
Appendix
We first provide the implementation details of PA-former and the compared baselines (Appendix A).
Then, more supplementary experiments will be listed in Appendix B. Next, we introduce the data
process for code (Appendix C). Finally, qualitative examples are provided in Appendix D.

A Implementation Details

A.1 PA-former

Pyramid attention Here we provide the pseudocode of our pyramid attention forward process in
a PyTorch-like style in Algorithm 1. Compared with other methods, the algorithm implementation
is straightforward and efficient. Please refer to the provided code in pa_former for more details.

Algorithm 1 PyTorch-like pseudocode of pyramid attention

# self_attn: relative position encoded multi-head self-attention module
# ln_*: layer norm layer
# fc_*: linear layer
# fine_seq (BxLfxD): batched fine-grained sub-token sequence
# semi_seq (BxLsxD): batched semi-grained token sequence
# fine_seq (BxLcxD): batched coarse-grained statement sequence
# fine_to_semi (BxLsxLf): mappings between fine_seq and semi_seq
# fine_to_coarse (BxLcxLf): mappings between fine_seq and coarse_seq
# rel_pos_map (BxLxL): relative position map

# normalize mappings
fine_to_semi /= (fine_to_semi.sum(dim=-1, keepdim=True) + 1e-8)
fine_to_coarse /= (fine_to_coarse.sum(dim=-1, keepdim=True) + 1e-8)

# bottom-to-top aggregation process
# here, @: batch matrix multiplication
semi_seq = ln_s(fc_s(fine_to_semi @ fine_seq) + semi_agg)
coarse_seq = ln_c(fc_c(fine_to_coarse @ fine_seq) + coarse_seq)

# cross-granularity interaction
# here, cat: concatenation
x = cat((fine_seq, semi_seq, coarse_seq), dim=1) # BxLxD
x_lens = fine_seq.size(1), semi_seq.size(1), coarse_seq.size(1)
x = self_attn(x, rel_pos_map) # BxLxD
fine_seq, semi_seq, coarse_seq = split(x, x_lens, dim=1)

A.2 Baselines

In this section, we provide the implementation details of baselines.

CODE-NN [12] is a basic attention-based seq2seq model which takes a token sequence as input.
For the encoder, we use a 2-layer bi-directional LSTM and set the hidden size to 256. For decoder,
we use a 2-layer single-directional LSTM and set hidden size to 512. Following [30], the hidden
and cell vectors of the bi-directional encoder is concated separately to form 512-D hidden vectors
which are used as the initial hidden states for decoder. And the copy mechanism is used over the
encoder-decoder framework. This method directly uses the token sequence, which leads to a big risk
of out-of-vocabulary and limits the performance of this method.

TreeLSTM [29] is a attention-based tree2seq model which takes a parsed AST as input. For the
encoder, we use child-sum tree-based LSTM with the hidden size of 512 and implement it using the
excellent Deep Graph Library (DGL) 5. For the decoder, we use a 2-layer single-directional LSTM
and set the hidden size to 512. The hidden and cell vectors of the root node are used as the initial
hidden states for decoder. And a copy mechanism is used over the encoder-decoder framework. As

5https://www.dgl.ai/
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the large size of AST and the risk of out-of-vocabulary, such a structure-aware doesn’t obtain large
performance improvement.

HDeepCom [11] is a hybrid method that encodes the flattened AST sequence and sub-token se-
quence separately, and combines these two representations when decoding using the attention mech-
anism. We set the embedding size and hidden size to 512 for a fair comparison.

ASTAttnGRU [13] is also a hybrid method that encodes the AST-based graph and sub-token se-
quence separately, and combines these two representations when decoding using the attention mech-
anism. We use the DGL to implement the tree encoder and set the embedding size and hidden size
to 512 for a fair comparison.

SiT [35] uses the structure information (abstract syntax edges, control flow edges, and data de-
pendency edges) as attention mask to guide the attention computations. Following the paper, this
method only considers the punctuation-removed token sequence. Copy mechanism is applied and
the model configuration is consistent with the default Transformer.

GREAT [9] introduces various edge types following [1] and models the pairwise relations using
the summed edge type embeddings between two terminal nodes (i.e., token) in AST. Then these
relations are used as relative distance bias in the attention computation process as Equation 4. They
only consider the token sequence and embed the tokens by averaging embeddings of its sub-token(s).
We also add a copy mechanism over the encoder-decoder framework for a fair comparison.

NeuralCodeSum [30] uses the sub-token sequence as input and directly adapts relative position
encoded Transformer. And copy mechanism is also introduced in this method.

CAST [27] is a hybrid method that encodes the sub-token sequence using the Transformer encoder
and split the AST into statement subtrees for structure representation learning. Then use tree-based
RvNN to encode each subtree and then a max-pooling is applied to get the statement-level structure
representations. Next, these statement-level representations are combined into a tiny tree according
to the AST to capture global structure information. For the decoder, a serial attention mechanism is
used to combine the learned sequential and structural features. And copy mechanism is also used in
this method.

TPTrans [25] integrates the absolute paths and relative paths between sub-tokens into Transformer
by representing the paths as order non-terminal node sequences and encoding them using GRUs. The
learned path embeddings are used as a relative relation bias in attention computations as Equation 4.
And copy mechanism is also used in this method.

A.3 Training configuration

We show the details of training configurations in Table 8. The "rnn-24e" is used for all LSTM/GRU-
based methods on both middle-size and large-size datasets. The "Transformer-30e" is used for
all Transformer-based methods on middle-size dataset. The "Transformer-36e" is used for all
Transformer-based methods on large-size dataset. For the items of "lr scheduler", "MS-(12,
19)" means that MultiStep learning rate scheduler which updates the current_lr into 0.1×
current_lr at 12th and 19th epoch.

Table 8: Training configurations.

tag #epochs optimizer initial lr lr scheduler warmup steps clip grad

rnn-24e 24 AdamW 0.003 MS-(12, 19) − 8.0
Transformer-30e 30 AdamW 0.0002 MS-(16, 24, 28) 1500 5.0
Transformer-36e 36 AdamW 0.0002 MS-(16, 24, 28) 1500 5.0

B More Experiment Results

Improvement for Transformer. We show the effect of training tricks on improving model per-
formance in Table 9. The results show the optimizer AdamW and warmup strategy help. Such an
improvement caused by training tricks also shows the strong ability of the Transformer. And we use
these training settings to compare baselines for a fair comparison.
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Table 9: Evaluation results of training tricks. "−" represents the base model trained using Adam optimizer
and MultiStep lr_scheduler which is used in our baseline [30].

Tricks BLEU Rouge-L Meteor Precision Recall F1

− 34.159 52.632 23.191 60.121 52.954 54.690
+ adamW 36.383 53.656 24.345 59.825 54.588 55.579
+ warmup 37.133 54.800 25.051 61.356 55.413 56.682

Number of encoder layer. We further perform the ablation study by varying the number of en-
coder layers and list the results in Table 10. As the results show, a deeper model helps improve
performance as more cross-granularity aggregations and interactions bring richer semantic informa-
tion.

Table 10: Evaluation results of number of encoder layers. #layers represents the number of encoder layers.

#layers BLEU Rouge-L Meteor Precision Recall F1

3 37.417 54.988 25.128 61.632 55.586 56.878
6 38.848 56.095 25.895 62.498 56.642 57.903
9 39.029 56.382 26.136 62.576 57.094 58.177

Results with error bar. We train the models 3 times with different random seeds on RMSE-
Deepcom dataset and list the scores with error bars in Table 11. The results suggest that our method
achieves significant improvement (e.g. 1.5 on BLEU) over the baselines with low standard deviation
(< 0.1).

Table 11: Comparisons results with error bars.

Methods BLEU Rouge-L Meteor Precision Recall F1

RMSE-Deepcom (middle-size)

CODE-NN [12] 28.414 ± 0.084 43.463 ± 0.210 17.869 ± 0.062 47.404 ± 0.168 44.922 ± 0.355 44.715 ± 0.207
TreeLSTM [29] 28.946 ± 0.157 44.002 ± 0.117 18.221 ± 0.086 48.167 ± 0.318 45.370 ± 0.232 45.281 ± 0.130
HDeepCom [11] 32.052 ± 0.180 48.890 ± 0.197 21.440 ± 0.124 54.236 ± 0.052 50.398 ± 0.262 50.618 ± 0.193

ASTAttnGRU [13] 32.865 ± 0.159 49.624 ± 0.119 22.095 ± 0.107 54.585 ± 0.232 51.452 ± 0.340 51.331 ± 0.118

SiT [35] 35.638 ± 0.048 53.666 ± 0.082 24.134 ± 0.065 60.566 ± 0.202 54.269 ± 0.073 55.637 ± 0.100
GREAT [9] 36.388 ± 0.086 53.665 ± 0.062 24.193 ± 0.060 60.176 ± 0.193 54.266 ± 0.092 55.545 ± 0.115

NeuralCodeSum [30] 37.044 ± 0.098 54.653 ± 0.179 24.918 ± 0.126 61.193 ± 0.140 55.301 ± 0.181 56.541 ± 0.154
CAST [27] 37.089 ± 0.106 54.794 ± 0.075 24.990 ± 0.079 61.452 ± 0.151 55.346 ± 0.023 56.668 ± 0.079

TPTrans [25] 37.225 ± 0.023 54.954 ± 0.043 24.993 ± 0.029 61.739 ± 0.283 55.433 ± 0.079 56.828 ± 0.056

PA-former (ours) 38.777 ± 0.093 56.071 ± 0.069 25.901 ± 0.016 62.489 ± 0.168 56.650 ± 0.031 57.908 ± 0.077

C Data preprocessing

For the summaries of code which are natural language sentences, we preprocess them following the
natural language process (NLP) pipeline. In this section, we mainly focus on the code preprocessing
pipelines which are based on the parsed AST. Given a code snippet, we use Tree-sitter to get the
parsed AST, an example is illustrated in Figure 5.

C.1 Pyramid input

We show the details of our proposed pyramid input construction with the example in Figure 5.

The fine-grained sequence T is easy to handle. We first extract the ordered terminal nodes from
AST, we get [public, int, parseStringAsInt, (, String, s, ), ...] for the given ex-
ample. And then we split each element in the token sequence into sub-tokens and we get T =
[public, int, parse, String, As, Int, (, String, ...]. Here, we ignore the gram-
matical information and just treat elements of T as natural words, so we name it as T ext sequence.

We use the semi-grained sequence G to represent the Grammatical details of the code, which is
a complement to T . Each element in G corresponds to an element in the token sequence. For
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// parsers a string as a int.
public int parseStringAsInt(String s){

return Integer.parseInt(s);
}

A Java Code Snippet

method_declaration

modifier int_type identifier formal_parameters

public int parseStringAsInt ( )formal_parameter

String in

type_identifier identifier

block

{ }return_statement

return ;method_invocation

identifier identifier argment_list.

Integer parseInt )(

statement node

non-terminal node

terminal node

in

Figure 5: Parsed abstract syntax tree (AST) example using Tree-sitter.

each token, its parent node in AST represents its grammatical property, e.g., parseStringAsInt
is an identifier and public is a modifier. However, we notice that all variable names and
method names are marked as identifier. To further differentiate them, we instead use their
grandparents’ node in ASTs to mark the grammatical types, e.g. parseStringAsInt is marked
as method_declaration and parseInt is marked as method_invocation. Finally, we get G
= [modifiers, int_type, method_declaration, (, type_identifier, ...]. For the
mapping relations MG→T ∈ R|G|×|T |, we set MG→T (i, j) to 1 if T [j] is split from the to-
ken corresponding to G[i]. In this example, we set MG→T (3, 3),MG→T (3, 4),MG→T (3, 5) and
MG→T (3, 6) to 1, as [parse, String, As, Int] is split from parseStringAsInt.

The Logical nature of the code is mostly in statement-level coarse-grained sequence L. As the
type of statement is limited, we first set the pre-defined statement set S shown in Table 12 for
java dataset. In addition to the normal java statements, we also treat method_declaration and
formal_parameters as statements. We treat the node in AST as a statement node, if its tag is
in S . Thus we get L = [method_declaration, formal_parameters, return_statement]
(yellow nodes in Figure 5). For the mapping relations ML→G ∈ R|L|×|G|, we set ML→G(i, j)
to 1 if L[i] is the nearest ancester of G[j] in the scope of L. In this example, we set
ML→G(2, 4),ML→G(2, 5),ML→G(2, 6) and ML→G(2, 7) to 1, as formal_parameters is the
nearest ancester of (, String, in and ).

Table 12: The pre-defined statement set.

statement type tag of statement node

expression statement expression_statement, explicit_constructor_invocation,
local_variable_declaration

exit statement return_statement, yield_statement, throw_statement
conditional statement if_statement, switch_expression

loop statement for_statement, enhanced_for_statement, while_statement
do_statement, continue_statement, break_statement

exception statement try_statement, catch_clause, finally_clause
others method_declaration, formal_parameters

C.2 Data preprocessing for baselines

Since some compared baselines don’t provide available preprocessing code, we have to implement
the preprocessing pipelines according to their papers.

For GREAT [9], we add the additional edges to AST according to construct the code graph represen-
tation according to [1]. The edges include NextToken, LastRead, LastWrite, ComputeFrom

17



LexicalUse and LeafCFG. The edge LeafCFG represents the edge of control flow graph (CFG) (see
details in [9]) and please refer to [1] for details about other edges.

For SiT [35], we add Flow edge between each in-statement token pair, add adopt LexicalUse,
LastRead and LastWrite in GREAT into the Data dependency edge.

D Qualitative Examples

In this section, we provide several samples of code summarization with different models. We can
see that PA-former generates the most precise comment in most cases.

public boolean isOnPieChart(Point screenPoint){ 
double sqValue = (MathUtil.pow(mCenterX - screenPoint.getX(), 2)\

+ MathUtil.pow(mCenterY - screenPoint.getY(), 2));
double radiusSquared = mPieChartRadius * mPieChartRadius;
boolean isOnPieChart = sqValue <= radiusSquared;
return isOnPieChart;

}
Reference: checks if point falls within piechart.
PA-former (ours): checks if a point falls within a pie chart.
TPTrans: determines if a point is on a pie chart.
CAST: determines if a point is on the pie chart.
NeuralCodeSum: returns true if the specified point is on the pie chart.
GREAT: checks if point is within pie pie pie pie pie pie pie area.
SiT: checks if a point is on the chart.
ASTAttnGRU: checks if at the current position.

public XmlReporter(OutputStream out, String title){ 
this.out = out; 
this.title = title; 

}
Reference: create xmlreporter which writes to the given stream.
PA-former (ours): create an xml reporter which writes to the given stream.
TPTrans: creates a new xml reporter.
CAST: create an xml reporter to write to the given stream.
NeuralCodeSum: create an instance of this class.
GREAT: create an xml stream.
SiT: create a new reporter.
ASTAttnGRU: create an object decoding the values from the passed stream.

public final boolean isModified(boolean isEnable) { 
if(isStopped()) { 

return flase; 
}
DependencyContainer dependencies = _dependencies;
if (dependencies == null) { 

return false; 
} 
if (isEnable) { 

boolean isModified = dependencies.isModified();
return isModified; 

} else { 
boolean isModified = isModified(getParent()); 
return isModified; 

} 
}
Reference: returns true if any of the classes have been modified.
PA-former (ours): returns true if any of the dependencies have been modified.
TPTrans: returns true if the underlying dependencies have changed.
CAST: returns true if the configuration of this object has changed.
NeuralCodeSum: returns true if the user has changed the dependency container.
GREAT: returns true if the entry has been modified.
SiT: returns true if the underlying dependencies have changed.
ASTAttnGRU: returns whether or not this property has been modified or not.
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public int consumeInteger()
throws ParsingException , IllegalStateException { 
if (completed) { 

throwNoMoreContent(); 
} 
String value = currentToken().value();
try { 

int result = Integer.parseInt(value);
moveToNextToken(); 
return result; 

} catch ( NumberFormatException e ) { 
Position position = currentToken().position(); 
throw new ParsingException(position, value); 

} 
}
Reference: convert the value of this token to an integer return it and move to the next token.
PA-former (ours): convert the value of this token to an integer and move it to the next token.
TPTrans: consume an integer value from the input stream.
CAST: consume an integer value off the current token throwing an exception if it is not an integer.
NeuralCodeSum: gets the next token and remove it from the list.
GREAT: convert this token to an integer and move to an integer.
SiT: consume an integer value from the request.
ASTAttnGRU: gets the value of the int property.

public void delete(String path, ParameterMap params, 
AsyncCallback callback) {

HttpDelete req = new HttpDelete(path, params); 
executeAsync(req, callback); 

}
Reference: execute a delete request and invoke the callback on completion.
PA-former (ours): execute a delete request and invoke the callback on completion.
TPTrans: execute a delete request.
CAST: execute a delete request.
NeuralCodeSum: execute a delete delete request.
GREAT: perform a delete on the specified path.
SiT: execute a delete request.
ASTAttnGRU: delete a parameter from a map.

public FXDialog(final Stage parent , final Parent content, final
Modality modality, final double width , final double height) {
init(parent, modality, content); 
dialog.setWidth(width); 
dialog.setHeight(height); 
final Scene scene = new Scene(content, width, height);
setScene (scene); 

}
Reference: create a new dialog with a specified width and height.
PA-former (ours): create new dialog with the specified width and height.
TPTrans: creates a new dialog.
CAST: create dialog with parent content.
NeuralCodeSum: initializes the dialog with the given parent modality and content.
GREAT: creates new form <unk>.
SiT: creates a new dialog box.
ASTAttnGRU: create a new dialog box.
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