includes an encoder and a decoder that are trained jointly by minimizing
reconstruction error. The encoder outputs are used as a low-dimensional representation that is passed
to a downstream classifier. Our contrastive model discards the decoder and trains the encoder using
the contrastive loss from SimCLR [9]. This loss function requires pairs of positive and negative

datapoints, where positive pairs are constructed by taking synthetic augmentations of the same
training example and negative pairs are constructed by taking synthetic augmentations of different
training examples.6 In the context of microbiome CoDa, it is our novel augmentations that allow us to
define positive and negative pairs required for contrastive learning. Full detail on model architecture
and implementation is provided in Appendix B.

After applying unsupervised pretraining (reconstructive or contrastive), we evaluate the quality of
learned representations under two standard protocols: linear evaluation and finetuning. In linear
evaluation, we freeze the encoder weights and train a linear classification head using the supervised
cross-entropy loss on the original training set. In finetuning, the linear classification head is trained
jointly with the encoder network, again using the supervised cross-entropy loss. The finetuning
protocol is evaluated both with and without using additional data augmentation (i.e., passing additional
synthetic examples to the supervised loss). These evaluation protocols are applied for both DeepMicro
and our contrastive model, in addition to a “no pretraining” control. This control is a randomly
initialized encoder network and linear head with the same architecture, trained only on the supervised
objective (i.e., a neural network that did not enjoy the benefit of unsupervised pretraining).

The results are shown in Table 3; the representations learned by our contrastive model using Composi-
tional Feature Dropout consistently outperform those learned by DeepMicro, both in linear evaluation
and finetuning. Note that finetuning with augmentation performs slightly better than without, sug-
gesting that the benefits of supervised training with our data augmentations can be combined with
the benefits of augmentation as part of contrastive learning. Importantly, note that the comparison to
DeepMicro is conservative, in the sense that we replicated the architecture and simply changed the
pretraining objective from reconstruction error to contrastive loss; tuning the encoder architecture
itself under a contrastive objective would likely lead to further performance improvements. We
conclude that Compositional Feature Dropout provides a valuable data augmentation for contrastive
learning on the simplex.

Note that our other 2 augmentation strategies, Aitchison Mixup and Compositional CutMix, may
also be used for contrastive learning. However, these augmentations require paired training examples
to generate each synthetic sample, and the implementation is therefore slightly more involved. In

6Note such pairs are defined without reference to the (possibly unknown) true labels.
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Table 3: Representation learning performance for DeepMicro and contrastive learning with Composi-
tional Feature Dropout. For each task, we show the test AUC, averaged over 20 train/test bootstraps,
under the linear evaluation protocol and finetuning. We also show the effect of using additional data
augmentation as part of supervised training during the finetuning stage (“Finetuning with Aug”).
In addition, a randomly initialized encoder network of the same architecture with no pretraining is
shown for comparison. Note that the representations obtained via contrastive learning consistently
achieve higher AUC than those learned by DeepMicro. Error bars are given in Appendix A. No
Pre=no pretraining, DM=DeepMicro autoencoder pretraining, Contr=contrastive pretraining (ours).

Linear Evaluation Finetuning Finetuning with Aug
Task No Pre. DM Contr. No Pre. DM Contr. No Pre. DM Contr.

1 0.59 0.68 0.76 0.72 0.75 0.77 0.77 0.76 0.77

2 0.67 0.76 0.80 0.76 0.76 0.79 0.78 0.79 0.80

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.47 0.53 0.59 0.50 0.53 0.55 0.52 0.56 0.56

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 0.75 0.76 0.77 0.77 0.76 0.77 0.78 0.78 0.78

7 0.59 0.68 0.63 0.59 0.59 0.57 0.57 0.62 0.60
8 0.65 0.66 0.66 0.66 0.68 0.68 0.66 0.66 0.68

9 0.72 0.71 0.86 0.76 0.77 0.82 0.79 0.80 0.82

10 0.53 0.58 0.62 0.60 0.61 0.63 0.62 0.60 0.63

11 0.96 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97

12 0.66 0.68 0.66 0.62 0.64 0.64 0.62 0.65 0.65

Mean 0.72 0.75 0.78 0.74 0.76 0.77 0.76 0.77 0.78

particular, we generate each pair of positive samples by taking one pair of training examples, and
drawing two random combinations (in the Aitchison Mixup or the Compositional CutMix sense) of
that one pair. The training examples are randomly partitioned into pairs at each epoch, and negative
samples correspond to those that originate from separate pairs. The results are provided in Appendix
A and show similarly strong performance to Table 3.

4.3 Additional benchmarks

Further to the 12 microbiome classification tasks from the previous sections, we analyze 8 additional
compositional datasets, which were selected to represent a diverse set of applications that are
commonly encountered by CoDa practitioners. Note that, while these datasets correspond to a wide
range of scientific domains, they have all been analyzed as case studies specifically in the CoDa
literature. The datasets can be summarized as follows:

• Glass: a dataset from the UCI ML repo, on the elemental composition of glass particles of
different types of origin. Such particles are routinely recovered from the clothing of criminal
suspects; the goal is to provide forensic evidence by classifying the type of origin (broken
window vs. other) given the composition recorded in a multielement analysis [15, 58].

• Bayesite: a classical materials science dataset due to Aitchison [1]. The goal is to predict
the permeability of fibreboard from the mix of its ingredients.

• Serum: another classical dataset due to Aitchison [1], where the composition of blood serum
protein is used to discriminate between two known diseases.

• Hydrochem: a hydrochemical dataset measuring the composition of water samples across
sites in the Llobregat river basin [42]. Classification targets are formed by separating
upstream and downstream sites.

• Jura: a geochemical dataset from the Swiss Jura, where rock types (Kimmeridgian vs.
Sequanian) are classified from the chemical composition of soil samples [2].

• Metabolites: gut metabolomic profiles for subjects with and without inflammatory bowel
disease [19, 49]. The goal is to diagnose disease from the metabolite composition.

• MicroRNA: contains microRNA expression data for different types of primary breast cancer
[61, 49]. The goal is to discriminate between breast cancer subtypes (Luminal A vs. Luminal
B) from the molecular profile of each tumor.
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Table 4: Data augmentation performance for Aitchison Mixup on non-microbiome CoDa benchmarks.
We show the test AUC, averaged over 20 train/test bootstraps, for each non-microbiome dataset and
predictive model, trained with and without data augmentation. Bold numbers indicate whether the
version with or without augmentation performed best. Underlined numbers indicate the overall best
model for that task. Models trained with Aitchison Mixup consistently outperformed those without.

Dataset n/p RF Aug XGB Aug DeepCoDa Aug NN Aug

Glass [15] 213/8 0.84 0.86 0.84 0.86 0.83 0.84 0.84 0.84

Bayesite [1] 20/5 0.86 0.86 0.84 0.90 0.69 0.54 0.53 0.58

Serum [1] 30/4 0.81 0.83 0.80 0.82 0.62 0.82 0.87 0.82
Hydrochem [42] 246/14 1.00 1.00 1.00 1.00 0.96 0.99 0.95 0.95

Jura [2] 147/7 0.93 0.94 0.92 0.94 0.83 0.93 0.75 0.72
Metabolites [19] 220/885 0.95 0.96 0.94 0.94 0.84 0.94 0.92 0.93

MicroRNA [61] 717/188 0.90 0.90 0.91 0.92 0.87 0.90 0.90 0.90

Coffee [32] 30/15 0.92 0.93 0.80 0.83 0.71 0.77 0.65 0.69

Mean - 0.90 0.91 0.88 0.90 0.79 0.84 0.80 0.81

• Coffee: a nutrition dataset describing the chemical composition of commercially available
coffee samples [32]. Classification targets are taken as different blends of coffee.

In modeling these datasets, we apply the centered logratio transformation to the model inputs [1]
and follow the experimental protocol described in Section 4.1, except we no longer test mAML and
MetaNN (which were not intended for non-microbiome data), and we replace the latter with a small
neural network with one hidden layer of 32 units and ReLU activations, denoted as NN (note we
choose to keep this architecture very simple as it is trained on several heterogeneous dataset).

The results are shown in Table 4 for Aitchison Mixup. As was the case for our microbiome benchmark,
we again see that our data augmentation results in consistent performance gains across a wide range
of classifiers. Indeed, on most datasets (6 out of 8) the best performing model was one that used
Aitchison Mixup, and only on a single dataset (Serum) was the best model (NN) one trained
without augmentation. Note that, in contrast to our microbiome benchmarks, Table 4 shows a strong
outperformance for tree-based models. Importantly, Aitchison Mixup never hurt the performance of
any of our tree-based models, and only did so rarely for our network models. We observe similarly
positive results (albeit slightly weaker) for Compositional Feature Dropout and Compositional
CutMix, provided in Tables 7 and 8 from the Appendix, respectively.

5 Conclusion

By combining ideas from data augmentation with the principles of CoDa, we have defined 3 novel
augmentation strategies for CoDa: Aitchison Mixup, Compositional Feature Dropout, and Composi-
tional CutMix. Our augmentations offer cheap performance gains across a wide range of benchmark
datasets, advancing the state-of-the-art on standard classification benchmarks for colorectal cancer,
type 2 diabetes, and Crohn’s disease. While we find all 3 strategies performant across a wide range of
benchmark datasets, Aitchison Mixup and Compositional CutMix performed best on microbiome
CoDa (with a slight outperformance for the latter), and Aitchison Mixup performed best on non-
microbiome CoDa. In addition, our data augmentations allowed us to define the first contrastive
learning model for CoDa, which we show improves on existing representation learning frameworks
for microbiome data. Data augmentation and contrastive learning have enjoyed tremendous success
in other application domains such as computer vision; our novel methodology aims to help spur
similar developments in the fields of CoDa and the microbiome.
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aroma—statistical analysis of compositional data. Talanta, 80(2):710–715, 2009.

[33] A. D. Kostic, D. Gevers, C. S. Pedamallu, M. Michaud, F. Duke, A. M. Earl, A. I. Ojesina,
J. Jung, A. J. Bass, J. Tabernero, et al. Genomic analysis identifies association of fusobacterium
with colorectal carcinoma. Genome research, 22(2):292–298, 2012.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[36] Y.-X. Liu, Y. Qin, T. Chen, M. Lu, X. Qian, X. Guo, and Y. Bai. A practical guide to amplicon
and metagenomic analysis of microbiome data. Protein & cell, 12(5):315–330, 2021.

[37] C. Lo and R. Marculescu. Metann: accurate classification of host phenotypes from metagenomic
data using neural networks. Bmc Bioinformatics, 20(12):1–14, 2019.

[38] B. A. Methé, K. E. Nelson, M. Pop, H. H. Creasy, M. G. Giglio, C. Huttenhower, D. Gevers,
J. F. Petrosino, S. Abubucker, J. H. Badger, et al. A framework for human microbiome research.
nature, 486(7402):215, 2012.

12



[39] M. Mulenga, S. A. Kareem, A. Q. M. Sabri, M. Seera, S. Govind, C. Samudi, and S. B.
Mohamad. Feature extension of gut microbiome data for deep neural network-based colorectal
cancer classification. IEEE Access, 9:23565–23578, 2021.

[40] J. H. Na, M. D. Demetriou, M. Floyd, A. Hoff, G. R. Garrett, and W. L. Johnson. Compositional
landscape for glass formation in metal alloys. Proceedings of the National Academy of Sciences,
111(25):9031–9036, 2014.

[41] M. Oh and L. Zhang. Deepmicro: deep representation learning for disease prediction based on
microbiome data. Scientific reports, 10(1):1–9, 2020.

[42] N. Otero, R. Tolosana-Delgado, A. Soler, V. Pawlowsky-Glahn, and A. Canals. Relative
vs. absolute statistical analysis of compositions: a comparative study of surface waters of a
mediterranean river. Water research, 39(7):1404–1414, 2005.

[43] V. Pawlowsky-Glahn and A. Buccianti. Compositional data analysis: Theory and applications.
John Wiley & Sons, 2011.

[44] V. Pawlowsky-Glahn, J. J. Egozcue, and R. Tolosana Delgado. Lecture notes on compositional
data analysis. 2007.

[45] L. Perez and J. Wang. The effectiveness of data augmentation in image classification using deep
learning. arXiv preprint arXiv:1712.04621, 2017.

[46] J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, et al. A
metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418):55–
60, 2012.

[47] N. Qin, F. Yang, A. Li, E. Prifti, Y. Chen, L. Shao, J. Guo, E. Le Chatelier, J. Yao, L. Wu, et al.
Alterations of the human gut microbiome in liver cirrhosis. Nature, 513(7516):59–64, 2014.

[48] T. Quinn, D. Nguyen, S. Rana, S. Gupta, and S. Venkatesh. Deepcoda: personalized inter-
pretability for compositional health data. In International Conference on Machine Learning,
pages 7877–7886. PMLR, 2020.

[49] T. P. Quinn and I. Erb. Using balances to engineer features for the classification of health
biomarkers: a new approach to balance selection. bioRxiv, page 600122, 2019.

[50] T. P. Quinn, I. Erb, M. F. Richardson, and T. M. Crowley. Understanding sequencing data as
compositions: an outlook and review. Bioinformatics, 34(16):2870–2878, 2018.

[51] T. P. Quinn, E. Gordon-Rodriguez, and I. Erb. A critique of differential abundance analysis, and
advocacy for an alternative. arXiv preprint arXiv:2104.07266, 2021.

[52] J. Ravel, P. Gajer, Z. Abdo, G. M. Schneider, S. S. Koenig, S. L. McCulle, S. Karlebach,
R. Gorle, J. Russell, C. O. Tacket, et al. Vaginal microbiome of reproductive-age women.
Proceedings of the National Academy of Sciences, 108(Supplement 1):4680–4687, 2011.

[53] R. Sennrich, B. Haddow, and A. Birch. Improving neural machine translation models with
monolingual data. arXiv preprint arXiv:1511.06709, 2015.

[54] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[56] S. Tarallo, G. Ferrero, G. Gallo, A. Francavilla, G. Clerico, A. Realis Luc, P. Manghi, A. M.
Thomas, P. Vineis, N. Segata, et al. Altered fecal small rna profiles in colorectal cancer reflect
gut microbiome composition in stool samples. Msystems, 4(5):e00289–19, 2019.
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