
A Appendix

This appendix consists of four sections (A.1–A.4). Section A.1 provides the theoretical properties
of InfoLOOB and InfoNCE. It is shown how to derive that InfoNCE is a lower bound on mutual
information. Further it is shown how to derive that InfoLOOB is an upper bound on mutual infor-
mation. The proposed loss function and its gradients are discussed. Section A.2 provides details on
the experiments. Section A.3 briefly reviews continuous modern Hopfield networks. Section A.4
discusses further related work.

Contents of the appendix

A.1 InfoLOOB vs. InfoNCE . 21
A.1.1 InfoNCE: Lower Bound on Mutual Information 21
A.1.2 InfoLOOB: Upper Bound on Mutual Information 24
A.1.3 InfoLOOB: Analysis of the Objective . 29
A.1.4 InfoNCE and InfoLOOB: Gradients . 37
A.1.5 InfoLOOB and InfoNCE: Probability Estimators 39
A.1.6 InfoLOOB and InfoNCE: Losses . 40

A.2 Experiments . 44
A.2.1 Ablation studies . 44
A.2.2 Hyperparameters . 45
A.2.3 Datasets . 45
A.2.4 Zero-shot evaluation . 46
A.2.5 Linear probing . 47
A.2.6 Image-Text retrieval . 49
A.2.7 Analysis of the image and text embeddings 49
A.2.8 Training time and memory consumption 50

A.3 Review of Modern Hopfield Networks . 51
A.4 Further Related Work . 53

List of theorems

A1 Theorem (InfoNCE lower bound) . 23
A2 Theorem (InfoLOOB upper bound) . 27
A3 Theorem (Weighted Covariances) . 43
A4 Theorem (Modern Hopfield Networks: Retrieval with One Update) 52
A5 Theorem (Modern Hopfield Networks: Exponential Storage Capacity) 53

List of definitions

A1 Definition (Pattern Stored and Retrieved) . 52

List of figures

A1 Eigenvalues of the covariance matrix of image embeddings 50
A4 Visualization of zero-shot classification of three examples from each dataset 55

List of tables

A1 Influence of loss functions and Hopfield retrieval (CC) 44
A2 Influence of loss functions and Hopfield retrieval (YFCC) 44
A3 Influence of learning rate scheduler . 45
A4 Datasets used for downstream evaluation . 46
A7 Linear probing for CLIP (reimplementation) and CLOOB trained on YFCC 48

20

A.1 InfoLOOB vs. InfoNCE

A.1.1 InfoNCE: Lower Bound on Mutual Information

We derive a lower bound on the mutual information between random variables X and Y distributed
according to p(x,y). The mutual information I(X ; Y) between random variables X and Y is

I(X ; Y) = Ep(x,y)

ln

p(x,y)

p(x) p(y)

�
= Ep(x,y)

ln

p(x | y)

p(x)

�
= Ep(x,y)

ln

p(y | x)

p(y)

�
.

(A1)

“InfoNCE” has been introduced in van den Oord et al. (2018) and is a multi-sample bound. In
the setting introduced in van den Oord et al. (2018), we have an anchor sample y given. For the
anchor sample y we draw a positive sample x1 according to p(x1 | y). Next, we draw a set
X̃ = {x2, . . . ,xN} according to p(X̃), which are n � 1 negative samples drawn iid according to
p(x). We have drawn a set X = {x1,x2, . . . ,xN} according to p(X | y), which is one positive
sample x1 drawn by p(x1 | y) and N � 1 negative samples {x2, . . . ,xN} drawn iid according to
p(x).

The InfoNCE with probabilities is

IInfoNCE(X1 ; Y) = Ep(y)

"
Ep(X|y)

"
ln

p(y | x1)

1
N

PN
i=1 p(y | xi)

!##
, (A2)

where we inserted the factor 1
N in contrast to the original version in van den Oord et al. (2018), where

we followed Poole et al. (2019); Tschannen et al. (2019); Cheng et al. (2020); Chen et al. (2021).

The InfoNCE with score function f(x,y) is

IInfoNCE(X1 ; Y) = Ep(y)

"
Ep(X|y)

"
ln

f(x1,y)

1
N

PN
i=1 f(xi,y)

!##
. (A3)

The InfoNCE with probabilities can be rewritten as:

IInfoNCE(X1 ; Y) = Ep(y)

"
Ep(X|y)

"
ln

p(y | x1)

1
N

PN
i=1 p(y | xi)

!##
(A4)

= Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(y|x1)
p(y)

1
N

PN
i=1

p(y|xi)
p(y)

1

A

3

5

3

5

= Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(x1|y)
p(x1)

1
N

PN
i=1

p(xi|y)
p(xi)

1

A

3

5

3

5 .

This is the InfoNCE with f(x,y) = p(y | x).

Set of pairs. The InfoNCE can be written in a different setting Poole et al. (2019), which is
used in most implementations. We sample N pairs independently from p(x,y), which gives Z =
{(x1,y1), (x2,y2), . . . , (xN ,yN)}. The InfoNCE is then

IInfoNCE(X ; Y) = Ep(X|y)

"
1

N

NX

i=1

ln

f(xi,yi)

1
N

PN
j=1 f(xj ,yi)

!#
. (A5)

21

Following van den Oord et al. (2018) we have

IInfoNCE(X1 ; Y) = Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(y|x1)
p(y)

1
N

PN
i=1

p(y|xi)
p(y)

1

A

3

5

3

5 (A6)

= Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(x1|y)
p(x1)

1
N

PN
i=1

p(xi|y)
p(xi)

1

A

3

5

3

5

= Ep(y)

"
Ep(X|y)

"
ln

p(x1 | y)

QN
l=2 p(xl)PN

i=1 p(xi | y)
Q

l 6=i p(xl)

!##
+ ln(N)

= Ep(y)

⇥
Ep(X|y) [ln p(i = 1 | X,y)]

⇤
+ ln(N) ,

where p(i = 1 | X,y) is the probability that sample x1 is the positive sample if we know there exists
exactly one positive sample in X .

The InfoNCE is a lower bound on the mutual information. The following inequality is from van den
Oord et al. (2018):

I(X1 ; Y) = Ep(y)

Ep(x1|y)

ln

✓
p(x1 | y)

p(x1)

◆��
(A7)

= Ep(y)

Ep(x1|y)

� ln

✓
p(x1)

p(x1 | y)

◆��

� Ep(y)

Ep(x1|y)

� ln

✓
1

N
+

p(x1)

p(x1 | y)

◆��

⇡ Ep(y)

"
Ep(X|y)

"
� ln

1

N
+

1

N

p(x1)

p(x1 | y)

NX

i=2

p(xi | y)

p(xi)

!##

= Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(x1|y)
p(x1)

1
N

p(x1|y)
p(x1)

+ 1
N

PN
i=2

p(xi|y)
p(xi)

1

A

3

5

3

5

= IInfoNCE(X1 ; Y) ,

where the "�" is obtained by bounding ln(1/N + a) by ln(a), which gives a bound that is not very
tight, since a = p(x1)

p(x1|y) can become small. However for the "⇡" van den Oord et al. (2018) have to
assume

1

N

NX

i=2

p(xi | y)

p(xi)
=

1

N

NX

i=2

p(y | xi)

p(y)
� 1 , (A8)

which is unclear how to ensure.

For a proof of this bound see Poole et al. (2019).

We assumed that for the anchor sample y a positive sample x1 has been drawn according to p(x1 | y).
A set X̃ = {x2, . . . ,xN} of negative samples is drawn according to p(x). Therefore, we have a
set X = {x1,x2, . . . ,xN} that is drawn with one positive sample x1 and N � 1 negative samples
X̃ = {x2, . . . ,xN}. We have

p(X̃) =
NY

i=2

p(xi) , (A9)

p(X | y) = p(x1 | y)
NY

i=2

p(xi) , (A10)

p(X) =
NY

i=1

p(xi) . (A11)

22

Next, we present a theorem that shows this bound, where we largely follow Poole et al. (2019) in the
proof. In contrast to Poole et al. (2019), we do not use the NWJ bound Nguyen et al. (2010). The
mutual information is

I(X1 ; Y) = Ep(x1,y)

ln

✓
p(x1 | y)

p(x1)

◆�
. (A12)

Theorem A1 (InfoNCE lower bound). InfoNCE with score function f(x,y) according to Eq. (A3)
is a lower bound on the mutual information.

I(X1 ; Y) � Ep(y)p(X|y)

"
ln

f(x1,y)

1
N

PN
i=1 f(xi,y)

!#
= IInfoNCE(X1 ; Y) . (A13)

InfoNCE with probabilities according to Eq. (A2) is a lower bound on the mutual information.

I(X1 ; Y) � Ep(y)p(X|y)

"
ln

p(y | x1)

1
N

PN
i=1 p(y | xi)

!#
= IInfoNCE(X1 ; Y) . (A14)

The second bound Eq. (A14) is a special case of the first bound Eq. (A13).

Proof. Part (I): Lower bound with score function f(x,y).

For each set X̃ = {x2, . . . ,xN}, we define as data-dependent (depending on X̃) score function
g(x1,y, X̃) that is based on the score function f(x,y). Therefore we have for each X̃ a different
data-dependent score function g based on f . We will derive a bound on the InfoNCE, which is the
expectation of a lower bond on the mutual information over the score functions. For score function
g(x1,y, X̃), we define a variational distribution q(x1 | y, X̃) over x1:

q(x1 | y, X̃) =
p(x1) g(x1,y, X̃)

Z(y, X̃)
, (A15)

Z(y, X̃) = Ep(x1)

h
g(x1,y, X̃)

i
, (A16)

which ensures
Z

q(x1 | y, X̃) dx1 = 1 . (A17)

We have

q(x1 | y, X̃)

p(x1)
=

g(x1,y, X̃)

Z(y, X̃)
. (A18)

For the function g, we set

g(x1,y, X̃) =
f(x1,y)

1
N

PN
i=1 f(xi,y)

, (A19)

For the function f we use

f(x1,y) = exp(⌧�1 sim(x1,y)) , (A20)

where sim(x,y) is typically the cosine similarity.

We next show that InfoNCE is a lower bound on the mutual information.

23

I(X1 ; Y) = Ep(X̃) [I(X1 ; Y)] = Ep(X̃)

Ep(x1,y)

ln

p(x1 | y)

p(x1)

��
(A21)

= Ep(X̃)

"
Ep(x1,y)

"
ln

p(x1 | y)

q(x1 | y, X̃)

q(x1 | y, X̃)

p(x1)

!##

= Ep(X̃)

"
Ep(x1,y)

"
ln

q(x1 | y, X̃)

p(x1)

#
+ Ep(y)

h
KL(p(x1 | y) k q(x1 | y, X̃))

i#

� Ep(X̃)

"
Ep(x1,y)

"
ln

q(x1 | y, X̃)

p(x1)

##
= Ep(X̃)

"
Ep(x1,y)

"
ln

g(x1,y, X̃)

Z(y, X̃)

##

= Ep(X̃)

h
Ep(x1,y)

h
ln g(x1,y, X̃) � ln

⇣
Ep(x1)

h
g(x1,y, X̃)

i⌘ii

= Ep(X̃)

h
Ep(y)

h
Ep(x1|y)

h
ln g(x1,y, X̃)

i
� ln

⇣
Ep(x1)

h
g(x1,y, X̃)

i⌘ii

= Ep(X̃)

h
Ep(y)

h
Ep(x1|y)

h
ln g(x1,y, X̃)

iii
� Ep(X̃)

h
Ep(y)

h
ln
⇣
Ep(x1)

h
g(x1,y, X̃)

i⌘ii

� Ep(y)p(X|y)

h
ln g(x1,y, X̃)

i
� Ep(X̃)

h
Ep(y)

h
Ep(x1)

h
g(x1,y, X̃)

i
� 1

ii

= Ep(y)p(X|y)

"
ln

f(x1,y)
1
N

PN
i=1 f(xi,y)

#
� Ep(y)

"
Ep(X)

"
f(x1,y)

1
N

PN
i=1 f(xi,y)

#
� 1

#

= Ep(y)p(X|y)

"
ln

f(x1,y)
1
N

PN
i=1 f(xi,y)

#
� Ep(y)

"
1

N

NX

i=1

Ep(X)

"
f(xi,y)

1
N

PN
i=1 f(xi,y)

#
� 1

#

= Ep(y)p(X|y)

"
ln

f(x1,y)
1
N

PN
i=1 f(xi,y)

#
� Ep(y)

"
Ep(X)

"
1
N

PN
i=1 f(xi,y)

1
N

PN
i=1 f(xi,y)

#
� 1

#

= Ep(y)p(X|y)

"
ln

f(x1,y)
1
N

PN
i=1 f(xi,y)

#

= IInfoNCE(X1 ; Y) .
For the first "�" we used that the Kullback-Leibler divergence is non-negative. For the second "�"
we used the inequality ln a 6 a� 1 for a > 0.

Part (II): Lower bound with probabilities.

If the score function f is
f(x,y) = p(y | x) , (A22)

then the bound is

I(X1 ; Y) � Ep(y)p(X|y)

"
ln

f(x1,y)

1
N

PN
i=1 f(xi,y)

!#
= Ep(y)p(X|y)

"
ln

p(y | x1)

1
N

PN
i=1 p(y | xi)

!#

(A23)

= Ep(y)p(X|y)

2

4ln

0

@
p(y|x1)
p(y)

1
N

PN
i=1

p(y|xi)
p(y)

1

A

3

5 = IInfoNCE(X1 ; Y) .

This is the bound with probabilities in the theorem.

A.1.2 InfoLOOB: Upper Bound on Mutual Information

We derive an upper bound on the mutual information between random variables X and Y distributed
according to p(x,y). The mutual information I(X ; Y) between random variables X and Y is

I(X ; Y) = Ep(x,y)

ln

p(x,y)

p(x) p(y)

�
= Ep(x,y)

ln

p(x | y)

p(x)

�
= Ep(x,y)

ln

p(y | x)

p(y)

�
.

(A24)

24

In Poole et al. (2019) Eq. (13) introduces a variational upper bound on the mutual information,
which has been called "Leave one out upper bound" (called "L1Out" in Cheng et al. (2020)). For
simplicity, we call this bound "InfoLOOB", where LOOB is an acronym for "Leave One Out Bound".
In contrast to InfoNCE, InfoLOOB is an upper bound on the mutual information. InfoLOOB is analog
to InfoNCE except that the negative samples do not contain a positive sample. Fig. 1 and Fig. 2 in
Cheng et al. (2020) both show that InfoLOOB is a better estimator for the mutual information than
InfoNCE (van den Oord et al., 2018), MINE (Belghazi et al., 2018), and NWJ (Nguyen et al., 2010).

The InfoLOOB with score function f(x,y) is defined as

IInfoLOOB(X1 ; Y) = Ep(y)

"
Ep(X|y)

"
ln

f(x1,y)

1
N�1

PN
i=2 f(xi,y)

!##
. (A25)

The InfoLOOB with probabilities is defined as

IInfoLOOB(X1 ; Y) = Ep(y)

"
Ep(X|y)

"
ln

p(y | x1)

1
N�1

PN
i=2 p(y | xi)

!##
. (A26)

This is the InfoLOOB Eq. (A25) with f(x,y) = p(y | x).

The InfoLOOB with probabilities can be written in different forms:

IInfoLOOB(X1 ; Y) = Ep(y)

"
Ep(X|y)

"
ln

p(y | x1)

1
N�1

PN
i=2 p(y | xi)

!##
(A27)

= Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(y|x1)
p(y)

1
N�1

PN
i=2

p(y|xi)
p(y)

1

A

3

5

3

5 = Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(x1|y)
p(x1)

1
N�1

PN
i=2

p(xi|y)
p(xi)

1

A

3

5

3

5 .

Set of pairs. The InfoLOOB can we written in a different setting (Poole et al., 2019), which will
be used in our implementations. We sample N pairs independently from p(x,y), which gives
X = {(x1,y1), (x2,y2), . . . , (xN ,yN)}. The InfoLOOB is then

IInfoLOOB(X ; Y) = Ep(X|y)

"
1

N

NX

i=1

ln

f(xi,yi)

1
N�1

PN
j=1,j 6=i f(xj ,yi)

!#
. (A28)

We assume that an anchor sample y is given. For the anchor sample y we draw a positive sample
x1 according to p(x1 | y). Next, we draw a set X̃ = {x2, . . . ,xN} of negative samples according
to p̃(x | y). For a given y, the x that have a large p(x | y) are drawn with a lower probability
p̃(x | y) compared to random drawing via p(x). The negatives are indeed negatives. We have
drawn first anchor sample y and then X = {x1, . . . ,xN}, where x1 is drawn according to p(x1 | y)
and X̃ = {x2, . . . ,xN} are drawn iid according to p̃(x | y). We have

p̃(X̃ | y) =
NY

i=2

p̃(xi | y) , (A29)

p̃(X | y) = p(x1 | y)
NY

i=2

p̃(xi | y) , (A30)

p̃(X̃ | y) p(x1) = p(x1)
NY

i=2

p̃(xi | y) . (A31)

We assume for score function f(x,y)

8y8x : 0 < f(x,y) . (A32)

We ensure this by using for score function f

f(x,y) = exp(⌧�1 sim(x,y)) , (A33)

25

where sim(x,y) is typically the cosine similarity.

InfoLOOB with score function f(x,y) and with undersampling via p̃(X | y) is (compare the
definition of InfoLOOB Eq. (A25) without undersampling):

IInfoLOOB(X ; Y) = Ep(y)

"
Ep̃(X|y)

"
ln

f(x1,y)

1
N�1

PN
i=2 f(xi,y)

!##
. (A34)

The reference constant Z(y) gives the average score f(x,y), if the negatives for y are selected with
lower probability via p̃(x | y) than with random drawing according to p(x).

Z(y) = Ep̃(x|y) [f(x,y)] . (A35)

We define the variational distribution

q(x | y) =
p(x) f(x,y)

Z⇤(y)
, Z⇤(y) = Ep(x) [f(x,y)] . (A36)

With the variational distribution q(x | y), we express our main assumption. The main assumption
for the bound is:

Ep(y) [KL(p(x | y) k q(x | y))] 6 Ep(y) [lnZ
⇤(y) � lnZ(y)] . (A37)

This assumption can be written as

Ep(y)

Ep(x|y)

ln

✓
p(y | x) Z(y)

p(y) f(x,y)

◆��
6 0 . (A38)

This assumption ensures that the x with large p(x | y)) are selected with lower probability via
p̃(x | y) than with random drawing according to p(x). The negatives are ensured to be real negatives,
that is, p(x | y) is small and so is f(x,y). Consequently, we make sure that we draw x with
sufficient small f(x,y). The Kullback-Leibler gives the minimal required gap between drawing
f(x,y) via p(x) and drawing f(x,y) via p̃(x | y).

EXAMPLE. With h(y) > 0, we consider the setting

f(x,y) =
p(y | x) h(y)

p(y)
, (A39)

p̃(x | y) =
p(x) p(y)

h(y) p(y | x) C(y)
, C(y) = Ep(x)

"✓
p(y | x) h(y)

p(y)

◆�1
#
. (A40)

The main assumption becomes

Ep(y)

Ep(x|y)

ln

Z(y)

h(y)

��
6 0 . (A41)

The main assumption holds since

Z(y) = Ep̃(x|y)

p(y | x) h(y)

p(y)

�
=

Z
p(x) p(y)

h(y) p(y | x) C(y)

p(y | x) h(y)

p(y)
dx (A42)

=

Z
p(x) C(y)�1 dx = C(y)�1 =

Ep(x)

"✓
p(y | x) h(y)

p(y)

◆�1
#!�1

6

Ep(x)

p(y | x) h(y)

p(y)

��1
!�1

= Ep(x)

p(y | x) h(y)

p(y)

�

=

Z
p(y,x) h(y)

p(y)
dx = h(y) ,

where we used for the 6 Jensen’s inequality with the function f(a) = 1/a, which is convex for
a > 0.

26

For score function f(x,y) and distribution p̃(x | y) for sampling the negative samples, we have
defined:

Z(y) = Ep̃(x|y) [f(x,y)] , (A43)
Z⇤(y) = Ep(x) [f(x,y)] , (A44)

q(x | y) =
p(x) f(x,y)

Z⇤(y)
. (A45)

Next theorem gives the upper bound of the InfoLOOB on the mutual information, which is

I(X1 ; Y) = Ep(x1,y)

ln

p(x1 | y)

p(x1)

�
. (A46)

Theorem A2 (InfoLOOB upper bound). If X̃ = {x2, . . . ,xN} are drawn iid according to p̃(x | y)
and if the main assumption holds:

Ep(y) [KL(p(x | y) k q(x | y))] 6 Ep(y) [lnZ
⇤(y) � lnZ(y)] . (A47)

Then InfoLOOB with score function f(x,y) and undersampling positives by p̃(X | y) is an upper
bound on the mutual information:

I(X1 ; Y) 6 Ep(y)

"
Ep̃(X|y)

"
ln

f(x1,y)

1
N�1

PN
i=2 f(xi,y)

!##
= IInfoLOOB(X1 ; Y) . (A48)

If the negative samples X̃ = {x2, . . . ,xN} are drawn iid according to p(x), then InfoLOOB with
probabilities according to Eq. (A26) is an upper bound on the mutual information:

I(X1 ; Y) 6 Ep(y)

"
Ep(X|y)

"
ln

p(y | x1)

1
N�1

PN
i=2 p(y | Xi)

!##
= IInfoLOOB(X1 ; Y) . (A49)

The second bound Eq. (A49) is a special case of the first bound Eq. (A48).

27

Proof. Part (I): Upper bound with score function f(x,y).

I(X1 ; Y) = Ep(x1,y)

ln

p(x1 | y)

p(x1)

�
(A50)

= Ep(x1,y)

ln

✓
p(x1 | y)

q(x1 | y)

q(x1 | y)

p(x1)

◆�

= Ep(x1,y)

ln

q(x1 | y)

p(x1)

�
+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

6 Ep(x1,y)

ln

q(x1 | y)

p(x1)

�
+ Ep(y)

⇥
ln Ep(x1) [f(x1,y)] � lnZ(y)

⇤

= Ep(x1,y)

ln

q(x1 | y)

p(x1)
+ ln

Ep(x1) [f(x1,y)]

Z(y)

�

= Ep(x1,y)

ln

✓
f(x1,y)

Ep(x1) [f(x1,y)]

Ep(x1) [f(x1,y)]

Z(y)

◆�

= Ep(x1,y)

ln

f(x1,y)

Z(y)

�

= Ep(x1,y)

2

4ln

0

@ f(x1,y)

Ep̃(X|y)

h
1

N�1

PN
i=2 f(xi,y)

i

1

A

3

5

= Ep(x1,y) [ln f(x1,y)] � Ep(y)

"
ln

Ep̃(X|y)

"
1

N � 1

NX

i=2

f(xi,y)

#!#

6 Ep(x1,y) [ln f(x1,y)] � Ep(y)

"
Ep̃(X|y)

"
ln

1

N � 1

NX

i=2

f(xi,y)

!##

= Ep(y)

"
Ep̃(X|y)

"
ln

f(x1,y)

1
N�1

PN
i=2 f(xi,y)

!##

= IInfoLOOB(X1 ; Y) ,

where the first "6" uses assumption Eq. (A37), while Jensens’s inequality was used for the second
"6" by exchanging the expectation and the "ln". We also used

Ep̃(X|y)

"
1

N � 1

NX

i=2

f(xi,y)

#
=

1

N � 1

NX

i=2

Ep̃(xi|y) [f(xi,y)] =
1

N � 1

NX

i=2

Z(y) = Z(y) .

(A51)

Part (II): Upper bound with probabilities.

If the score function f is
f(x,y) = p(y | x) (A52)

and
p̃(x | y) = p(x) , (A53)

then
p̃(X | y) = p(X | y) , (A54)

Z(y) = Ep(x) [p(y | x)] = p(y) , (A55)
Z⇤(y) = Ep(x) [p(y | x)] = p(y) , (A56)

q(x | y) =
p(x) p(y | x)

p(y)
= p(x | y) , (A57)

KL(p(x | y) k q(x | y)) = KL(p(x | y) k p(x | y)) = 0 . (A58)

28

Therefore, the main assumption holds, since

0 = Ep(y) [KL(p(x | y) k q(x | y))] = Ep(y) [lnZ
⇤(y) � lnZ(y)] . (A59)

The bound becomes

I(X1 ; Y) 6 Ep(y)

"
Ep(X|y)

"
ln

p(y | x1)

1
N�1

PN
i=2 p(y | xi)

!##
(A60)

= Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(y|x1)
p(y)

1
N�1

PN
i=2

p(y|xi)
p(y)

1

A

3

5

3

5 = IInfoLOOB(X1 ; Y) .

An alternative proof is as follows:

I(X1 ; Y) = I(X1 ; Y) � Ep(y)

"
ln

1

N � 1

NX

i=2

p(y)

p(y)

!#
(A61)

= I(X1 ; Y) � Ep(y)

"
ln

Ep(X|y)

"
1

N � 1

NX

i=2

p(y | xi)

p(y)

#!#

6 I(X1 ; Y) � Ep(y)

"
Ep(X|y)

"
ln

1

N � 1

NX

i=2

p(y | xi)

p(y)

!##

= Ep(y)

Ep(x1|y)

ln

✓
p(x1 | y)

p(x1)

◆��
� Ep(y)

"
Ep(X|y)

"
ln

1

N � 1

NX

i=2

p(xi | y)

p(xi)

!##

= Ep(y)

2

4Ep(X|y)

2

4ln

0

@
p(x1|y)
p(x1)

1
N�1

PN
i=2

p(xi|y)
p(xi)

1

A

3

5

3

5

= IInfoLOOB(X1 ; Y) .

where we applied Jensens’s inequality for the exchanging the expectation and the "ln" to obtain the
"6" inequality.

Experiments that compare upper and lower bounds as mutual information estimates are provided
in Cheng et al. (2020) and in Poole et al. (2019). In Fig. 2 in Cheng et al. (2020) it is shown that
InfoLOOB is a good estimator of the mutual information.

A.1.3 InfoLOOB: Analysis of the Objective

This subsection justifies the maximization of the InfoLOOB bound for contrastive learning. Maxi-
mizing the InfoLOOB bound is not intuitive as it was introduced as an upper bound on the mutual
information in the previous subsection. Still maximizing the InfoLOOB bound leads to a good
approximation of the mutual information, in particular for high mutual information.

InfoLOOB with a neural network as a scoring function is not an upper bound on the mutual infor-
mation when not under-sampling. As we use InfoLOOB on training data for which we do not know
the sampling procedure, we cannot assume under-sampling. Therefore, we elaborate more on the
rationale behind the maximization of the InfoLOOB bound. (I) We show that InfoLOOB with neural
networks as scoring function is bounded from above. Therefore, there exists a maximum and the
optimization problem is well defined. (II) We show that InfoLOOB with neural networks as scoring
function differs by two terms from the mutual information. The first term is the Kullback-Leibler
divergence between the variational q(x | y) and the posterior p(x | y). This divergence is minimal
for q(x | y) = p(x | y), which implies f(y | x) = p(y | x). The second term is governed by
the difference between the mean E[f(x,y)] and the empirical mean 1/(N � 1)

P
i f(xi,y). The

Hoeffding bound can be applied to this difference. Therefore, the second term is negligible for large
N . In contrast, the KL term is dominant and the relevant term, therefore maximizing InfoLOOB
leads to f(y | x) ⇡ p(y | x).

29

We assume that an anchor sample y is given. For the anchor sample y, we draw a positive sample x1

according to p(x1 | y). We define the set X̃ = {x2, . . . ,xN} of negative samples, which are drawn
iid according to p(x). We define the set X = {x1, . . . ,xN}.

We have

p(X̃) =
NY

i=2

p(xi) , (A62)

p(X | y) = p(x1 | y)
NY

i=2

p(xi) = p(x1 | y) p(X̃) , (A63)

p(X) =
NY

i=1

p(xi) = p(x1) p(X̃) . (A64)

We use the score function

f(x,y) = exp(⌧�1 sim(x,y)) , (A65)

where sim(x,y) is typically the cosine similarity.

The InfoLOOB with score function f(x,y) is defined as

IInfoLOOB(X1 ; Y) = Ep(y)

"
Ep(X|y)

"
ln

f(x1,y)

1
N�1

PN
i=2 f(xi,y)

!##
. (A66)

We define the variational distribution

q(x | y) =
p(x) f(x,y)

Z(y)
, (A67)

Z(y) = Ep(x) [f(x,y)] . (A68)

30

The next inequality shows the relation between I(X1 ; Y) and IInfoLOOB(X1 ; Y) for random
variables X1 and Y .

I(X1 ; Y) = Ep(x1,y)

ln

p(x1 | y)

p(x1)

�
(A69)

= Ep(x1,y)

ln

✓
p(x1 | y)

q(x1 | y)

q(x1 | y)

p(x1)

◆�

= Ep(x1,y)

ln

q(x1 | y)

p(x1)

�
+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= Ep(x1,y)

ln

f(x1,y)

Z(y)

�
+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= Ep(x1,y)

2

4ln

0

@ f(x1,y)

Ep(X|y)

h
1

N�1

PN
i=2 f(xi,y)

i

1

A

3

5 + Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= Ep(x1,y) [ln f(x1,y)] � Ep(y)

"
ln

Ep(X|y)

"
1

N � 1

NX

i=2

f(xi,y)

#!#

+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= Ep(x1,y) [ln f(x1,y)] � Ep(y)

"
Ep(X|y)

"
ln

1

N � 1

NX

i=2

f(xi,y)

!##

+ Ep(y)

"
Ep(X|y)

"
ln

1

N � 1

NX

i=2

f(xi,y)

!##
� Ep(y)

"
ln

Ep(X|y)

"
1

N � 1

NX

i=2

f(xi,y)

#!#

+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= Ep(y)

"
Ep(X|y)

"
ln

f(x1,y)

1
N�1

PN
i=2 f(xi,y)

!##
+ Ep(y)

"
Ep(X|y)

"
ln

1

N � 1

NX

i=2

f(xi,y)

!##

� Ep(y)

"
ln

Ep(X|y)

"
1

N � 1

NX

i=2

f(xi,y)

#!#
+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= IInfoLOOB(X1 ; Y)

+ Ep(y)

"
Ep(X|y)

"
ln

1

N � 1

NX

i=2

f(xi,y)

!##
� Ep(y)

"
ln

Ep(X|y)

"
1

N � 1

NX

i=2

f(xi,y)

#!#

+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= IInfoLOOB(X1 ; Y)

+ Ep(y)

"
Ep(X|y)

"
ln

1

N � 1

NX

i=2

f(xi,y)

!##
� Ep(y)

⇥
ln
�
Ep(x1) [f(x1,y)]

�⇤

+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= IInfoLOOB(X1 ; Y)

� Ep(y)

"
Ep(X̃)

"
ln

Ep(x1) [f(x1,y)]
1

N�1

PN
i=2 f(xi,y)

!##

+ Ep(y) [KL(p(x1 | y) k q(x1 | y))]

= IInfoLOOB(X1 ; Y) � DE + Ep(y) [KL(p(x1 | y) k q(x1 | y))] ,

where we used

DE = Ep(y)

"
Ep(X̃)

"
ln

Ep(x1) [f(x1,y)]
1

N�1

PN
i=2 f(xi,y)

!##
= Ep(y)

"
Ep(X̃)

"
ln

Z(y)

1
N�1

PN
i=2 f(xi,y)

!##

(A70)

31

(DE for difference of expectations) and

Z(y) = Ep(x1) [f(x1,y)] = Ep(X̃)

"
1

N � 1

NX

i=2

f(xi,y)

#
(A71)

= Ep(X|y)

"
1

N � 1

NX

i=2

f(xi,y)

#
.

Since both KL and DE are non-negative (for DE see below), to increase InfoLOOB we have either
to decrease KL or to increase DE.

Bounding DE. Next we bound DE. We define

L = zTx � ��1
NX

i=1

zi ln zi . (A72)

The log-sum-exp function (lse) is

lse(�,a) = ��1 log

NX

i=1

exp(�ai)

!
, (A73)

for � > 0 and vector a = (a1, . . . , aN).

The lse is a convex function (Lemma 4 in (Gao & Pavel, 2017)). We obtain via Jensen’s inequality
and the convex lse:

Ep(y)

"
Ep(X̃)

"
ln

Ep(x1)

"
exp(⌧�1 sim(x1,y))

1
N�1

PN
i=2 exp(⌧�1 sim(xi,y))

#!##
(A74)

6 Ep(y)

⇥
ln Ep(x1)

⇥
exp(⌧�1 sim(x1,y))

⇤
� ⌧�1 Ep(x1) [sim(x1,y)]

⇤
.

Again using Jensen’s inequality and the concave ln, we get

Ep(y)

"
Ep(X̃)

"
ln

Ep(x1)

"
exp(⌧�1 sim(x1,y))

1
N�1

PN
i=2 exp(⌧�1 sim(xi,y))

#!##
(A75)

� Ep(y)

"
ln Ep(x1)

⇥
exp(⌧�1 sim(x1,y))

⇤
� ln

1

N � 1

NX

i=2

Ep(xi)

⇥
exp(⌧�1 sim(x1,y))

⇤
!#

= 0 .

If we combine both previous inequalities, we obtain

0 6 DE 6 Ep(y)

⇥
ln Ep(x1)

⇥
exp(⌧�1 sim(x1,y))

⇤
� ⌧�1 Ep(x1) [sim(x1,y)]

⇤
. (A76)

In particular, for bounded sim(x1,y), we get

0 6 DE 6 ⌧�1

✓
max
y,x1

sim(x1,y) � min
y,x1

sim(x1,y)

◆
, (A77)

while Hoeffding’s lemma gives

0 6 DE 6 1

8
⌧�2

✓
max
y,x1

sim(x1,y) � min
y,x1

sim(x1,y)

◆2

. (A78)

Thus, for bounded sim(x1,y), DE is bounded, therefore also InfoLOOB.

32

Next, we show that DE is small. The Hoeffding bound (Proposition 2.5 in Wainwright (2019)) states
that if the random variable Sf = f(X1,y) with X1 ⇠ p(x1) is �2

f -sub-Gaussian then with random
variables Si

f iid distributed like Sf

p

 �����E [Sf] �
1

N � 1

NX

i=2

Si
f)

����� � ✏

!
(A79)

= p

 �����Ep(x1) [f(x1,y)] �
1

N � 1

NX

i=2

f(xi,y)

����� � ✏

!
6 2 exp

�

(N � 1) ✏2

2 �2
f

!
.

(A80)

If Sf 2 [a, b] (e.g. if f(x,y) 2 [a, b]) then we can set �f = (b� a)/2.

For

Ep(x1) [f(x1,y)] �
1

N � 1

NX

i=2

f(xi,y) 6 ✏ (A81)

we have

ln

Ep(x1) [f(x1,y)]
1

N�1

PN
i=2 f(xi,y)

!
6 ln

1

N�1

PN
i=2 f(xi,y) + ✏

1
N�1

PN
i=2 f(xi,y)

!
(A82)

6 ✏
1

N�1

PN
i=2 f(xi,y)

6 ✏

Z � ✏
,

where we used ln a 6 a� 1 for 0 < a. Analog for

1

N � 1

NX

i=2

f(xi,y) � Ep(x1) [f(x1,y)] 6 ✏ (A83)

we have

ln

Ep(x1) [f(x1,y)]
1

N�1

PN
i=2 f(xi,y)

!
� ln

✓
Ep(x1) [f(x1,y)]

Ep(x1) [f(x1,y)] + ✏

◆
(A84)

= � ln

✓
Ep(x1) [f(x1,y)] + ✏

Ep(x1) [f(x1,y)]

◆
� �

✏

Ep(x1) [f(x1,y)]
= �

✏

Z
,

where we used � ln a � 1� a for 0 < a.

In summary, if for all y
�����Ep(x1) [f(x1,y)] �

1

N � 1

NX

i=2

f(xi,y)

����� 6 ✏ , (A85)

then we have

�
✏

Z
6 ln

Ep(x1) [f(x1,y)]
1

N�1

PN
i=2 f(xi,y)

!
6 ✏

Z � ✏
. (A86)

It follows that

� ✏ Ep(y)

⇥
Z(y)�1

⇤
6 DE 6 ✏ Ep(y)

⇥
(Z(y) � ✏)�1

⇤
. (A87)

Consequently, for large N , the Hoeffding bound Eq. (A79) holds with high probability, if ✏ is chosen
reasonably. Therefore, with high probability the term DE is small.

Next, we show that DE is governed by the variance of sim(x,y) for unmatched pairs.

33

In Eq. (A76) the term DE is upper bounded:

DE 6 Ep(y)

⇥
ln Ep(x1)

⇥
exp(⌧�1 sim(x1,y))

⇤
� ⌧�1 Ep(x1) [sim(x1,y)]

⇤
(A88)

We express these equations via the random variable S = sim(X1,y) with s = sim(x1,y), which
replaces the random variable X1 and its realization x1.

Ep(x1) [g (sim(x1,y))] =

Z
p(x1) g (sim(x1,y)) dx1 (A89)

=

Z
p(x1)

Z
� (s � sim(x1,y)) g(s) ds dx1 =

Z Z
p(x1) � (s � sim(x1,y)) dx1 g(s) ds

=

Z
p(s) g(s) ds = Ep(s) [g(s)] ,

where we used the Dirac delta-distribution � and for s = sim(x1,y) we defined

p(s) =

Z
p(x1) � (s � sim(x1,y)) dx1 . (A90)

Eq. (A76) can be written as

DE 6 Ep(y)

⇥
ln Ep(s)

⇥
exp(⌧�1 s)

⇤
� ⌧�1 Ep(s) [s]

⇤
= Ep(y)

⇥
ln Ep(s)

⇥
exp(⌧�1 (s � s̄))

⇤⇤
,

(A91)

with s̄ = Ep(s) [s].

We assume that the random variable S with realization s = sim(x1,y) is sub-Gaussian, where y
is given and x1 is drawn independently from y according to p(x1). Therefore, we assume that the
similarity of a random matching is sub-Gaussian. This assumption is true for bounded similarities
(like the cosine similarity) and for almost sure bounded similarities. The assumption is true if using
vectors that are retrieved from a continuous modern Hopfield network since they are bounded by
the largest stored vector. This assumption is true for a continuous similarity function if x, y, and
parameters are bounded, since the bounded x, y, and parameters can be embedded in a compact set
on which the similarity has a maximum. This assumption is true for learned similarities if the input is
bounded.

For a random variable S that is �2-sub-Gaussian (Definition 2.2 in Wainwright (2019)) the constant
�2 is called a proxy variance. The minimal proxy variance �2

opt is called the optimal proxy variance
with Var[S] 6 �2

opt (Arbel et al., 2019). S is strictly sub-Gaussian, if �2
opt = Var[S]. Proposition 2.1

in Arbel et al. (2019) states

�2
opt = sup

�2R

2

�2
ln (E [exp(�(S � µ)]) , (A92)

with µ = E[S]. The supremum is attained for almost surely bounded random variables S. Eq. (4) in
Arbel et al. (2019) states

lim
�!0

2

�2
ln (E [exp(�(S � µ)]) = Var[S] . (A93)

Thus, for S being sub-Gaussian, we have

DE 6 ⌧�2 Ep(y)

⇥
�2
opt(S)

⇤
, (A94)

where �2
opt is the optimal proxy variance of S. For example, bounded random variables S 2 [a, b]

are sub-Gaussian with �opt 6 (b� a)/2 (Exercise 2.4 in Wainwright (2019)).

KL is decreased by making the variation distribution q(x1 | y) more similar to the posterior p(x1 | y).
The value DE only depends on the marginal distributions p(y) and p(x), since p(X̃) =

QN
i=2 p(xi).

The value DE can be changed by adding an offset to f(x,y). However, scaling f(x,y) by a factor
does not change DE. Consequently, DE is difficult to change.

34

Therefore, increasing InfoLOOB is most effective by making q(x1 | y) more similar to the posterior
p(x1 | y).

Gradient of InfoLOOB expressed by gradients of KL and DE. Assume that the similarity is
parametrized by w giving sim(x,y;w).

KL(p(x1 | y) k q(x1 | y)) =

Z
p(x1 | y) ln

✓
p(x1 | y)

q(x1 | y)

◆
dx (A95)

= � ⌧�1

Z
p(x1 | y) sim(x1,y;w) dx1 + lnZ + C ,

where C is independent of w.

Next, we compute the derivative of KL with respect to parameters w.

@KL

@w
(A96)

= � ⌧�1

Z
p(x1 | y)

@sim(x1,y;w)

@w
dx1 +

1

Z

Z
p(x1)

exp(⌧�1 sim(x1,y;w))

@sim(x1,y;w)

@sim(x1,y;w)

@w
dx1

= � ⌧�1

Z
p(x1 | y)

@sim(x1,y;w)

@w
dx1 + ⌧�1

Z
p(x1)

exp(⌧�1 sim(x1,y;w))

Z

@sim(x1,y;w)

@w
dx1

= � ⌧�1

Z
p(x1 | y)

@sim(x1,y;w)

@w
dx1 + ⌧�1

Z
q(x1 | y)

@sim(x1,y;w)

@w
dx1

= ⌧�1

Z
(q(x1 | y) � p(x1 | y))

@sim(x1,y;w)

@w
dx1 .

The derivative is the average difference between the posterior distribution p(x1 | y) and the variational
distribution q(x1 | y) multiplied by the derivative of the similarity function. If both distribution
match, then the derivative vanishes.

35

Next, we compute the derivative of DE with respect to parameters w.

@DE

@w
(A97)

= Ep(y)

@ lnZ

@w

�
� Ep(y)

"
Ep(X̃)

"
1

N�1

PN
i=2 ⌧�1 exp(⌧�1 sim(xi,y;w)) @sim(xi,y;w)

@w

1
N�1

PN
j=2 f(xj ,y)

##

= Ep(y)

⌧�1

Z
q(x1 | y)

@sim(x1,y;w)

@w
dx1

�

� Ep(y)

"
Ep(X̃)

"
1

N�1

PN
i=2 ⌧�1 exp(⌧�1 sim(xi,y;w)) @sim(xi,y;w)

@w

1
N�1

PN
j=2 f(xj ,y)

##

= ⌧�1 Ep(y)

Z
q(x1 | y)

@sim(x1,y;w)

@w
dx1

�

� ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

f(xi,y)
1

N�1

PN
j=2 f(xj ,y)

@sim(xi,y;w)

@w

##

= ⌧�1 Ep(y)

Z
p(x1) f(x1,y)

Ep(x) [f(x,y)]

@sim(x1,y;w)

@w
dx1

�

� ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

f(xi,y)
1

N�1

PN
j=2 f(xj ,y)

@sim(xi,y;w)

@w

##

= ⌧�1 Ep(y)

Ep(x1)

f(x1,y)

Ep(x) [f(x,y)]

@sim(x1,y;w)

@w

��

� ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

f(xi,y)
1

N�1

PN
j=2 f(xj ,y)

@sim(xi,y;w)

@w

##

= ⌧�1 Ep(y)

"
1

N � 1

NX

i=2

Ep(xi)

f(xi,y)

Ep(x) [f(x,y)]

@sim(xi,y;w)

@w

�#

� ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

f(xi,y)
1

N�1

PN
j=2 f(xj ,y)

@sim(xi,y;w)

@w

##

= ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

f(xi,y)

Ep(x) [f(x,y)]

@sim(xi,y;w)

@w

##

� ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

f(xi,y)
1

N�1

PN
j=2 f(xj ,y)

@sim(xi,y;w)

@w

##

= ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

1

Ep(x) [f(x,y)]
�

1
1

N�1

PN
j=2 f(xj ,y)

!
f(xi,y)

@sim(xi,y;w)

@w

##

= ⌧�1 Ep(y)

"
Ep(X̃)

"
1

N � 1

NX

i=2

1

Z
�

1
1

N�1

PN
j=2 f(xj ,y)

!
f(xi,y)

@sim(xi,y;w)

@w

##
.

The derivative is the average of 1
Z �

1
1

N�1

PN
j=2 f(xj ,y)

multiplied by the score function and the

derivative of the similarity function. The average is over y and X̃ , therefore the whole derivative
becomes even smaller. Consequently, for small b� a and large N , the derivative of DE is small.

Note that for
�����Ep(x1) [f(x1,y)] �

1

N � 1

NX

i=2

f(xi,y)

����� 6 ✏ (A98)

36

we have
1

Z
�

1
1

N�1

PN
j=2 f(xj ,y)

6 1

Z
�

1

Z + ✏
=

✏

Z(Z + ✏)
, (A99)

1

Z
�

1
1

N�1

PN
j=2 f(xj ,y)

�
1

Z
�

1

Z � ✏
= �

✏

Z(Z � ✏)
, (A100)

therefore
�����
1

Z
�

1
1

N�1

PN
j=2 f(xj ,y)

����� 6 ✏

Z(Z � ✏)
. (A101)

If the expectation Z is well approximated by the average 1
N�1

PN
j=2 f(xj ,y), then both DE and its

gradient are small.

Derivative of InfoLOOB via KL and DE:
@IInfoLOOB(X1 ; Y)

@w
=

@DE

@w
�

@KL

@w
. (A102)

In this gradient, the KL term is dominating, therefore f(x,y) is pushed to approximate the conditional
probability p(y | x). Modern Hopfield networks lead to larger values of p(y | x) as the mutual
information becomes larger, therefore modern Hopfield networks help to push f(x,y) to large values.
Furthermore, modern Hopfield networks increase Z, which is in the denominator of the bound on
DE and its derivative.

A.1.4 InfoNCE and InfoLOOB: Gradients

We consider the InfoNCE and the InfoLOOB loss function. For computing the loss
function, we sample N pairs independently from p(x,y), which gives the training set
{(x1,y1), (x2,y2), . . . , (xN ,yN)}. InfoNCE and InfoLOOB only differ in using the positive
example in the negatives. More precisely, for the sample y1, InfoNCE uses for the matrix of negative
samples X = (x1, . . . ,xN), while InfoLOOB uses X̃ = (x2, . . . ,xN).

InfoNCE. The InfoNCE loss is

LInfoNCE = �
1

N

NX

i=1

ln

f(xi,yi)

1
N

PN
j=1 f(xj ,yi)

!
=

1

N

NX

i=1

LInfoNCE(yi) , (A103)

where we used

LInfoNCE(yi) = � ln

f(xi,yi)

1
N

PN
j=1 f(xj ,yi)

!
. (A104)

For the score function f(x,y), we use

f(x,y) = exp(⌧�1 sim(x,y)) , (A105)

sim(x,y) = yTx (A106)

with ⌧ as the temperature.

The loss function for this score function is

LInfoNCE(y) = � ⌧�1 yTx1 + ⌧�1 lse
�
⌧�1,XTy

�
, (A107)

where lse is the log-sum-exp function (lse):

lse(�,a) = ��1 log

NX

i=1

exp(�ai)

!
, (A108)

for � > 0 and vector a = (a1, . . . , aN).

37

The gradient with respect to y is

@LInfoNCE(y)

@y
= � ⌧�1 x1 + ⌧�1 X softmax

�
⌧�1XTy

�
, (A109)

which is the positive example x1 that fits to the anchor example y minus the Hopfield network update
with state pattern y and stored patterns X and then this difference multiplied by ⌧�1.

This gradient can be simplified, since the positive example x1 is also in the negative examples. Using
p = (p1, . . . , pN)T = softmax

�
⌧�1XTy

�
, we obtain

@LInfoNCE(y)

@y
(A110)

= � ⌧�1 (1 � p1)

✓
x1 �

1

1� p1
X
�
softmax

�
⌧�1XTy

�
� (p1, 0, . . . , 0)

T
�◆

= � ⌧�1 (1 � p1)
⇣
x1 � X̃ softmax

⇣
⌧�1X̃Ty

⌘⌘
= (1 � p1)

@LInfoLOOB(y)

@y
.

where
1

1� p1
X
�
softmax

�
⌧�1XTy

�
� (p1, 0, . . . , 0)

T
�

(A111)

=
1

1� p1
X
�
(p1, p2, . . . , pN)T � (p1, 0, . . . , 0)

T
�

=
1

1� p1
X(0, p2, . . . , pN)T =

1

1� p1

NX

i=2

pi xi

is the softmax average over the negatives xi for 2 6 i 6 N without x1. It can be easily seen that
1

1�p1

PN
i=2 pi =

1�p1

1�p1
= 1. For the derivative of the InfoLOOB see below.

The gradient with respect to x1 is

@LInfoNCE(y)

@x1
= � ⌧�1 y + ⌧�1 exp(⌧�1 xT

1 y)PN
i=1 exp(⌧

�1xT
i y)

y (A112)

= � ⌧�1 (1 � p1) y . (A113)

Consequently, the learning rate is scaled by (1� p1).

The sum of gradients with respect to x1 and xi is

@LInfoNCE(y)

@x1
+

NX

i=1

@LInfoNCE(y)

@xi
= � ⌧�1 y + ⌧�1 y 1T softmax

�
⌧�1XTy

�
(A114)

= � ⌧�1 y + ⌧�1 y = 0 ,

where 1 is the vector with ones. However, the derivatives with respect to the weights are not zero
since the xi are differently computed.

InfoLOOB. The InfoLOOB loss is

LInfoLOOB = �
1

N

NX

i=1

ln

f(xi,yi)

1
N�1

PN
j=1,j 6=i f(xj ,yi)

!
=

1

N

NX

i=1

LInfoLOOB(yi) , (A115)

where we used

LInfoLOOB(yi) = � ln

f(xi,yi)

1
N�1

PN
j=1,j 6=i f(xj ,yi)

!
. (A116)

For the score function f(x,y), we use

f(x,y) = exp(⌧�1 sim(x,y)) , (A117)

sim(x,y) = yTx (A118)

38

with ⌧ as the temperature.

The loss function for this score function is

LInfoLOOB(y) = � ⌧�1 yTx1 + ⌧�1 lse
⇣
⌧�1, X̃Ty

⌘
, (A119)

where lse is the log-sum-exponential function.

The gradient with respect to y is

@LInfoLOOB(y)

@y
= � ⌧�1 x1 + ⌧�1 X̃ softmax

⇣
⌧�1X̃Ty

⌘
, (A120)

which is the positive example x1 that fits to the anchor example y minus the Hopfield network update
with state pattern y and stored patterns X̃ and then this difference multiplied by ⌧�1.

The gradient with respect to x1 is

@LInfoLOOB(y)

@x1
= � ⌧�1 y . (A121)

The sum of gradients with respect to x1 and xi is

@LInfoLOOB(y)

@x1
+
X

i

@LInfoLOOB(y)

@xi
= � ⌧�1 y + ⌧�1 y 1T softmax

⇣
⌧�1X̃Ty

⌘

(A122)

= � ⌧�1 y + ⌧�1 y = 0 ,

where 1 is the vector with ones. However, the derivatives with respect to the weights are not zero
since the xi are differently computed.

Gradients with respect to ⌧�1. The gradient of the InfoNCE loss Eq. (A103) using the similarity
Eq. (A105) with respect to ⌧�1 is

@LInfoNCE(y)

@⌧�1
= � yT x1 + yT X softmax

�
⌧�1XTy

�
(A123)

= � yT
�
x1 � X softmax

�
⌧�1XTy

��
, (A124)

which is the similarity of the anchor y with the difference of the positive example x1 and the Hopfield
network update with state pattern y and stored patterns X . The gradient of the InfoLOOB loss
Eq. (A115) using the similarity Eq. (A117) with respect to ⌧�1 is

@LInfoLOOB(y)

@⌧�1
= � yT x1 + yT X̃ softmax

⇣
⌧�1X̃Ty

⌘
(A125)

= � yT
⇣
x1 � X̃ softmax

⇣
⌧�1X̃Ty

⌘⌘
, (A126)

with the difference compared to Eq. (A123) that the Hopfield network update is done with
stored patterns X̃ instead of X . Without the positive example x1 in the stored patterns
X̃ , the term x1 � X̃ softmax

⇣
⌧�1X̃Ty

⌘
in Eq. (A125) will not decrease like the term

x1 �X softmax
�
⌧�1XTy

�
in Eq. (A123) but grow even larger with better separation of the

positive and negative examples.

A.1.5 InfoLOOB and InfoNCE: Probability Estimators

In McAllester & Stratos (2018, 2020) it was shown that estimators of the mutual information by lower
bounds have problems as they come with serious statistical limitations. Statistically more justified for
representing the mutual information is a difference of entropies, which are estimated by minimizing
the cross-entropy loss. Both InfoNCE and InfoLOOB losses can be viewed as cross-entropy losses.

We sample N pairs independently from p(x,y), which gives Z =
{(x1,y1), (x2,y2), . . . , (xN ,yN)}. We set X = {x1,x2, . . . ,xN} and Y = {y1,y2, . . . ,yN},
so that, Z = X ⇥ Y . The score function f(x,y) is an estimator for p(x,y). Then we obtain

39

estimators q̂ for the conditional probabilities. q̂(yi | xi, Y \ {yi}) is an estimator for p(yi | xi) and
q̂(xi | yi, X \ {xi}) an estimator for p(xi | yi). Each estimator q̂ uses beyond (xi,yi) additional
samples to estimate the normalizing constant. For InfoNCE these estimators are

q̂1(yi | xi, Y \ {yi}) =
f(xi,yi)

1
N

PN
j=1 f(xi,yj)

⇡
f(xi,yi)

Ep(y) [f(xi,y)]
, (A127)

q̂2(xi | yi, X \ {xi}) =
f(xi,yi)

1
N

PN
j=1 f(xj ,yi)

⇡
f(xi,yi)

Ep(x) [f(x,yi)]
. (A128)

The cross-entropy losses for the InfoNCE estimators are

L1
InfoNCE = �

1

N

NX

i=1

ln

f(xi,yi)

1
N

PN
j=1 f(xi,yj)

!
, (A129)

L2
InfoNCE = �

1

N

NX

i=1

ln

f(xi,yi)

1
N

PN
j=1 f(xj ,yi)

!
. (A130)

For InfoLOOB these estimators are

q̂1(yi | xi, Y \ {yi}) =
f(xi,yi)

1
N�1

PN
j=1,j 6=i f(xi,yj)

⇡
f(xi,yi)

Ep(y) [f(xi,y)]
, (A131)

q̂2(xi | yi, X \ {xi}) =
f(xi,yi)

1
N�1

PN
j=1,j 6=i f(xj ,yi)

⇡
f(xi,yi)

Ep(x) [f(x,yi)]
. (A132)

The cross-entropy losses for the InfoLOOB estimators are

L1
InfoLOOB = �

1

N

NX

i=1

ln

f(xi,yi)

1
N�1

PN
j=1,j 6=i f(xi,yj)

!
, (A133)

L2
InfoLOOB = �

1

N

NX

i=1

ln

f(xi,yi)

1
N�1

PN
j=1,j 6=i f(xj ,yi)

!
. (A134)

The InfoLOOB estimator uses for normalization

Ep(x) [f(x,yi)] ⇡
1

N � 1

NX

j=1,j 6=i

f(xj ,yi) , (A135)

Ep(y) [f(xi,y)] ⇡
1

N � 1

NX

j=1,j 6=i

f(xi,yj) , (A136)

in contrast to InfoNCE, which uses

Ep(x) [f(x,yi)] ⇡
1

N

NX

j=1

f(xj ,yi) , (A137)

Ep(y) [f(xi,y)] ⇡
1

N

NX

j=1

f(xi,yj) . (A138)

If InfoNCE estimates the normalizing constant separately, then it would be biased. (xi,yi) is drawn
according to p(xi,yi) instead of p(xi)p(yi). In contrast, if InfoLOOB estimated the normalizing
constant separately, then it would be unbiased.

A.1.6 InfoLOOB and InfoNCE: Losses

We have N pairs drawn iid from p(x,y), where we assume that a pair (xi,yi) is already
an embedding of the original drawn pair. These build up the embedding training set Z =

40

{(x1,y1), (x2,y2), . . . , (xN ,yN)} that allows to construct the matrices X = (x1,x2, . . . ,xN)
of N embedding samples xi and Y = (y1,y2, . . . ,yN) of N embedding samples yi. We also have
M stored patterns U = (u1, . . . ,uM) and K stored patterns V = (v1, . . . ,vK).

The state vectors xi and yi are the queries for the Hopfield networks, which retrieve some vectors
from U or V . We normalize vectors kxik = kyik = kuik = kvik = 1. The following vectors are
retrieved from modern Hopfield networks (Ramsauer et al., 2021):

Uxi = U softmax(� UTxi) , (A139)

Uyi = U softmax(� UTyi) , (A140)

Vxi = V softmax(� V Txi) , (A141)

Vyi = V softmax(� V Tyi) . (A142)

where Uxi denotes an image-retrieved image embedding, Uyi a text-retrieved image embedding,
Vxi an image-retrieved text embedding and Vyi a text-retrieved text embedding. The hyperparameter
� corresponds to the inverse temperature: � = 0 retrieves the average of the stored pattern, while
large � retrieve the stored pattern that is most similar to the state pattern (query).

We consider the loss functions

LInfoNCE = �
1

N

NX

i=1

log
exp(⌧�1 xT

i yi)PN
j=1 exp(⌧

�1 xT
i yj)

�
1

N

NX

i=1

log
exp(⌧�1 xT

i yi)PN
j=1 exp(⌧

�1 xT
j yi)

,

(A143)

LInfoLOOB = �
1

N

NX

i=1

log
exp(⌧�1 xT

i yi)PN
j 6=i exp(⌧

�1 xT
i yj)

�
1

N

NX

i=1

log
exp(⌧�1 xT

i yi)PN
j 6=i exp(⌧

�1 xT
j yi)

,

(A144)

LH�UVUV
InfoLOOB = �

1

N

NX

i=1

log
exp(⌧�1 UT

xi
Vyi)PN

j 6=i exp(⌧
�1 UT

xi
Vyj)

�
1

N

NX

i=1

log
exp(⌧�1 UT

xi
Vyi)PN

j 6=i exp(⌧
�1 UT

xj
Vyi)

,

(A145)

LH�UUVV
InfoLOOB = �

1

N

NX

i=1

log
exp(⌧�1 UT

xi
Uyi)PN

j 6=i exp(⌧
�1 UT

xi
Uyj)

�
1

N

NX

i=1

log
exp(⌧�1 V T

xi
Vyi)PN

j 6=i exp(⌧
�1 V T

xj
Vyi)

,

(A146)

where for InfoLOOB the sum
P

j 6=i in the denominator contains only negative examples j. We do
not consider the loss function LH�UVUV

InfoLOOB because of the high variance in the dot product UT
xi
Vyi as

elaborated in the following.

Let us consider the dot product between the anchor retrieval with the positive pattern retrieval for the
loss functions with Hopfield. In the first term of the loss function Eq. (A145), Uxi is the anchor with
Vyi as the positive sample and Vyi with Uxi as the positive sample for the second term, since the
anchor also appears in each term of the denominator. Equivalently the same is valid for Eq. (A146),
but with positive samples Vxi and Uyi respectively. These dot products can be written as

UT
xi
Vyi = softmax(� UTxi)

T UTV softmax(� V Tyi) , (A147)

UT
xi
Uyi = softmax(� UTxi)

T UTU softmax(� UTyi) , (A148)

V T
xi
Vyi = softmax(� V Txi)

T V TV softmax(� V Tyi) . (A149)

High variance of UT
xi
Vyi . To compute the dot product UT

xi
Vyi , M +K stored patterns are required

(M of the uj and K of the vj). In contrast, the dot products UT
xi
Uyi and V T

xi
Vyi require only M

or respectively K stored patterns. Therefore, UT
xi
Vyi has higher variance than both UT

xi
Uyi and

V T
xi
Vyi .

Covariance structure extracted by UT
xi
Uyi and V T

xi
Vyi . The Jacobian J of the softmax p =

softmax(�a) is

J(�a) =
@softmax(�a)

@a
= �

�
diag(p)� ppT

�
, (A150)

41

which is a symmetric, positive semi-definite matrix with one eigenvalue of zero for eigenvector 1.
J(�a) is diagonally dominant since |pi(1� pi)|�

P
j 6=i |pipj | = pi �

P
j pipj = pi � pi = 0.

Next we give upper bounds on the norm of J.
Lemma A1. For a softmax p = softmax(�x) with m = maxi pi(1� pi), the spectral norm of the
Jacobian J of the softmax is bounded:

kJk2 6 2 m � , (A151)
kJk1 6 2 m � , (A152)
kJk1 6 2 m � . (A153)

In particular everywhere holds

kJk2 6 1

2
� . (A154)

If pmax = maxi pi � 1� ✏ � 0.5, then for the spectral norm of the Jacobian holds

kJk2 6 2 ✏ � � 2 ✏2 � < 2 ✏ � . (A155)

Proof. We consider the maximum absolute column sum norm

kAk1 = max
j

X

i

|aij | (A156)

and the maximum absolute row sum norm

kAk1 = max
i

X

j

|aij | . (A157)

We have for A = J = �
�
diag(p)� ppT

�

X

j

|aij | = �

0

@pi(1� pi) +
X

j,j 6=i

pipj

1

A = � pi (1 � 2pi +
X

j

pj) (A158)

= 2 � pi (1� pi) 6 2 m � ,

X

i

|aij | = �

0

@pj (1� pj) +
X

i,i 6=j

pjpi

1

A = � pj (1 � 2pj +
X

i

pi) (A159)

= 2 � pj (1� pj) 6 2 m � .

Therefore, we have

kJk1 6 2 m � , (A160)
kJk1 6 2 m � , (A161)

kJk2 6
q
kJk1kJk1 6 2 m � . (A162)

The last inequality is a direct consequence of Hölder’s inequality.

For 0 6 pi 6 1, we have pi(1� pi) 6 0.25. Therefore, m 6 0.25 for all values of pi.

If pmax � 1 � ✏ � 0.5 (✏ 6 0.5), then 1 � pmax 6 ✏ and for pi 6= pmax pi 6 ✏. The derivative
@x(1� x)/@x = 1� 2x > 0 for x < 0.5, therefore x(1� x) increases with x for x < 0.5. Using
x = 1� pmax and for pi 6= pmax x = pi, we obtain pi(1� pi) 6 ✏(1� ✏) for all i. Consequently,
we have m 6 ✏(1� ✏).

For the softmax p = softmax(�a) with Jacobian @J/@a = J(�a) = �
�
diag(p)� ppT

�
and for

arbitrary N -dimensional vectors b and c, we have

bT J(�a) c = � bT
�
diag(p) � p pT

�
c = �

X

i

pi bi ci �

X

i

pi bi

!
X

i

pi ci

!!
.

(A163)

42

Therefore, bT J(�a)c is � times the covariance between b and c if component i is drawn with
probability pi of the multinomial distribution p. In our case the component i is sample i.

Using the mean û = 1/M
PM

i=1 ui, the empirical covariance of data U is

Cov(U) = 1/M U UT
� û ûT , (A164)

[Cov(U)]kl =
MX

i=1

1/M uik uil �

MX

i=1

1/M uik

!
MX

i=1

1/M uil

!
. (A165)

The weighted covariance (samples ui are drawn according to pi)

Cov(U) = U J(� a) UT , (A166)

[Cov(U)]kl = �

MX

i=1

pi uik uil �

MX

i=1

pi uik

!
MX

i=1

pi uil

!!
, (A167)

which replaces 1/M from equal sampling by the pi, that is, ui is sampled with probability pi.

The next theorem states how to express the dot product UT
xi
Uyi by weighted covariances of the data

U .
Theorem A3 (Weighted Covariances). Using the weighted covariances

Cov(U ,yi) = U Jm(� UTyi) U
T , Cov(U ,xi) = U Jm(� UTxi) U

T , (A168)

Jm(� a) =

Z 1

0
J(� � a) d� , (A169)

where the mean Jacobian Jm is symmetric, diagonally dominant, and positive semi-definite with
spectral norm bounded by kJmk2 6 0.5�.

The dot product UT
xi
Uyi can be expressed by the weighted covariances

UT
xi
Uyi = (ū + Cov(U ,xi) xi)

T (ū + Cov(U ,yi) yi) , (A170)
where the mean is ū = 1/MU1.

Proof. We apply the mean value theorem to the softmax with the symmetric, diagonally dominant,
positive semi-definite Jacobian matrix Jm =

R 1
0 J(�a+ (1� �)a0) d�:

softmax(a) � softmax(a0) = Jm (a � a0) . (A171)
We set a0 = 0 and use �a instead of a, which gives:

softmax(� a) = 1/M 1 + Jm(� a) a , Jm(� a) =

Z 1

0
J(� � a) d� , (A172)

which is exact. We obtain
softmax(� UTxi) = 1/M 1 + Jm(� UTxi) U

Txi , (A173)

softmax(� UTyi) = 1/M 1 + Jm(� UTyi) U
Tyi . (A174)

The spectral norm of Jm is bounded by kJmk2 6 0.5�, since this bound holds for every J(��a) in
Jm(� a) =

R 1
0 J(��a) d� according to Lemma A1.

The dot product between the anchor retrieval and the positive sample is:

UT
xi
Uyi = softmax(� UTxi)

T UTU softmax(� UTyi) (A175)

=
�
1/M 1 + Jm(� UTxi) U

Txi

�T
UTU

�
1/M 1 + Jm(� UTyi) U

Tyi

�

=
�
1/M U 1 + U Jm(� UTxi) U

Txi

�T �
1/M U1 + U Jm(� UTyi) U

Tyi

�

= (ū + Cov(U ,xi) xi)
T (ū + Cov(U ,yi) yi) ,

where we used the mean ū = 1/MU1 and the weighted covariances

Cov(U ,yi) = U Jm(� UTyi) U
T , Cov(U ,xi) = U Jm(� UTxi) U

T . (A176)

43

The Jacobian Jm is symmetric, diagonally dominant, and positive semi-definite. The weighted
covariance Cov(U , .) is the covariance if the stored pattern ui is drawn according to an averaged
pi given by Jm(.). Analog for weighted covariance Cov(V , .). When maximizing the dot product
UT

xi
Uyi , the normalized vectors xi and yi are encouraged to agree on drawing the patterns ui with

the same probability pi to generate similar weighted covariance matrices Cov(U , .). If subsets of U
have a strong covariance structure, then it can be exploited to produce large weighted covariances
and, in turn, large dot products of UT

xi
Uyi . Furthermore, for a large dot product UT

xi
Uyi , xi and

yi have to be similar to one another to extract the same direction from the covariance matrices. All
considerations are analog for V T

xi
Vyi .

A.2 Experiments

A.2.1 Ablation studies

As detailed in the main part of the paper, CLOOB has two new main components compared to CLIP:
(1) the modern Hopfield networks and (2) the InfoLOOB objective instead of the InfoNCE objective.
To assess effects of the new major components of CLOOB, we performed ablation studies on the CC
and YFCC datasets. The results are reported in Table A1 for models pre-trained on CC for 31 and
128 epochs and in Table A2 for models pre-trained on YFCC for 28 epochs.

Table A1: Influence of loss functions and Hopfield retrieval for models pre-trained on CC for 31
epochs (left) and 128 epochs (right, indicated by *). Both InfoLOOB and InfoNCE with Hopfield
decrease the performance compared to InfoNCE in most of the tasks. InfoLOOB with Hopfield has a
strong synergistic effect and therefore considerably improves the performance in 5 out of 8 datasets
(epoch 31) and 7 out of 8 datasets (epoch 128) compared to all other models.

Dataset InfoNCE InfoLOOB
InfoNCE
Hopfield

InfoLOOB
Hopfield InfoNCE* InfoLOOB*

InfoNCE
Hopfield*

InfoLOOB
Hopfield*

Birdsnap 2.58 2.37 1.67 2.53 2.15 1.89 2.15 3.39
Country211 0.53 0.63 0.54 0.76 0.62 0.62 0.66 0.79
Flowers102 13.16 13.03 11.53 14.24 11.79 11.57 10.86 14.24
GTSRB 4.47 4.39 5.76 5.86 9.25 6.93 6.24 8.67
UCF101 23.68 19.14 20.56 22.29 21.33 20.56 21.40 24.05
Stanford Cars 1.38 1.33 1.24 1.37 1.26 1.19 1.24 1.62
ImageNet 21.74 22.13 19.04 24.21 22.80 22.69 20.29 25.59
ImageNetV2 21.45 21.65 18.97 23.80 22.44 22.13 20.22 25.50

Table A2: Influence of loss functions and Hopfield retrieval for models pre-trained on YFCC for
28 epochs. Both InfoLOOB and InfoNCE with Hopfield decrease the performance compared to
InfoNCE in most of the tasks. InfoLOOB with Hopfield has a strong synergistic effect and therefore
considerably improves the performance in 6 out of 8 datasets compared to all other models.

Dataset InfoNCE InfoLOOB
InfoNCE
Hopfield

InfoLOOB
Hopfield

Birdsnap 22.1 19.6 19.1 28.9
Country211 7.8 7.5 6.4 7.9
Flowers102 48.2 50.4 43.5 55.1
GTSRB 8.9 3.7 5.9 8.1
UCF101 26.7 24.0 25.4 25.3
Stanford Cars 3.1 2.4 2.8 4.1
ImageNet 34.0 32.2 30.4 35.7
ImageNetV2 32.8 30.9 29.4 34.6

For the ablation studies above we use a fixed inverse temperature parameter ⌧�1 of 30 for all
compared models. The value of ⌧�1 was determined via hyperparameter search (see Section A.2.2).

In contrast to CLIP, we use a learning rate scheduler with restarts (Loshchilov & Hutter, 2017) to be
more flexible regarding the number of total training epochs and enable training up to a plateau. To
investigate the influence of the learning rate scheduler, we performed experiments with and without

44

restarts. Table A3 shows the zero-shot performance for the different downstream tasks for CLIP and
CLOOB respectively. For both CLIP and CLOOB, the performance at the majority of the tasks either
increases or remains roughly the same with restarts.

Table A3: Influence of learning rate scheduler. For most of the tasks the performance either increases
or remains roughly the same with restarts for both CLIP and CLOOB.

CLIP CLOOB
Dataset w/o restarts w/ restarts w/o restarts w/ restarts

Birdsnap 2.10 1.94 2.64 2.53
Country211 0.71 0.62 0.63 0.76
Flowers102 11.00 13.04 11.50 14.24
GTSRB 6.16 7.28 5.05 5.86
UCF101 19.05 21.00 21.97 22.29
Stanford Cars 1.29 0.90 1.22 1.37
ImageNet 20.19 20.31 23.29 24.21
ImageNet V2 20.53 20.63 22.97 23.80

A.2.2 Hyperparameters

The hyperparameter search was done on a validation split of CC with about 15,000 samples. For the
hyperparameter ⌧�1 several values were considered (14.3, 30, 50, 70), where 30 leads to the best
results for both YFCC and CC. Analogously to CLIP, we use the Adam optimizer (Kingma et al.,
2014) with decoupled weight decay regularization (Loshchilov & Hutter, 2019). The weight decay is
only applied to weights that are not gains or biases. As proposed in OpenCLIP (Ilharco et al., 2021)
weight decay was set to 0.1. Different choices of weight decay (0.2 or 0.05), did not lead to a relevant
performance change. We use the same learning rate of 1⇥ 10�3 for CC and 5⇥ 10�4 for YFCC as
used in OpenCLIP. For the hyperparameter � we considered values in the range of 5 to 20. A value
of 8 resulted in the best performance for CC and 14.3 for YFCC. The batch size for CC was reduced
to 512 due to computational restraints which did not result in performance losses. The batch size for
YFCC was kept at 1024 as reported by OpenCLIP since a reduction resulted in a significant drop in
performance. The learning rate scheduler for all experiments is cosine annealing with warmup and
hard restarts (Loshchilov & Hutter, 2017) with a cycle length of 7 epochs. For models trained on
YFCC the warmup was set to 10000 steps and for models trained on CC to 20000 steps.

A.2.3 Datasets

For pre-training we considered two datasets, Conceptual Captions (CC) (Sharma et al., 2018) and
YFCC100M (Thomee et al., 2016). The CC dataset consists of 2.9 million images and corresponding
high-quality captions. Images and their corresponding notations for CC have been gathered via an
automated process from the web and therefore represent a wide variety of styles. Raw descriptions
of images are collected from the alt-text HTML attribute. Both images and texts were filtered such
that only image-text pairs above a certain quality threshold are part of this dataset. The dataset we
refer to as YFCC is a subset of the Yahoo Flickr Creative Commons 100 Million (YFCC100M)
dataset. It was created by filtering for images which contain natural language descriptions and/or
titles in English resulting in 15 million image-caption pairs. The textual descriptions contain less
useful information than CC because they are not filtered by quality. Occasionally they also contain
metadata like camera settings or web addresses.

We evaluate and compare our method on several downstream classification tasks. We evaluate on
the same set of datasets as CLIP reported for a model trained on YFCC. This set contains Bird-
snap (Berg et al., 2014), Country211 (Radford et al., 2021), Flowers102 (Nilsback & Zisserman, 2008),
GTSRB (Stallkamp et al., 2011), UCF101 (Soomro et al., 2012), Stanford Cars (Krause et al., 2013)
and ImageNet (Deng et al., 2009). We also include ImageNet V2 in our analysis (Recht et al., 2019).
Additionally we added zero-shot results for Caltech101 (Fei-Fei et al., 2004), CIFAR10 (Krizhevsky,
2009), CIFAR100 (Krizhevsky, 2009), DTD (Cimpoi et al., 2014), Eurosat (Helber et al., 2018, 2019),
FER2013 (Goodfellow et al., 2013), FGVC-Aircraft (Maji et al., 2013), Food101 (Bossard et al.,

45

Table A4: Datasets used for downstream evaluation. In the case of several train or test sets per dataset
we report the total number of samples. It should be noted that at the time of this work some images
from the Birdsnap dataset were not accessible anymore.

Dataset Classes Train size Test size Evaluation metric

Birdsnap 500 38,411 1,855 accuracy
Country211 211 42,200 21,100 accuracy
Flowers102 102 2,040 6,149 class-weighted accuracy
GTSRB 43 26,640 12,630 accuracy
ImageNet 1,000 1,281,167 50,000 accuracy
ImageNet V2 1,000 1,281,167 30,000 accuracy
Stanford Cars 196 8,144 8,041 accuracy
UCF101 101 28,747 11,213 accuracy

Caltech101 102 3,120 6,024 class-weighted accuracy
CIFAR10 10 50,000 10,000 accuracy
CIFAR100 100 50,000 10,000 accuracy
DTD 47 3,807 1,833 accuracy
Eurosat 10 10,000 5,000 accuracy
FER2013 7 28,709 7,178 accuracy
FGVC-Aircraft 100 10,000 3,333 class-weighted accuracy
Food101 101 75,750 25,250 accuracy
Pets 37 3,696 3,694 class-weighted accuracy
RESISC45 45 6,300 25,200 accuracy
STL10 10 1,000 8,000 accuracy
SUN397 397 72,763 35,991 accuracy

2014), Pets (Parkhi et al., 2012), RESISC45 (Cheng et al., 2017), STL10 (Coates et al., 2011) and
SUN397 (Xiao et al., 2010).

Table A4 shows an overview of training and test set sizes, number of classes and the applied evaluation
metric. In the case of several test sets per dataset the metric is calculated for every set individually
and the average performance is reported. The set size in Table A4 corresponds to the total number of
samples across all test and training sets of a dataset respectively.

Birdsnap contains images of North American bird species, however our dataset is smaller than
reported in CLIP as some samples are no longer available. The Country211 dataset was published
in CLIP and is a small subset of the YFCC100m dataset. It consists of photos that can be assigned
to 211 countries via GPS coordinates. For each country 200 photos are sampled for the training set
and 100 for testing. For the Flowers102 images of 102 flower categories commonly occuring in the
United Kingdom were collected. Several classes are very similar and there is a large variation in scale,
pose and lighting. The German Traffic Sign Recognition Benchmark (GTSRB) was a challenge held
at the IJCNN 2011. The dataset contains images of german traffic signs from more than 40 classes.
Note that two versions of this dataset exist, one used for the challenge and an official dataset released
after the competition. For CLIP the linear probing classifiers were trained using the competition
training set but tested on the official test set. Stanford Cars contains images of 196 car models at
the level of make, model and year (e.g. Tesla Model S Sedan 2012). UCF101 (Soomro et al., 2012)
is a video dataset with short clips for action recognition consisting of three training sets and three
test sets. We follow the procedure reported in CLIP and extract the middle frame of every video to
assemble the dataset. The ImageNet Large Scale Visual Recognition Challenge was held from 2012
through 2017 and is one of the most widely used benchmarks for object detection and localization.
Several years later ImageNet V2 assembled three new test sets with images from the same 1,000
classes to test for generalization of models optimized for the original ImageNet benchmark. Every
test set comprises 10,000 samples.

A.2.4 Zero-shot evaluation

Class names for all downstream tasks were adopted from CLIP, that is, among other changes special
characters like hyphens or apostrophes were removed. Furthermore, some class names of the datasets

46

Table A5: Zero-shot results for models trained on CC with ResNet-50 vision encoders for two
different checkpoints over 20 datasets. Results are given as mean accuracy over 5 runs. Statistically
significant results are shown in bold. CLIP and CLOOB were trained for 31 epochs while CLIP* and
CLOOB* were trained for 128 epochs.

Dataset CLIP RN-50 CLOOB RN-50 CLIP* RN-50 CLOOB* RN-50

Birdsnap 2.26 ± 0.20 3.06 ± 0.30 2.8 ± 0.16 3.24 ± 0.31
Country211 0.67 ± 0.11 0.67 ± 0.05 0.7 ± 0.04 0.73 ± 0.05
Flowers102 12.56 ± 0.38 13.45 ± 1.19 13.32 ± 0.43 14.36 ± 1.17
GTSRB 7.66 ± 1.07 6.38 ± 2.11 8.96 ± 1.70 7.03 ± 1.22
UCF101 20.98 ± 1.55 22.26 ± 0.72 21.63 ± 0.65 23.03 ± 0.85
Stanford Cars 0.91 ± 0.10 1.23 ± 0.10 0.99 ± 0.16 1.41 ± 0.32
ImageNet 20.33 ± 0.28 23.97 ± 0.15 21.3 ± 0.42 25.67 ± 0.22
ImageNet V2 20.24 ± 0.50 23.59 ± 0.15 21.24 ± 0.22 25.49 ± 0.11
Caltech101 45.59 ± 0.44 48.73 ± 0.94 46.39 ± 1.58 50.62 ± 0.84
CIFAR10 50.18 ± 1.52 40.95 ± 2.24 53.75 ± 1.49 43.48 ± 2.84
CIFAR100 20.82 ± 1.45 21.59 ± 0.87 23.45 ± 1.99 24.41 ± 1.27
DTD 14.7 ± 1.32 17.96 ± 2.04 16.29 ± 1.30 16.51 ± 0.98
Eurosat 14.86 ± 5.98 21.47 ± 4.66 16.84 ± 2.28 19.56 ± 6.19
FER2013 24.67 ± 1.34 18.50 ± 1.74 22.70 ± 3.99 23.52 ± 2.73
FGVC-Aircraft 1.40 ± 0.27 1.31 ± 0.13 1.53 ± 0.19 1.30 ± 0.37
Food101 13.08 ± 0.36 16.20 ± 0.38 14.88 ± 0.51 16.57 ± 0.39
Pets 12.13 ± 1.87 12.93 ± 1.00 12.68 ± 0.86 13.45 ± 0.68
RESISC45 25.85 ± 2.01 28.01 ± 1.02 25.97 ± 1.56 30.54 ± 1.21
STL10 82.97 ± 1.82 79.11 ± 1.69 84.02 ± 0.71 82.28 ± 1.22
SUN397 38.96 ± 0.35 42.29 ± 0.54 39.86 ± 0.55 44.15 ± 0.27

were slightly changed (e.g. “kite” to “kite (bird of prey)” in ImageNet). For zero-shot
evaluation, we use the same prompt as published in CLIP. Depending on the dataset the number
of prompts can vary from one prompt (e.g. “a photo of a {label}, a type of bird.” for
Birdsnap) up to 80 prompts for ImageNet covering various settings (e.g. “a cropped photo of a
{label}.”, “a origami {label}.”). In case of several prompts an average embedding over all
prompt embeddings is calculated. Figure A4 shows the zero-shot results for all evaluation tasks with
the ResNet-50x4 model reported in Table 3.

In addition to the results of the main paper, the zeroshot performance of the models was tested on
additional datasets. For details about the additional datasets we refer the reader to Section A.1 of
Radford et al. (2021). Table A5 shows the results for models trained on CC. Table A6 shows the
results for models trained on YFCC.

A.2.5 Linear probing

We tried to follow the evaluation procedure in Radford et al. (2021) as closely as possible. We note
one difference with respect to the implementation: Instead of scikit-learn’s logistic regression using
the L-BFGS solver, we use cuML’s logistic regression classifier with L-BFGS algorithm to utilize
GPUs for efficiency. All hyperparameters are the same as described in Radford et al. (2021), the
maximum number of iterations was set to 1000, and the L2 regularization strength � was determined
by using a parametric binary search.

We tried to reproduce the CLIP results with the correspondingly published models, however, failed to
produce the exact numbers. This could be due to several factors:

• The train and validation split. Same as in Radford et al. (2021) , we use the provided
validation set to perform the hyperparameter search. When there is none provided, we use a
random half of the training dataset for validation.

• In case of a tie in the validation score, we use the maximal � for the strongest regularization.
We note though that we came closer to reproducing the results published in CLIP when
using the mean � over all ties when these exist.

47

Table A6: Zero-shot results for the CLIP reimplementation and CLOOB using different ResNet
architectures trained on YFCC over 20 datasets.

RN-50 RN-101 RN-50x4
Dataset CLIP CLOOB CLIP CLOOB CLIP CLOOB

Birdsnap 21.8 28.9 22.6 30.3 20.8 32.0
Country211 6.9 7.9 7.8 8.5 8.1 9.3
Flowers102 48.0 55.1 48.0 55.3 50.1 54.3
GTSRB 7.9 8.1 7.4 11.6 9.4 11.8
UCF101 27.2 25.3 28.6 28.8 31.0 31.9
Stanford Cars 3.7 4.1 3.8 5.5 3.5 6.1
ImageNet 34.6 35.7 35.3 37.1 37.7 39.0
ImageNet V2 33.4 34.6 34.1 35.6 35.9 37.3
Caltech101 55.8 53.5 57.7 56.4 57.8 58.7
CIFAR10 44.3 42.4 53.9 51.4 57.0 47.4
CIFAR100 21.9 18.8 22.8 23.1 23.1 21.9
DTD 19.6 20.3 22.5 18.1 22.4 21.3
Eurosat 25.0 25.9 24.9 23.0 22.1 28.5
FER2013 14.4 11.0 29.5 17.2 31.4 16.3
FGVC-Aircraft 3.5 5.6 3.0 5.8 4.5 6.4
Food101 47.8 50.5 47.8 54.4 50.1 57.9
Pets 28.9 30.4 28.5 31.4 32.1 32.6
RESISC45 23.2 22.1 22.4 22.9 22.1 26.6
STL10 85.8 81.9 88.2 81.7 88.9 83.2
SUN397 46.2 47.3 47.7 47.9 47.6 47.8

• For the Birdsnap dataset, the resources that we have got online at the time of this writing
could be different from the resources that CLIP’s authors obtained at the time.

Linear probing evaluation of YFCC pre-trained models is shown in Table A7. Comparing our
reimplementation of CLIP and CLOOB with different ResNet encoders, we observe mixed results.
The reason for this effect might be attributed to the observed task-dependence of multimodal models
(Devillers et al., 2021). Another potential reason is that the benefit of the restrictions to more reliable
patterns that occur in both modalities does not directly translate to an evaluation of just the encoding
part of one modality. Again, as expected in self-supervised training, increasing the capacity of the
CLOOB models benefits accuracy.

Table A7: Linear probing results for the reimplementation of CLIP and CLOOB using different
ResNet architectures trained on YFCC for 28 epochs. The performance of CLOOB scales with
increased encoder size.

RN-50 RN-101 RN-50x4
Dataset CLIP CLOOB CLIP CLOOB CLIP CLOOB

Birdsnap 50.9 56.2 51.6 58.1 57.6 62.2
Country211 19.5 20.6 20.8 21.8 22.5 24.2
Flowers102 94.8 96.1 94.5 96.1 95.1 96.2
GTSRB 82.5 78.9 80.3 77.9 84.6 80.6
UCF101 75.2 72.3 76.0 72.8 77.3 75.3
Stanford Cars 36.2 37.7 34.9 39.0 38.5 44.3
ImageNet 66.9 65.7 67.9 67.0 70.0 69.7
ImageNet V2 60.2 58.7 61.0 60.3 62.8 62.2

48

Table A8: Results for image-to-text and text-to-image retrieval on the CC validation set containing
13,330 samples. Results are given as mean accuracy over 5 runs. Statistically significant results
are shown in bold. CLIP and CLOOB were trained for 31 epochs while CLIP* and CLOOB* were
trained for 128 epochs.

Task CLIP RN-50 CLOOB RN-50 CLIP* RN-50 CLOOB* RN-50

image-to-text R@1 0.297 ± 0.001 0.319 ± 0.002 0.316 ± 0.002 0.342 ± 0.002
image-to-text R@5 0.540 ± 0.003 0.557 ± 0.001 0.563 ± 0.003 0.586 ± 0.002
image-to-text R@10 0.638 ± 0.003 0.651 ± 0.002 0.660 ± 0.002 0.678 ± 0.001
text-to-image R@1 0.300 ± 0.003 0.324 ± 0.001 0.316 ± 0.002 0.348 ± 0.001
text-to-image R@5 0.542 ± 0.003 0.566 ± 0.001 0.565 ± 0.002 0.593 ± 0.002
text-to-image R@10 0.638 ± 0.002 0.655 ± 0.001 0.661 ± 0.001 0.679 ± 0.001

A.2.6 Image-Text retrieval

In addition to zero-shot and linear probing, we tested the models trained on CC in image-to-text
retrieval and text-to-image retrieval. The task is to find the matching image to a given text (image-to-
text) or, respectively, finding the matching text to a given image (text-to-image). The dataset used for
this task is the validation set of CC, which contains 13,330 image-text pairs. We report the results in
Table A8. CLOOB significantly outperforms CLIP in both image-to-text and text-to-image retrieval.

A.2.7 Analysis of the image and text embeddings

Following our ablation studies, we use models trained on CC to disentangle the effects of InfoLOOB
and modern Hopfield networks. To track the behaviour during learning, we calculate the embeddings
of the validation set of CC (consisting of 13,330 image-caption pairs) for all epochs before a restart
of the learning rate scheduler.

We apply the extended uniformity test An of Ajne (Ajne, 1968; Prentice, 1978) to the respective
embeddings of the image and text encoders. Let X = (x1, . . . ,xn) be the embeddings of one
modality (text or image), consisting of n samples of dimension d. The samples are normalized:
xi = 1. As specified in Eq. (A177), An calculates the difference between a uniform distribution,
where all samples on the hypersphere are orthogonal to each other, and the actual distribution of
the embedding X . Consequently, an embedding with low uniformity results in a high Ajne An test
statistic:

An =
n

4
�

1

⇡n

nX

i=1

nX

j>i

cos�1(xT
j xi) . (A177)

To understand the influence of modern Hopfield networks, we analyzed the covariance structure of
the image and caption embeddings. Similar to Jing et al. (2022), we calculated the sorted eigenvalues
of the covariance matrices of image embeddings. Figure A1 shows the sorted eigenvalues of InfoNCE
and InfoLOOB with and without Hopfield retrievals during training. Both models without modern
Hopfield networks struggle to increase the number of effective eigenvalues which contribute to the
variance of the embeddings. InfoNCE with modern Hopfield networks starts with a small number
of effective eigenvalues. We attribute this to the saturating effect of InfoNCE, which impedes the
modern Hopfield network to extract more covariance. During training the effective eigenvalues
steadily increase at a consistent rate. InfoLOOB with Hopfield starts with a high number of effective
eigenvalues and strongly improves them during training.

Additionally, we looked at the distribution of similarity scores (dot product) of matched pairs and
unmatched pairs over the validation set of CC of embeddings from models trained for 128 epochs. In
Figure A2, we contrast the distributions of similarity scores of matched pairs with the distributions
of the similarity score for the 1,000 unmatched pairs that have the highest similarity score with the
anchor. InfoNCE with Hopfield results in a moderate increase of the similarity scores of matched
pairs, as well as in an increase of the similarity score of unmatched pairs. The latter is an undesired
side effect of Hopfield networks as unmatched pairs get also more similar to one another. Compared
to InfoNCE, InfoLOOB does not saturate. Therefore, it considerably increases the similarity between

49

Figure A1: Sorted eigenvalues of InfoNCE and InfoLOOB with and without Hopfield retrievals
during training.

matched pairs and also reduces the average similarity of the top-1000 unmatched pairs. InfoLOOB
attributes a cosine similarity of one to many pairs, which is not plausible for multi-modal pairs.
Clearly, this is an overfitting problem of InfoLOOB. Noteworthy, an observed increase in alignment
between epoch 31 and epoch 128 does not benefit the downstream performance. The combination of
Hopfield and InfoLOOB increases the similarity score of matched pairs and simultaneously reduces
the average similarity of unmatched pairs compared to InfoNCE without Hopfield (the CLIP setting).

Figure A3 illustrates the overfitting problem of InfoLOOB. The distributions of unmatched pairs
takes into account the ten unmatched pairs per anchor with the highest similarity score. In particular
in the case of InfoLOOB without Hopfield, high similarity scores of the matched pairs correlate with
high similarity scores of the top-10 unmatched pairs. In contrast, InfoLOOB with Hopfield does not
suffer from this overfitting problem.

A.2.8 Training time and memory consumption

To elaborate on the time and memory consumption of CLOOB, Table A9 compares the experiments
done in Section 5.1. The memory consumption of CLOOB is the same as CLIP since only embed-
dings from the mini-batch are used both in the objective and in the Hopfield memories. The time
consumption is approximately 5% higher, which is because of the retrieval of the modern Hopfield
networks. The added complexity of modern Hopfield networks is O(N) per sample, where N denotes
the batch size.

Table A9: Memory and time consumption of CLIP and CLOOB when trained for 31 epochs on CC.

Model Batch size (per GPU) Memory (per GPU) GPU hours ImageNet zero-shot

CLIP 128 13.7GB 141 20.3
CLOOB 128 13.7GB 148 24.0

50

Figure A2: Distribution of the cosine similarity of matched pairs and the cosine similarity of the
1,000 unmatched pairs that have the highest similarity score with the anchor.

Figure A3: Distribution of the cosine similarity of matched pairs and the cosine similarity of the 10
unmatched pairs that have the highest similarity score with the anchor.

A.3 Review of Modern Hopfield Networks

We briefly review continuous modern Hopfield networks that are used for deep learning architectures.
They are continuous and differentiable, therefore they a work with gradient descent in deep architec-
tures. They retrieve with one update only, therefore they can be activated like other deep learning
layers. They have exponential storage capacity, therefore they can tackle large problems. Hopfield
networks are energy-based, binary associative memories, which popularized artificial neural networks
in the 1980s (Hopfield, 1982, 1984). Associative memory networks have been designed to store and

51

retrieve samples. Their storage capacity can be considerably increased by polynomial terms in the
energy function (Chen et al., 1986; Psaltis & Cheol, 1986; Baldi & Venkatesh, 1987; Gardner, 1987;
Abbott & Arian, 1987; Horn & Usher, 1988; Caputo & Niemann, 2002; Krotov & Hopfield, 2016).
In contrast to these binary memory networks, we use continuous associative memory networks with
very high storage capacity. These modern Hopfield networks for deep learning architectures have an
energy function with continuous states and can retrieve samples with only one update (Ramsauer et al.,
2021). Modern Hopfield Networks have been successfully applied to immune repertoire classification
(Widrich et al., 2020) and chemical reaction prediction (Seidl et al., 2021).

We assume a set of patterns {u1, . . . ,uN} ⇢ Rd that are stacked as columns to the matrix U =
(u1, . . . ,uN) and a state pattern (query) ⇠ 2 Rd that represents the current state. The largest norm
of a stored pattern is M = maxi kuik. Continuous modern Hopfield networks with state ⇠ have the
energy

E = � ��1 log

NX

i=1

exp(�uT
i ⇠)

!
+ ��1 logN +

1

2
⇠T ⇠ +

1

2
M2 . (A178)

For energy E and state ⇠, the update rule

⇠new = f(⇠;U ,�) = U p = U softmax(�UT ⇠) (A179)

has been proven to converge globally to stationary points of the energy E, which are almost always
local minima (Ramsauer et al., 2021). The update rule Eq. (A179) is also the formula of the well-
known transformer attention mechanism (Ramsauer et al., 2021), therefore Hopfield retrieval and
transformer attention coincide.

The separation �i of a pattern ui is defined as its minimal dot product difference to any of the
other patterns: �i = minj,j 6=i

�
uT
i ui � uT

i uj

�
. A pattern is well-separated from the data if

�i �
2

�N + 1
� log

�
2(N � 1)N�M2

�
. If the patterns ui are well separated, the iterate Eq. (A179)

converges to a fixed point close to a stored pattern. If some patterns are similar to one another and,
therefore, not well separated, the update rule Eq. (A179) converges to a fixed point close to the mean
of the similar patterns. This fixed point is a metastable state of the energy function and averages over
similar patterns.

The next theorem states that the update rule Eq. (A179) typically converges after one update if the
patterns are well separated. Furthermore, it states that the retrieval error is exponentially small in the
separation �i.
Theorem A4 (Modern Hopfield Networks: Retrieval with One Update). With query ⇠, after one
update the distance of the new point f(⇠) to the fixed point u⇤

i is exponentially small in the separation
�i. The precise bounds using the Jacobian J = @f(⇠)

@⇠ and its value Jm in the mean value theorem
are:

kf(⇠) � u⇤
i k 6 kJmk2 k⇠ � u⇤

i k , (A180)

kJmk2 6 2 � N M2 (N � 1) exp(� � (�i � 2 max{k⇠ � uik, ku
⇤
i � uik} M)) . (A181)

For given ✏ and sufficient large �i, we have kf(⇠) � u⇤
i k < ✏, that is, retrieval with one update.

The retrieval error kf(⇠) � uik of pattern ui is bounded by

kf(⇠) � uik 6 2 (N � 1) exp(� � (�i � 2 max{k⇠ � uik, ku
⇤
i � uik} M)) M .

(A182)

For a proof see (Ramsauer et al., 2021).

The main requirement of modern Hopfield networks to be suited for contrastive learning is that they
can store and retrieve enough embeddings if the batch size is large. We want to store a potentially
large set of embeddings. We first define what we mean by storing and retrieving patterns from a
modern Hopfield network.
Definition A1 (Pattern Stored and Retrieved). We assume that around every pattern ui a sphere
Si is given. We say ui is stored if there is a single fixed point u⇤

i 2 Si to which all points ⇠ 2 Si
converge, and Si \ Sj = ; for i 6= j. We say ui is retrieved for a given ✏ if iteration (update rule)
Eq. (A179) gives a point x̃i that is at least ✏-close to the single fixed point u⇤

i 2 Si. The retrieval
error is kx̃i � uik.

52

As with classical Hopfield networks, we consider patterns on the sphere, i.e. patterns with a fixed
norm. For randomly chosen patterns, the number of patterns that can be stored is exponential in the
dimension d of the space of the patterns (ui 2 Rd).
Theorem A5 (Modern Hopfield Networks: Exponential Storage Capacity). We assume a failure
probability 0 < p 6 1 and randomly chosen patterns on the sphere with radius M := K

p
d� 1. We

define a := 2
d�1 (1 + ln(2�K2p(d � 1))), b := 2K2�

5 , and c := b
W0(exp(a+ln(b)) , where W0 is the

upper branch of the Lambert W function (Olver et al., 2010, (4.13)) , and ensure c �
⇣

2p
p

⌘ 4
d�1

.
Then with probability 1� p, the number of random patterns that can be stored is

N �
p
p c

d�1
4 . (A183)

Therefore it is proven for c � 3.1546 with � = 1, K = 3, d = 20 and p = 0.001 (a+ ln(b) > 1.27)
and proven for c � 1.3718 with � = 1, K = 1, d = 75, and p = 0.001 (a+ ln(b) < �0.94).

For a proof see (Ramsauer et al., 2021).

This theorem justifies to use continuous modern Hopfield networks for using retrieved embeddings
instead of the original embeddings for large batch sizes. Even for hundreds of thousands of embed-
dings, the continuous modern Hopfield network is able to retrieve the embeddings if the dimension of
the embeddings is large enough.

A.4 Further Related Work

With the advent of large corpora of unlabeled data in vision and language, self-supervised learning
via contrastive learning has become highly successful. Some contrastive learning objectives, such as
those of BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021), do not require negative samples.
However, the most popular objective for contrastive learning is InfoNCE (van den Oord et al., 2018),
in which for an anchor sample, a positive sample is contrasted with negative samples.

The idea to use objectives with negative samples is well known in deep learning (Gutmann & Hyväri-
nen, 2010; Chen et al., 2017; Mikolov et al., 2013). For contrastive learning, the most successful
objective is InfoNCE, which has been introduced as Contrastive Predictive Coding (CPC) (van den
Oord et al., 2018). InfoNCE has been applied to transfer learning (Hénaff et al., 2019), to natural
language response suggestion (Henderson et al., 2017), to learning sentence representations from
unlabelled data (Logeswaran & Lee, 2018), and to unsupervised feature learning by maximizing
distinctions between instances (Wu et al., 2018). InfoNCE has been used for learning visual repre-
sentations in Pretext-Invariant Representation Learning (PIRL) (Misra & vanDerMaaten, 2020), in
Momentum Contrast (MoCo) (He et al., 2020), and in SimCLR (Chen et al., 2020). SimCLR became
well known as is was highly effective for transfer learning. Zero-shot transfer learning (Lampert
et al., 2009) is one of the most ambitious goals in vision, since it would improve various real-world
downstream applications. Current models in natural language processing and vision perform very
well on standard benchmarks, but they fail at new data, new applications, deployments in the wild,
and stress tests (D’Amour et al., 2020; Recht et al., 2019; Taori et al., 2020; Lapuschkin et al., 2019;
Geirhos et al., 2020). A model with high zero-shot transfer learning performance will not fail on such
data, therefore will be trusted by practitioners.

Multiple works have proposed improvements to InfoNCE. Joint Contrastive Learning (JCL) studies
the effect of sampling multiple positives for each anchor. (Cai et al., 2020). Sampling negatives
around each positive leads to higher bias but lower variance than InfoNCE (Wu et al., 2021). InfoNCE
has been generalized to C-InfoNCE and WeaC-InfoNCE, which are conditional contrastive learning
approaches to remove undesirable information in self-supervised representations (Tsai et al., 2021).
ProtoNCE is a generalized version of the InfoNCE, which pushes representations to be closer to
their assigned prototypes (Li et al., 2021). ProtoNCE combines contrastive learning with clustering.
SimCSE employs InfoNCE for contrastive learning to learn sentence embeddings (Gao et al., 2021).
InfoNCE has been extended to video representation learning (Han et al., 2020).

CLOOB uses InfoLOOB, which is an upper bound on the mutual information. An alternative upper
bound on the mutual information would be Contrastive Log-ratio Upper Bound (CLUB), which
was used for minimizing the mutual information (Cheng et al., 2020). So far CLUB was only used
for minimizing the mutual information, except for the analysis in (Wang & Liu, 2021). In our

53

http://dlmf.nist.gov/4.13

experiments, maximizing CLUB failed as confirmed in (Wang & Liu, 2021). The reason is that the
embedding distribution is not uniform as required for successful contrastive learning (Wang & Isola,
2020; Wang & Liu, 2021).

Many follow up works have been based on the CLIP model. The CLIP model is used in Vision-and-
Language tasks (Shen et al., 2021). The CLIP model guided generative models via an additional
training objective (Bau et al., 2021; Galatolo et al., 2021; Frans et al., 2021) and improved clustering of
latent representations (Pakhomov et al., 2021). It is used in studies of out of distribution performance
(Devillers et al., 2021; Milbich et al., 2021; Miller et al., 2021), of fine-tuning robustness (Wortsman
et al., 2021), of zero-shot prompts (Zhou et al., 2021) and of adversarial attacks to uncurated datasets
(Carlini & Terzis, 2021). It stirred discussions about more holistic evaluation schemes in computer
vision (Agarwal et al., 2021). Multiple methods utilize the CLIP model in a straightforward way to
perform text-to-video retrieval (Fang et al., 2021; Luo et al., 2021; Narasimhan et al., 2021).

54

Horse Riding correct rank: 3/101

Dodge Caliber Wagon 2012 correct rank: 10/196

red circle with white
horizontal stripe no entry correct rank: 4/43

azalea correct rank: 1/102

Croatia correct rank: 1/211

Osprey correct rank: 1/500

mosque correct rank: 1/1000

cottontail rabbit correct rank: 1/1000

Handstand Walking correct rank: 11/101

Chrysler Aspen SUV 2009 correct rank: 19/196

red and white circle red
truck and black car no passing correct rank: 36/43

magnolia correct rank: 1/102

Greece correct rank: 1/211

Great Blue Heron correct rank: 1/500

threshing machine correct rank: 13/1000

longhorn beetle correct rank: 1/1000

Field Hockey Penalty correct rank: 1/101

Chevrolet Traverse SUV 2012 correct rank: 33/196

red and white triangle with
black curve approaching warning correct rank: 11/43

rose correct rank: 1/102

Spain correct rank: 24/211

Brant correct rank: 3/500

lipstick correct rank: 7/1000

collie correct rank: 2/1000

Figure A4: Visualization of zero-shot classification of three examples from each dataset. The follow-
ing datasets are used (top to bottom): ImageNet, ImageNet V2, Birdsnap, Country211, Flowers102,
GTSRB, Stanford Cars and UCF101. The ground truth label is displayed above the picture. The bar
plots show the softmax values of the top 5 classes.

55

	Introduction
	CLOOB: Modern Hopfield Networks with InfoLOOB
	Modern Hopfield Networks for Enriching the Covariance Structure
	InfoLOOB for Contrastive Learning
	Experiments
	Conceptual Captions Pre-training
	YFCC Pre-training
	Ablation studies

	Conclusion
	Appendix
	InfoLOOB vs. InfoNCE
	InfoNCE: Lower Bound on Mutual Information
	InfoLOOB: Upper Bound on Mutual Information
	InfoLOOB: Analysis of the Objective
	InfoNCE and InfoLOOB: Gradients
	InfoLOOB and InfoNCE: Probability Estimators
	InfoLOOB and InfoNCE: Losses

	Experiments
	Ablation studies
	Hyperparameters
	Datasets
	Zero-shot evaluation
	Linear probing
	Image-Text retrieval
	Analysis of the image and text embeddings
	Training time and memory consumption

	Review of Modern Hopfield Networks
	Further Related Work

