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Abstract

Combining information from multiple views is essential for discriminating similar
objects. However, existing datasets for multi-view object classification have several
limitations, such as synthetic and coarse-grained objects, no validation split for
hyperparameter tuning, and a lack of view-level information quantity annotations
for analyzing multi-view-based methods. To address this issue, this study proposes
a new dataset, MVP-N2, which contains 44 retail products, 16k real captured views
with human-perceived information quantity annotations, and 9k multi-view sets.
The fine-grained categorization of objects naturally generates multi-view label noise
owing to the inter-class view similarity, allowing the study of learning from noisy la-
bels in the multi-view case. Moreover, this study benchmarks four multi-view-based
feature aggregation methods and twelve soft label methods on MVP-N. Experi-
mental results show that MVP-N will be a valuable resource for facilitating the de-
velopment of real-world multi-view object classification methods. The dataset and
code are publicly available at https://github.com/SMNUResearch/MVP-N.

1 Introduction

Humans live in a three-dimensional (3D) environment comprising various 3D objects with rich
information, including shape, color, texture, and size. Human visual perception of 3D objects relies
on two-dimensional (2D) observations from different perspectives. Since single-view representations
may not provide discriminative features between similar objects, multi-view representations, which
combine information from multiple views, are preferred.

Recent multi-view-based methods [1, 6, 28, 30, 35, 41] aggregate multi-view features extracted from
well-established single-view classifiers [45, 46, 47, 48, 49, 50] and achieve superior performance.
However, some of the settings in the existing methods may not be practical for real-world multi-view
object classification. In real-world scenarios, objects are typically observed from diverse viewpoints,
and the spatial relationships between cameras and objects are not as easily acquired as in virtual
capture environments. Therefore, practical multi-view-based methods should satisfy three properties:
P1) Arbitrary numbers of input views are allowed in both the training and test stages. P2) The spatial
relationships between the cameras and objects, such as camera positions and relative poses, are not
utilized. P3) Views can be obtained from arbitrary viewpoints and permuted randomly rather than
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Method Year Main Components P1 P2 P3 Implementation

Two-stage:
MVCNN [1] 2015 element-wise maximum view-pooling ✓ ✓ ✓ MATLAB
Pairwise Network [2] 2016 image sequence decomposition, pairwise learning, weighted view pairs ✓ ✗ ✓ N/A
GIFT [3, 4] 2017 inverted file, multi-view matching ✓ ✓ ✓ N/A
RCPCNN [5] 2017 view similarity graph, dominant sets, recurrent clustering & pooling ✓ ✓ ✓ MATLAB
GVCNN [6] 2018 raw view descriptor, grouping module, intra-group pooling, group fusion ✓ ✓ ✓ PyTorch†

MHBN [7] 2018 harmonized bilinear pooling ✓ ✓ ✓ PyTorch†
VERAM [8] 2018 observation subnetwork, LSTM, view estimation, reinforcement learning ✓ ✗ ✓ Torch
SeqViews2SeqLabels [9] 2018 encoder-RNN, decoder-RNN, attention mechanism ✓ ✓ ✗ TensorFlow
MVCNN-new [10] 2018 element-wise maximum view-pooling ✓ ✓ ✓ PyTorch
MV-LSTM [11] 2018 bidirectional LSTM, sequence voting, highway network ✓ ✓ ✗ N/A
DeepCCFV [12] 2019 DropMax block ✓ ✓ ✓ N/A
MLVCNN [13] 2019 loop normalization, LSTM ✗ ✓ ✗ N/A
3D2SeqViews [14] 2019 view feature encoding, hierarchical attention aggregation ✓ ✓ ✗ N/A
RotationNet [15, 16] 2019 latent viewpoint variables, pose alignment, view-specific category likelihood ✗ ✓ ✗ Caffe
3DViewGraph [17] 2019 latent semantic mapping, spatial pattern correlation, attentioned correlation aggregation ✗ ✗ ✓ N/A
MVSG-DNN [18] 2019 multi-view saliency modeling, LSTM ✓ ✓ ✓ N/A
EMVN [19] 2019 group convolution, log-polar transform, homogeneous space convolution, filter localization ✗ ✗ ✗ PyTorch
Relation Network [20] 2019 reinforcing block, self-attention mechanism, integrating block ✓ ✓ ✓ N/A
View-GCN [21] 2020 view-graph, local graph convolution, non-local message passing, selective view-sampling ✗ ✗ ✓ PyTorch
HEAR [22] 2020 hybrid attention, multi-granular view pooling, hyperbolic embedding & neural network ✗ ✓ ✗ N/A
DRCNN [23] 2020 multi-view features rearrangement, affine transformation, dynamic routing ✗ ✓ ✓ N/A
VMM [24] 2020 view mixture model, neural expectation maximization, latent view alignment ✗ ✓ ✓ PyTorch
JointMVCNN [25] 2020 inter-view information calculation, adaptive-weighting loss fusion ✗ ✓ ✓ N/A
MVLADN [26] 2021 set-to-set matching kernel, kernel embedding, harmonized bilinear pooling, VLAD ✓ ✓ ✓ N/A
DRMV [27] 2021 feature disentanglement, view permutation consistency regularization, gradient reverse layer ✗ ✓ ✓ N/A
DAN [28] 2021 deep-attention network, self-attention mechanism ✓ ✓ ✓ PyTorch
CAR-Net [29] 2021 view-wise feature representation & refinement, correspondence-aware representation learning ✓ ✗ ✓ N/A
CVR [30] 2021 feature encoder, canonical view representation & aggregator & feature separation loss ✓ ✓ ✓ PyTorch
SVHAN [31] 2021 hierarchical feature aggregation module, selective fusion module ✓ ✓ ✗ N/A
MVT [32] 2021 patch & position embedding, local transformer encoder, global transformer encoder ✗ ✓ ✓ N/A
VFMVAC [33] 2022 voting-based view filtering, cross-view channel shuffle, aggregating convolution ✗ ✓ ✗ N/A

Three-stage (Hypergraph):
iMHL [34] 2018 hypergraph construction, inductive multi-hypergraph learning ✓ ✓ ✓ N/A
HGNN [35] 2019 hypergraph construction, hypergraph neural network ✓ ✓ ✓ PyTorch
MHGNN [36] 2021 hypergraph construction, multi-scale hypergraph neural network ✓ ✓ ✓ N/A
HGNN+ [37] 2022 HGNN, hyperedge groups construction & fusion, two-stage hypergraph convolution ✓ ✓ ✓ PyTorch
AMHCN [38] 2022 hypergraph construction, adaptive multi-hypergraph convolutional network ✓ ✓ ✓ N/A
GHSC [39] 2022 hypergraph with edge-dependent vertex weights, general hypergraph spectral convolution ✓ ✓ ✓ N/A

Three-stage (Part):
Parts4Feature [40] 2019 generally semantic parts, region proposal network, global feature learning ✓ ✓ ✓ N/A
FG3D-Net [41] 2021 generally semantic parts, region proposal network, RNN, hierarchical part-view attention ✓ ✓ ✓ TensorFlow

Table 1: Summary of 39 multi-view-based feature aggregation methods published from 2015 to
August 2022. N/A: The source code is not publicly available. ‘†’: Unofficial implementation.

RGB-D Object [42] ModelNet40 [43] MIRO [15] ScanObjectNN [44] FG3D [41] MVP-N (ours)
Year 2011 2015 2018 2019 2021 2022
Representation RGB-D Mesh RGB Point Cloud Mesh RGB
#Categories 51 40 12 15 66 44
Real-world objects ✓ ✗ ✓ ✓ ✗ ✓
Real capture environment ✓ ✗ ✓ ✗ ✗ ✓
Fine-grained ✗ ✗ ✗ ✗ ✓ ✓
Validation set ✗ ✗ ✗ ✗ ✗ ✓
View-level annotation ✗ ✗ ✗ ✗ ✗ ✓

Table 2: Comparison of MVP-N and existing multi-view object classification datasets.

predefined view configurations. Table 1 summarizes 39 recent multi-view-based feature aggregation
methods with these three properties.

Moreover, as shown in Table 2, existing datasets [42, 43, 15, 44, 41] may not be sufficient for
developing practical multi-view-based methods owing to three main limitations: 1) Synthetic polygon
mesh objects and coarse-grained categorization. 2) No validation split causes hyperparameter tuning
directly on the test set. 3) The lack of view-level information quantity annotations makes it difficult
to interpret how informative and uninformative views are utilized for discriminating objects.

To resolve the above limitations, this study proposes MVP-N, a new dataset containing 9k multi-view
sets constructed from 16k real captured views of 44 real-world fine-grained retail products. In MVP-
N, different objects can appear similar or identical in specific views, referred to as high inter-class
view similarity. In this case, humans cannot classify an object accurately from these views for
fine-grained (instance-level) object categorization, making the classification task challenging. Here,
views with human uncertainty of class labels are denoted as uninformative views. The inconsistency
between the one-hot manner of class labels and human judgment causes multi-view label noise. Soft
label methods [51, 52, 53, 54, 55, 56, 57, 58, 59, 60] can help alleviate the inconsistency and render
view-level predictions more consistent with human judgments, allowing the study of learning from
noisy labels [61, 62] in the multi-view case.
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Figure 1: Illustration of the framework for multi-view object classification. FA: Feature Aggregation.
RPN: Region Proposal Network. FC: Fully Connected Layer. HL: Hypergraph Learning. HNN:
Hypergraph Neural Network. SF: Score Fusion.

MVP-N provides a human-perceived information quantity (HPIQ) annotation for each view in the
train/valid/test split, which is defined as informative or uninformative. HPIQ annotations can help
analyze how multi-view-based feature aggregation methods discriminate similar objects. Furthermore,
this study proposes a new metric and an evaluation protocol based on HPIQ annotations to evaluate
the performance of soft label methods for multi-view object classification.

The contributions of this study can be summarized as follows:

• A real-world multi-view fine-grained dataset with HPIQ annotations is proposed to resolve
the limitations of existing datasets for developing practical multi-view-based methods.

• Recent multi-view-based feature aggregation methods are comprehensively summarized
regarding their practicability in real-world scenarios.

• A new metric and an evaluation protocol are proposed based on HPIQ annotations to evaluate
the performance of soft label methods in the multi-view case.

• Four multi-view-based feature aggregation methods and twelve soft label methods are
benchmarked on MVP-N, introducing new findings.

The rest of this paper is organized as follows. Section 2 briefly reviews recent multi-view-based
feature aggregation methods, existing datasets, and soft label methods. Sections 3 and 4 present the
details of MVP-N and the benchmark, respectively. Section 5 presents the analysis results. Section 6
concludes the study and discusses its broader impact.

2 Related Work

Multi-view-based feature aggregation. As illustrated in Figure 1, existing methods can be catego-
rized into two-stage and three-stage strategies. Two-stage strategies render 2D images from different
viewpoints of a 3D object and then perform classification by aggregating multi-view features extracted
from 2D convolutional neural networks (CNNs) [45, 46, 47, 48, 49] or vision transformers [50].
The pioneering work, MVCNN [1], aggregates multi-view features in a view-pooling layer based
on the element-wise maximum operation. MVCNN is straightforward but causes information loss
in the views, and it treats all views equally without exploiting the relationship among them. Later
studies attempt to address this issue and perform better multi-view feature aggregation, such as
pooling across similar views [5, 6, 7, 22, 26], weighting information from views via the self-attention
mechanism [9, 14, 20, 28, 30, 31, 32], and encoding the spatial relationship among views with
known capturing settings [9, 11, 14, 17, 21, 29]. Three-stage strategies can be categorized into
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Figure 2: (a) Sample objects in five existing datasets. (b) Sample objects in the proposed MVP-N.

hypergraph-based [34, 35, 36, 37, 38, 39] and part-based [40, 41] methods. Hypergraph-based meth-
ods exploit the high-order correlation among objects by constructing a hypergraph on object-level
features [1, 6] and help learn discriminative representations from a global perspective. However, most
methods [35, 36, 37, 38, 39] require a certain number of test samples to construct the hypergraph,
meaning that a single test sample is not allowed in the inference phase. Part-based methods first detect
the generally semantic parts (GSPs) from multi-view features via a region proposal network [63]
and then perform aggregation on the top K region proposals selected according to their semantic
scores. In the training stage of GSPs detection, ground truth GSPs are generated from the 3D shape
segmentation benchmarks [64, 65, 66]. Three-stage strategies are more sophisticated than two-stage
strategies but may not be practical in real-world scenarios because of the complex inference phase or
additional part-level annotations.

Multi-view object classification datasets. ModelNet40 [43] is the most commonly used dataset
for developing multi-view-based methods. Since its objects are synthetic and coarse-grained, some
research [15, 16, 21, 41, 30, 33] selectively uses other datasets for further evaluation, including
RGB-D Object [42], MIRO [15], ScanObjectNN [44], and FG3D [41]. The performance of multi-
view-based methods on the above datasets is provided in Appendix A. Figure 2 shows a comparison
of objects between the existing datasets and MVP-N.

Soft label. Soft label methods can be categorized into implicit regularization, human annotation,
and label refurbishment. Implicit regularization [54] softens labels by taking an average with a
uniform distribution over one-hot labels. Human annotation [60] uses the distribution of human
categorization judgments to construct soft labels. Label refurbishment [51, 52, 53, 56, 55, 57, 58, 59]
generates soft labels via a weighted combination of one-hot labels and model predictions. The main
differences among label refurbishment methods are how to utilize model predictions, class-level or
image-level soft labels, the period of supervision with soft labels, and the weighting factor. Unlike
general single-image classification tasks [67, 68, 69, 70, 71, 72], this study validates the robustness
of soft label methods for multi-view object classification.

3 MVP-N: Dataset Design and Construction

Object selection. Retail products can be distinguished without semantic confusion3. Therefore, a
fine-grained categorization [73] can be easily established. Furthermore, retail products of the same
brand with different flavors provide high inter-class view similarity. In total, 44 retail products from

3Ma et al. [11] and Chen et al. [8] point out the semantic confusion issue in ModelNet40 [43].
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Figure 3: List of 44 objects in MVP-N. Nineteen groups of similar-looking objects are illustrated.

16 brands are selected. Each brand contains two to five objects with similar appearances. Figure 3
lists the selected objects.

Data collection. A multi-camera setup is built to collect multi-view images. This design enables
a sizable and closed capture space with a clean white background. Twenty cameras (Logitech
StreamCam4) are mounted above the tabletop and around the workspace. All cameras are well-
calibrated and have manual focus. Lighting equipment is installed above the setup to illuminate the
object and its surroundings. Figure 4(a) shows the real capture environment and camera configurations.
To provide different distributions of views in the train/valid/test split, we collect multi-view images in
two ways, as follows:

• Collection A (24 trials in the 12-camera configuration): The object is placed at the center of
the tabletop using a predefined pose and rotation. Here, six poses (top, bottom, front, back,
left, and right) and four rotations (0◦, 90◦, 180◦, and 270◦) are defined. With 24 trials and
12 cameras, 288 images of the object are captured.

• Collection B (50 trials in the 16-camera configuration): The object is randomly placed on
the tabletop, and its pose and rotation are set randomly for each trial. With 50 trials and 16
cameras, 800 images of the object are captured.

Data annotation. We hire ten well-trained annotators with more than six months of experience in
image classification and bounding box annotations. The annotators first observe5 the objects and then
group them based on their similarity in appearance. Consequently, 19 groups are assigned. Next, the
captured images are distributed equally among the annotators. Each image is annotated once by a
single annotator. Since the class label is automatically obtained when capturing an image of a single
object, annotators draw a bounding box to enclose the foreground object and judge the quantity of
information in its view. The following three options are provided for information quantity judgment:

• Sufficiently informative: A distinctive appearance is sufficiently included in this view. The
object can be classified correctly without additional information from other views.

• Less informative: A distinctive appearance is partially included in this view. High classifica-
tion accuracy cannot be guaranteed using only this view.

• Uninformative: A distinctive appearance is not included in this view. Additional information
from other views is required to classify the object correctly.

Figure 4(b) shows examples of human judgments on information quantity. The average annotation
time per image is 45 s.

4https://www.logitech.com/en-us/products/webcams/streamcam.960-001289.html
5Text recognition of the product packaging is not considered here.
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Figure 4: Illustration of the construction for MVP-N. (a) The real capture environment and camera
configurations. (b) Examples of human judgments on information quantity. (c) Examples of multi-
view sets in the train and validation/test sets. The informative and uninformative views are respectively
marked with red and green rectangles.

Quality control and data filtering. Two researchers check the quality of the bounding box annota-
tions. Subsequently, the annotators correct the missed and imprecise ones. To guarantee the quality
of ‘informative/uninformative’ (HPIQ) annotations, images with ‘less informative’ annotations are
first filtered. Since a single annotation per image may introduce an annotation bias, two researchers
and a volunteer6 provide three additional information quantity annotations for the remaining images.
Subsequently, images with annotation disagreements are filtered. Each remaining image has one
HPIQ and one bounding box annotation.

Data preprocessing. The resolution of captured images is 1920× 1080. Since the commonly used
resolution of views in existing datasets is 224× 224, each image is cropped based on the center point
of its bounding box annotation. Specifically, if the width and height of the bounding box are less than
224 pixels, the image is directly cropped to 224 × 224. Otherwise, it is cropped to the maximum
value between the width and height of the bounding box and then resized to 224× 224. This step
removes most of the background and leaves the entire foreground object with its original aspect ratio.

Train/valid/test split and design rationalization. The design scheme comprises view sampling
and multi-view set construction. Multi-view sets are constructed by combining the sampled views.
For the training set, 20 informative and 20 uninformative views are manually sampled from Collection
A for each object to cover its overall appearance. Subsequently, ten multi-view sets are constructed for
each object. Each set has two to six views, containing at least one informative and one uninformative
view. For the validation and test sets, 40 informative and 120 uninformative views are randomly
sampled from Collections A and B for each object. Subsequently, 100 multi-view sets are constructed
for each object. Each set has two to six views, containing only a single informative view. No multi-
view set shares more than two views with others to guarantee the diversity of view combinations.
Examples of the multi-view sets are shown in Figure 4(c). The training set design enables sufficient
learning. A recent study [30] uses a similar design7 and achieves approximately 90% category-level
accuracy on RGB-D Object [42]. Compared with the training set, the large-scale validation and
test sets provide diverse view combinations with different proportions of informative views, thus
reducing the test bias caused by limited multi-view sets. Since all multi-view sets contain at least one
informative view, the human accuracy on MVP-N is 100%.

6Graduate student majoring in Korean Language and Literature.
7The training set comprises 40 sampled views and five multi-view sets on average per category.
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4 Benchmark on MVP-N

Method selection. The selection criteria of the benchmark methods are representativeness, prac-
ticality in real-world scenarios, and availability of the source code. Multi-View CNN (MVCNN-
new) [10], Group-View CNN (GVCNN) [6], Deep-Attention Network (DAN) [28], and Canonical
View Representation (CVR) [30] are selected from the multi-view-based feature aggregation methods.
Knowledge Distillation (KD) [51], Soft Bootstrapping (SB) [52], Hard Bootstrapping (HB) [52],
Label Smoothing (LS) [54], Dynamic Soft Bootstrapping (DSB) [53], Dynamic Hard Bootstrapping
(DHB) [53], Self-Adaptive Training (SAT) [56], Likelihood Ratio Test (LRT) [55], Self-Evolution
Average Label (SEAL) [57], Progressive Label Correction (PLC) [58], Online Label Smoothing
(OLS) [59] are selected from the soft label methods. HPIQ uses hard labels for informative views
and uniform distributions over the classes from the same group as soft labels for uninformative views.
The baselines are MVCNN-new and standard cross entropy with hard labels (CE). Additionally, a
hyperparameter search is performed for each method according to the relevant sensitivity analysis
in its original paper. Appendix B provides the results of the hyperparameter search and the best
configuration for each method.

Experimental Platform. The experiments are performed on four NVIDIA GeForce RTX 3090
GPUs and an Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz. The models are implemented in
PyTorch [74] and trained with CUDA 11.1 and cuDNN 8 as the computational back-ends.

Training details. ResNet-18 [49] pre-trained on ImageNet [68] is adopted as the backbone for com-
putational efficiency. The network is trained using the stochastic gradient descent (SGD) optimizer
with a momentum of 0.9 and a weight decay of 10−3. The training scheme of the two-stage feature
aggregation methods comprises single- and multi-view training. In single-view training, the network
is trained as general single-image classification tasks for 30 epochs with a batch size of 128. The
initial learning rate is 10−2 and reduced by half every 10 epochs. In multi-view training, the variable-
length views are first zero-padded to the maximum number of views and then batched together. The
network is trained with the feature aggregation module for 50 epochs with one warm-up [75] epoch
and a batch size of 32. The initial learning rate is 10−3 and gradually decreases to zero through the
cosine annealing strategy [76]. The training details of the soft label methods are identical to those of
single-view training. All methods are run five times with various random seeds.

Evaluation of multi-view-based feature aggregation methods. Multi-view accuracy (MVA),
mean confidence for correct predictions (MCC), and mean confidence for wrong predictions (MCW)
are used for performance evaluation and reported as the mean and standard deviation over five trials.
The model size, number of floating-point operations (FLOPs), and inference latency are measured
to evaluate the computational efficiency. The model size is obtained by calculating the number of
trainable parameters. The number of input views is set to six to measure the FLOPs and inference
latency. The inference latency is measured on a single GPU with CUDA and cuDNN and reported as
the mean and standard deviation over 500 trials.

Evaluation of soft label methods. The proposed evaluation protocol is based on HPIQ annotations.
For informative views, single-view accuracy (SVAI), mean confidence for correct predictions (MCCI),
and mean confidence for wrong predictions (MCWI) are used for performance evaluation. As for
uninformative views, even humans cannot always make correct predictions because of multi-view
label noise. Therefore, the single-view accuracy and mean confidence for correct/wrong predictions
are inappropriate for performance evaluation. In this study, mean confidence difference between
predictions and ground truths (MCDU) is proposed as a new metric for performance evaluation on
uninformative views. The following formula gives MCDU:

MCDU =
1

N

N∑
i=1

(max(pi)− pi(yi)) (1)

where N is the number of wrong predictions for all uninformative views in the validation or test set,
pi is the predicted probability distribution, and yi is the ground-truth class label. When MCDU is
high, wrong predictions from uninformative views negatively affect performance. Since predictions
from uninformative views are not reliable, a lower MCDU indicates better performance. For the
overall performance evaluation, MVA is obtained by combining the predictions via the mean rule [77].
All results are reported as the mean and standard deviation over five trials.
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Figure 5: Confusion matrix for four multi-view-based feature aggregation methods. Categories from
the same group are marked with blue squares.

Method SVA (%) SVAI (%) ↑ MCCI ↑ MCWI ↓ MCDU ↓ MVA (%) ↑
Validation:
CE 76.76 ± 0.24 99.44 ± 0.17 0.9475 ± 0.0031 0.6076 ± 0.0368 0.3977 ± 0.0091 83.05 ± 0.56
KD [51] 78.47 ± 0.55 99.62 ± 0.08 0.9587 ± 0.0009 0.5799 ± 0.0295 0.3867 ± 0.0040 85.72 ± 1.24
SB [52] 74.41 ± 0.36 99.08 ± 0.33 0.8911 ± 0.0074 0.5573 ± 0.0177 0.2945 ± 0.0046 83.31 ± 0.41
HB [52] 76.69 ± 0.18 99.44 ± 0.16 0.9469 ± 0.0029 0.6073 ± 0.0369 0.3989 ± 0.0097 82.73 ± 0.60
LS [54] 76.03 ± 0.36 99.26 ± 0.15 0.7711 ± 0.0056 0.4101 ± 0.0262 0.2534 ± 0.0093 84.30 ± 1.05
DSB [53] 76.06 ± 0.98 99.15 ± 0.58 0.9148 ± 0.0522 0.5704 ± 0.0313 0.3577 ± 0.0626 82.71 ± 0.69
DHB [53] 76.67 ± 0.27 99.48 ± 0.18 0.9454 ± 0.0022 0.6113 ± 0.0301 0.3971 ± 0.0069 82.60 ± 0.70
SAT [56] 74.55 ± 0.40 99.18 ± 0.19 0.8746 ± 0.0049 0.5465 ± 0.0179 0.2256 ± 0.0058 86.52 ± 0.36
LRT [55] 76.57 ± 0.52 99.60 ± 0.15 0.9609 ± 0.0018 0.6094 ± 0.0642 0.4240 ± 0.0104 84.29 ± 1.26
SEAL [57] 71.97 ± 0.33 98.92 ± 0.23 0.6846 ± 0.0036 0.4379 ± 0.0102 0.1404 ± 0.0018 85.48 ± 0.65
PLC [58] 76.51 ± 0.27 99.33 ± 0.20 0.9469 ± 0.0033 0.6126 ± 0.0424 0.4042 ± 0.0119 82.37 ± 0.72
OLS [59] 76.63 ± 0.14 99.30 ± 0.17 0.9336 ± 0.0041 0.5852 ± 0.0273 0.3774 ± 0.0101 82.90 ± 0.57
HPIQ 62.77 ± 0.42 99.73 ± 0.04 0.9246 ± 0.0057 0.5538 ± 0.0447 0.1530 ± 0.0068 93.55 ± 0.79
Test:
CE 78.65 ± 0.44 99.15 ± 0.11 0.9383 ± 0.0028 0.6035 ± 0.0442 0.3892 ± 0.0070 83.37 ± 1.05
KD [51] 80.38 ± 0.24 99.49 ± 0.09 0.9509 ± 0.0014 0.5574 ± 0.0606 0.3737 ± 0.0014 86.77 ± 1.24
SB [52] 76.22 ± 0.27 98.73 ± 0.15 0.8789 ± 0.0068 0.5230 ± 0.0210 0.2862 ± 0.0107 83.85 ± 0.84
HB [52] 78.52 ± 0.51 99.10 ± 0.15 0.9376 ± 0.0022 0.6050 ± 0.0305 0.3899 ± 0.0068 83.20 ± 1.11
LS [54] 77.65 ± 0.30 98.82 ± 0.30 0.7522 ± 0.0054 0.3843 ± 0.0309 0.2474 ± 0.0114 83.96 ± 1.50
DSB [53] 77.73 ± 0.81 98.90 ± 0.35 0.9037 ± 0.0523 0.5784 ± 0.0606 0.3457 ± 0.0610 83.09 ± 0.83
DHB [53] 78.34 ± 0.46 99.07 ± 0.17 0.9365 ± 0.0023 0.6040 ± 0.0488 0.3871 ± 0.0041 83.07 ± 0.87
SAT [56] 76.28 ± 0.43 99.00 ± 0.14 0.8620 ± 0.0049 0.5293 ± 0.0337 0.2145 ± 0.0063 87.37 ± 1.15
LRT [55] 77.85 ± 0.46 99.33 ± 0.19 0.9542 ± 0.0013 0.5881 ± 0.0327 0.4076 ± 0.0141 83.78 ± 2.05
SEAL [57] 73.58 ± 0.54 98.41 ± 0.25 0.6674 ± 0.0033 0.4018 ± 0.0085 0.1326 ± 0.0011 86.42 ± 0.74
PLC [58] 78.40 ± 0.47 99.07 ± 0.11 0.9383 ± 0.0031 0.6070 ± 0.0370 0.3948 ± 0.0106 82.96 ± 1.06
OLS [59] 78.40 ± 0.49 99.00 ± 0.12 0.9225 ± 0.0029 0.5799 ± 0.0239 0.3684 ± 0.0080 83.35 ± 1.05
HPIQ 63.31 ± 0.38 99.68 ± 0.10 0.9186 ± 0.0059 0.5934 ± 0.0222 0.1481 ± 0.0076 94.36 ± 0.56

Table 3: Performance of twelve soft-label methods. SVA: single-view accuracy for all views. ‘↑’:
Higher is better. ‘↓’: Lower is better. The best performance is boldfaced.

5 Analysis Results

Error type. Figure 5 shows the confusion matrix for four multi-view-based feature aggregation
methods. The multi-view errors made by the models mostly derive from the same group of similar-
looking objects, indicating that the model predictions match well with the grouping scheme made by
humans. Moreover, as shown in Table 3, all soft label methods achieve high SVAI (approximately
99%), consistent with human judgments on informative views. The gap between SVA and SVAI
indicates that single-view errors mostly originate from uninformative views. Therefore, utilizing
information from informative views is crucial for discriminating similar objects.

Comparison of soft label methods. As shown in Table 3, HPIQ achieves the best MVA but the
lowest SVA. The results indicate that SVAI, MCCI, and MCDU significantly affect MVA since
the low accuracy of uninformative views does not degrade the multi-view performance. SAT [56]
achieves the second-best MVA because of its relatively high MCCI and low MCDU. SEAL [57]
has the best MCDU but the worst MCCI, causing a decrease in MVA compared to SAT. Moreover,
since the ground truths of uninformative views are error-free, the methods containing the label flip
component, including HB [52], DHB [53], LRT [55], and PLC [58], could not significantly improve
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Method MVA (%) ↑ MCC ↑ MCW ↓ Model Size (M) ↓ FLOPs (G) ↓ Latency (ms) ↓
Validation:
MVCNN-new [10] 89.29 ± 0.88 0.8812 ± 0.0040 0.6568 ± 0.0120 11.20 10.91 6.23 ± 0.03
GVCNN [6] 85.69 ± 1.01 0.8275 ± 0.0044 0.6095 ± 0.0136 24.04 10.99 7.60 ± 0.07
DAN [28] 92.05 ± 0.56 0.8592 ± 0.0044 0.6192 ± 0.0055 17.50 10.95 8.11 ± 0.04
CVR [30] 79.95 ± 1.89 0.8347 ± 0.0118 0.6564 ± 0.0157 34.38 11.08 12.57 ± 0.07

Test:
MVCNN-new [10] 89.35 ± 1.21 0.8792 ± 0.0053 0.6552 ± 0.0069 11.20 10.91 6.23 ± 0.03
GVCNN [6] 85.42 ± 1.37 0.8267 ± 0.0032 0.6055 ± 0.0088 24.04 10.99 7.60 ± 0.07
DAN [28] 91.61 ± 0.94 0.8602 ± 0.0050 0.6211 ± 0.0062 17.50 10.95 8.11 ± 0.04
CVR [30] 79.99 ± 2.52 0.8339 ± 0.0127 0.6457 ± 0.0166 34.38 11.08 12.57 ± 0.07

Table 4: Performance of four multi-view-based feature aggregation methods. M, G, and ms denote
million, billion, and milliseconds, respectively. ‘↑’: Higher is better. ‘↓’: Lower is better. The best
performance is boldfaced. Backbone (ResNet-18): 11.20 M, 11.91 G, and 6.19 ± 0.05 ms.

Method Validation Test

2 views 3 views 4 views 5 views 6 views 2 views 3 views 4 views 5 views 6 views

feature aggregation:
MVCNN-new [10] 91.93 ± 0.77 88.80 ± 0.54 88.30 ± 1.17 88.25 ± 1.04 89.18 ± 1.52 89.52 ± 1.38 88.98 ± 1.31 87.36 ± 1.80 89.09 ± 1.76 91.82 ± 1.01
GVCNN [6] 93.23 ± 1.14 84.73 ± 0.77 84.48 ± 1.52 81.93 ± 1.47 84.09 ± 1.40 89.70 ± 1.59 82.43 ± 1.92 84.05 ± 1.65 82.70 ± 1.87 88.20 ± 1.06
DAN [28] 93.80 ± 0.92 91.59 ± 1.12 91.07 ± 0.99 91.50 ± 1.24 92.32 ± 0.63 91.48 ± 0.44 91.20 ± 1.17 89.59 ± 1.12 91.39 ± 1.51 94.41 ± 1.01
CVR [30] 86.16 ± 0.73 81.16 ± 1.82 79.25 ± 2.55 76.39 ± 2.85 76.80 ± 2.51 84.20 ± 2.19 79.95 ± 2.25 77.80 ± 3.72 77.52 ± 2.94 80.45 ± 3.42

soft label:
CE 92.98 ± 0.59 82.14 ± 0.97 80.25 ± 0.81 79.23 ± 1.16 80.64 ± 0.54 90.82 ± 1.42 79.95 ± 1.33 79.34 ± 1.66 80.61 ± 1.65 86.11 ± 0.52
KD [51] 95.84 ± 0.47 84.48 ± 1.03 83.68 ± 1.99 81.39 ± 1.68 83.20 ± 1.71 94.64 ± 0.85 84.57 ± 2.49 82.50 ± 1.33 84.05 ± 1.31 88.09 ± 1.82
SB [52] 92.23 ± 0.73 83.77 ± 0.32 80.55 ± 0.64 79.73 ± 1.04 80.30 ± 0.86 89.11 ± 1.26 82.57 ± 0.94 80.91 ± 1.26 81.09 ± 1.87 85.59 ± 0.60
HB [52] 92.82 ± 0.88 81.73 ± 0.79 80.11 ± 1.11 78.59 ± 1.11 80.39 ± 0.64 90.80 ± 1.32 79.57 ± 1.25 79.50 ± 2.03 80.27 ± 1.84 85.86 ± 0.47
LS [54] 90.84 ± 0.84 84.61 ± 1.35 82.84 ± 1.65 81.36 ± 0.76 81.84 ± 1.74 88.25 ± 1.32 82.09 ± 1.32 80.91 ± 1.78 81.64 ± 2.22 86.91 ± 1.02
DSB [53] 92.34 ± 1.78 82.36 ± 0.94 79.93 ± 0.44 78.68 ± 1.11 80.25 ± 0.85 90.07 ± 1.28 80.39 ± 1.33 79.18 ± 1.39 79.93 ± 1.38 85.89 ± 0.85
DHB [53] 92.95 ± 1.02 82.16 ± 0.53 79.91 ± 0.57 77.91 ± 1.36 80.09 ± 1.13 90.73 ± 1.40 79.98 ± 1.44 78.77 ± 1.31 80.39 ± 1.17 85.50 ± 0.65
SAT [56] 94.27 ± 0.18 87.20 ± 0.68 84.39 ± 0.96 83.52 ± 1.12 83.23 ± 1.10 91.45 ± 1.21 87.25 ± 1.08 84.70 ± 1.76 84.93 ± 1.98 88.50 ± 0.86
LRT [55] 94.93 ± 0.60 83.57 ± 1.25 81.77 ± 1.40 80.25 ± 1.93 80.91 ± 1.77 93.02 ± 1.19 81.07 ± 2.98 79.61 ± 1.97 80.45 ± 2.34 84.75 ± 2.21
SEAL [57] 93.02 ± 1.08 86.64 ± 0.98 84.11 ± 0.60 81.61 ± 0.60 82.02 ± 0.85 90.80 ± 0.79 85.95 ± 0.96 83.75 ± 0.99 84.34 ± 0.79 87.27 ± 0.82
PLC [58] 92.75 ± 0.54 81.45 ± 1.00 79.64 ± 0.70 78.39 ± 1.02 79.64 ± 1.21 90.61 ± 1.26 79.57 ± 1.06 79.09 ± 1.87 80.07 ± 1.68 85.48 ± 0.92
OLS [59] 92.43 ± 0.56 81.91 ± 0.55 80.39 ± 1.13 79.18 ± 0.87 80.57 ± 0.71 90.00 ± 1.20 80.09 ± 1.30 79.66 ± 1.95 80.66 ± 1.41 86.32 ± 0.52
HPIQ 98.34 ± 0.36 95.91 ± 0.53 93.23 ± 1.15 90.59 ± 0.97 89.68 ± 1.88 97.73 ± 0.38 96.36 ± 0.47 93.64 ± 1.34 92.02 ± 0.86 92.07 ± 0.91

Table 5: Influence of the number of uninformative views. The best performance (MVA) is boldfaced.

MCDU. Comparing SB [52] with HB [52] and DSB [53] with DHB [53], using predicted class
probabilities as soft labels can significantly reduce MCDU and achieve a higher MVA.

Comparison of multi-view-based feature aggregation methods. Table 4 shows the performance
of the four selected methods. DAN [28] achieves the best MVA and outperforms MVCNN-new [10]
by 2.26%. The self-attention mechanism [78] in DAN helps increase the weight of informative
views in the feature aggregation, thus improving MVA and reducing MCW. The decrease in MCC is
caused by introducing more correct predictions with less confidence. GVCNN [6] groups the views
considering discrimination scores obtained by a raw view descriptor and performs pooling in each
group. Features are aggregated with the corresponding weights obtained by the sum of discrimination
scores in each group. Since uninformative views are usually grouped owing to similar discrimination
scores, the intra-group pooling component helps reduce the uncertainty, causing a lower MCW. As
shown in Table 5, in the case of two views, since the group containing a single uninformative view
has a relatively small weight, GVCNN achieves a better MVA than MVCNN-new. However, when
the group contains more uninformative views, the corresponding weight increases in the feature
aggregation, degrading MVA. The performance of CVR [30] is worse than that of the other three
methods owing to its main components. CVR transforms multi-view features into a fixed number of
canonical view features via an optimal transport solver [79] and then aggregates the features with a
transformer encoder [78]. As analyzed in [28], the multi-head attention module in the transformer
encoder introduces redundant information for multi-view feature aggregation. As for computation
efficiency, except for MVCNN-new, the computational cost from the main components of the other
three models is not negligible. For example, the feature aggregation module of CVR triples the model
size and slows down the model by half compared with the backbone.

Influence of the number of uninformative views. As shown in Table 5, soft label methods are
more sensitive to the number of uninformative views, ranging from one to five, than multi-view-based
feature aggregation methods. In the case of two views, four soft label methods outperform DAN [28],
but all are inferior to DAN in the case of six views. For soft label methods, more uninformative views
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yield more uncertainty and may lead to a more significant decrease in MVA. However, when the
proportion of uninformative views is small, soft label methods would be a better choice regarding
computational efficiency and performance.

Comparison with existing datasets. Compared to the best-reported accuracies of RGB-D Ob-
ject [42] (99.51%) and ModelNet40 [43] (97.79%), MVP-N (91.61%) exhibits more room for
improvement. Compared with ScanObjectNN [44] (90.74%) and FG3D [41] (93.99%, 83.94%,
79.47%), MVP-N has similar accuracy. However, the gap between the model performance and
upper-bound accuracy for these two datasets is unknown owing to the lack of human evaluation. For
MVP-N, since the human accuracy is 100% and SVAI is approximately 99%, the upper-bound accu-
racy is estimated to be 99%-100%, leaving a 7%-8% performance gap. Moreover, as the new methods
improve performance, MVP-N can easily keep challenging by introducing more view combinations,
additional views, and new objects.

6 Conclusion

This study proposes MVP-N, a new dataset for real-world multi-view object classification. The
multi-view label noise in MVP-N provides a new perspective on the study of learning from noisy
labels. Unlike general single-image classification tasks, this study investigates soft label methods in
the multi-view case by making view-level predictions consistent with human judgments. Moreover,
four multi-view-based feature aggregation methods and twelve soft label methods are benchmarked on
MVP-N. Based on HPIQ annotations, this study analyzes the components in the feature aggregation
modules and proposes a new evaluation protocol for soft label methods. Compared with multi-view-
based feature aggregation methods, soft label methods incur a lower computational cost and can
achieve better performance when the proportion of uninformative views is small. In future work, it
would be better to propose new multi-view-based methods and estimate the amount of information
utilized from each view to discriminate similar objects. Since many real-world applications embed a
multi-camera system in edge devices without powerful GPU resources, the computation efficiency of
multi-view-based methods should be considered. Such communication bandwidth and computation
capability in a multi-camera system can be further used for evaluation.

Broader impact. MVP-N can enable many real-world applications that require instance-level
classification or similar-object differentiation, such as robotic grasping, auto-checkout in retail stores,
and defect detection in manufacturing. Moreover, HPIQ annotations and the proposed MCDU metric
can be applied to general single-image classification tasks. Specifically, single-image test sets can be
divided into informative and uninformative sets based on HPIQ annotations. As analyzed in [80],
label errors in test sets are pervasive and can destabilize performance evaluation. However, some
label errors are caused by the intrinsic ambiguity of the image content (uninformative) and cannot be
fully corrected. Therefore, MCDU would be a better option for evaluating model performance on
uninformative sets than single-image accuracy.
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