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A Inference

At inference time, in order to integrate the rich information of different semantics from different
views, we concatenate the representations from the original view and the augmentation views, which
can be formulated as follows:

Einfer = E || END || EED, (1)

where || denotes concatenation. Note that other functions like mean-pooling, max-pooling can be
adopted, but we found that concatenation performs better when utilizing LightGCN as the backbone.

B Degree Distribution of Dropping Structures

GCNs rely on message-passing mechanism and aggregate the information from neighbors to learn
representative embeddings of users and items. We believe that random dropout will indiscriminately
drop nodes or edges regardless of the corresponding node degrees, while by message passing
mechanism, GCNs are easier to reconstruct the missing information of popular users or items, but
much harder to reconstruct those isolated nodes with few connections, thus may overemphasize
those high-degree nodes. So we proposed learnable graph augmentation to intentionally reduce the
influence of popular nodes while preserving information of the isolated nodes. To verify its effeteness,
we split the node set {vi | vi ∈ V} and the edge set {eij | eij ∈ E} into five groups evenly based on
the node degrees Degreevi and degree sum of corresponding nodes Degreevi +Degreevj . A large
GroupID denotes the node or edge lies in a dense structure of the graph. We report the proportions of
different degree groups of the dropping nodes or edges in the last GCN layer. If we adopt the random
dropout, each group will maintain 20%, since we split the node/edge set evenly. However from
Figure 1, we find that, as the degree becomes larger, more node/edge will be dropped in our model.
This proves that our model tends to drop those dense structures when we encourage the augmentation
to be different from the original graph.

C Experiment on Popularity Bias

We divide the items into the top 20% head items and the last 80% tail items based on their popularity,
as they follow the long tail distribution. We report statistics about the head items and tail items in the
top-10 recommendation lists of all users by different baselines as Table 1. From these statistics in
Table 1, we can observe that tail items have more chance to be recommended by CGI than in other
baselines, which verifies the ability of CGI to alleviate the popularity bias. In addition, we have
conducted quantitative and qualitative experiments on how rare items are ranked by the different
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Figure 1: Degree Distribution of Dropping Structures

Table 1: Statistics of Recommendation Results
Yelp2018 Movielens-1M Douban

Head Tail Head Tail Head Tail

LightGCN 97.19% 2.81% 96.11% 3.89% 97.41% 2.59%
SGL 93.41% 6.59% 94.89% 5.11% 94.97% 5.03%
CGI 92.72% 7.28% 93.79% 6.21% 93.83% 6.17%

models for a given set of users following [4]. In the Movielens-1M, we randomly select two users and
rank all movies for the users with different models. We divide the ranking results into ten groups and
show the numbers of rare movies (with less than 20 watches) in each ranking group. The results are
presented in Fig. 2, where each subfigure represents one user. From the histograms, we can observe
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Figure 2: Numbers of Rare Movies in Each Ranking Group

that CGI is capable of pushing rare items to the top ranks of the recommendation.

D Limitation and Potential Negative Societal Impacts

In this work, we reveals the limitations of graph-based recommendation and attempts to exploit
learnable graph augmentation and information bottleneck to enhance the contrastive learning for
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recommendation. Despite the significant improvement, a limitation of the work is in the type of
feedback considered. We only consider the "purchasing" action of users towards items to construct
the bipartite graph. However, a platform could have access to other types of signals ("like", "add to
basket", "add to wishlist", "remove from wishlist", etc.) and we plan to explore new perspectives,
such as integrating multiple types of signals, to create more powerful data augmentations for a
heterogeneous graph.

This method exerts a positive influence on the society and the community, opens up new research
possibilities, promotes fair exposure of e-commerce, and boost online users’ satisfaction level.
However, this work suffers from some negative consequences, which is worthy of further research
and exploration. Specifically, more jobs of new product promotion and customer survey may be
cancelled. Besides, we should be cautious of the result of the failure of the system, which could
render people to buy some products of poor quality.

E Time Complexity

Suppose the number of nodes and edges in the user-item bipartite graph G are |V| and |E| respectively.
Let L denote the number of GCN layers, B denote the mini-batch size, s denote the number of
epochs and d is the embedding size. The complexity of CGI during model training consists of four
parts. (1) According to [2], the complexity of the graph convolution on the full bipartite graph is
O(2|E|dLs |E|

B ). When we integrate both the node-dropping view and edge-dropping view, the total
complexity of the graph convolution part is O(6|E|dLs |E|

B ). (2) As for the learnable multi-view
augmentation, since we adopt a two-layer MLP to learn the Bernoulli parameter, the complexity for
learning the node-dropping view is O(|V|d2Ls |E|

B ), while complexity for learning the edge-dropping
view is O(2|E|d2Ls |E|

B ). (3) The BPR recommending loss for the original graph and two subgraphs
is O(6|E|ds). (4) As for the IB contrastive learning, we treat all the other users in U as negative
samples in Eq. 2 when computing the mutual information of the user side.

I(Eu; Ẽu) =
∑
vi∈U

log
exp(s(ei, ẽi)/τ

′)∑
vj∈U exp(s(ei, ẽj)/τ ′)

, (2)

In practice, we only treat the users in the same batch as negative samples to reduce the complexity. So
the complexity of the user side per epoch would be O(B(d+Bd) |E|B ) = O(d(B + 1)|E|). Similarly,
it would also be O(d(B+1)|E|) for the item side. So the total complexity for IB contrastive learning
would be O(2d(B + 1)|E|s).
From the analyses above, we can find that the heaviest computation, in theory, is from the learning of
edge-dropping view, i.e., O(2|E|d2Ls |E|

B ), since usually |V| < |E|. So the analytical complexity of
CGI actually scales the complexity of LightGCN with embedding size d, which is actually in the
same magnitude with conventional GCNs with feature transformation, e.g., NGCF [5]. It’s worth
noting that for inference, we don’t need to perform the IB contrastive learning in part (4), which
further reduces the overall time complexity.

F Details of the Datasets

Here we describe the details of the datasets for experiments. The statistical details of these datasets
are presented in Table 2.

Yelp2018 2 This is an online location-based review system, on which users can express their
experience (i.e., local businesses) through the form of reviews and ratings. We construct our dataset
by using each review as evidence that a user’s consumption. We filtered out users who post less than
10 reviews and businesses that receive less than 10 reviews.

Movielens-1M 3 This is s a widely used dataset for recommendations, which contains one million
user-movie ratings. In our case, we transform explicit ratings into implicit feedback, where each entry
is viewed as 1 only when the rating is greater than 3.

2Data set available from https://www.yelp.com/dataset
3Data set available from https://grouplens.org/datasets/movielens/1m/
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Table 2: Descriptive statistics of the datasets.
Dataset #Users #Items #Interactions Density

Yelp2018 30,934 10,048 412,759 0.00133
MovieLens-1M 6,040 3,900 1,000,209 0.00425
Douban 2,848 15,171 65,789 0.00152

Douban [8] This is a popular site on which users can review movies, music, and books they
consume. Similar to Movielens-1M, this dataset is based on explicit ratings. So we also leave out
ratings less than 4 and assign 1 to the rest. We retain users and items with at least five interactions.

G Formulations of Metrics

The NDCG@k metric accounts for the position of the hits by assigning higher scores to hits at top
ranks. The RECALL@k metric measures the percentage of relevant items selected out of all the
relevant items for the user. Both of the adopted metrics can be formulated as follows:

NDCG@k =
1

RN

N∑
i=1

2reli−1

log2(1 + i)
, (3)

RECALL@k =

∑k
i=1 reli
|Iu

test|
, (4)

where k is the size of the recommendation list, reli = 0 or 1 denotes whether the item at the rank
i is in the test set or not, and the RN term indicates the maximum possible cumulative component
through ideal ranking. |Iu

test| is the number of relevant items in the testing set for user u.

H Introduction to Baselines

Here we give a brief introduction to the baseline methods.

• NCF [1]. This is a deep learning based framework that combines matrix factorization (MF)
with a multilayer perceptron model (MLP) for item ranking.

• NGCF [5]. This is a graph-based model, which first encodes the collaborative signal into
the user-item interaction graph structure and adopts multiple graph convolution to explore
high-order connectivity.

• LightGCN [2]. This is the state-of-the-art GCN-based general recommendation model that
leverages the user-item proximity to learn node representations and generate recommenda-
tions.

• DNN+SSL [7] This is a self-supervise contrastive recommendation method, which utilizes
DNNs as the encoder of items and adopts feature masking and feature dropout on the
pre-existing features of items. Since we include no item feature in our case, we apply the
augmentations on ID embeddings of items instead.

• SGL [6]. This is the state-of-the-art graph contrastive learning based recommendation
method, which proposes randomly node dropout, edge dropout, and random walk for
augmentation on the bipartite graph. Following the original paper, we adopt edge dropout
on the LightGCN to obtain its best performance.

I Experiment on Douban

We repeat every experiment in the paper on Douban. For effects of both the node-dropping and
edge-dropping in learnable augmentation, we add experiments on Douban and show results in Table 3.
The experimental result for mitigating popularity bias on Douban is shown in Fig. 3. For robustness
to interaction noises, the result on Douban is illustrated in Fig. 4. And we also investigate different
contrastive learning strategies on Douban and present the result in Fig. 5. These supplemented
experiments show great consistency with existing experimental results in the paper, which further
supports the conclusions we made.
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DoubanModel NDCG@10 RECALL@10

LightGCN 0.0862 0.0876
CGI 0.0991 0.1007

SGL-ND 0.0835 0.0823
CGI-ND 0.0903 0.0895

SGL-ED 0.0912 0.0906
CGI-ED 0.0965 0.0982

Table 3: Comparison among models on Douban
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Figure 3: Performance of different item
groups on Douban
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Figure 4: Performance over different
noise ratio on Douban
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Figure 5: Effect of Information Bottleneck on Douban

J Hardware and implementations in experiments

All experiments are conducted on a Linux machine with an Nvidia GeForce RTX 3090. CUDA
version is 11.1 and Driver Version is 455.45.01. CGI is implemented with Pytorch. The learning
rate for all models are tuned amongst [0.005, 0.01, 0.02, 0.05]. To prevent overfitting, we add L2

norm with coefficient tuned from [0.001, 0.005, 0.01, 0.02, 0.1]. We select the best models by early
stopping when the HR@20 on the validation set does not increase for three consecutive epochs.

K Parameter Studies

As verified in Sect. 4.1, the temperature τ in Equ. 5 plays an important role in the learnable
augmentation.

ρ = σ((log ϵ− log (1− ϵ) + ω)/τ), (5)

Specifically, for learning, there is a tradeoff between small temperatures, where the obtained entries
ρ are close to one-hot but the variance of the gradients is large, and large temperatures, where the
reverse applies. So following [3], we start at 10 and anneal to 0.1 in the training process. Then we
investigate the influence of parameter τ ′ in Eq. 2 and random walk length k for constructing the
node subgraph. We vary τ ′ from 0.1 to 1 and k from 10 to 100, respectively, while keeping other
parameters fixed. The results of HR@10 on Yelp2018 and Movielens-1M are presented in Fig. 6. We
can see that CGI achieves the best performance when τ ′ = 0.2 in our scenario and either increasing
or decreasing τ ′ will hurt the model performance. So we suggest to tune τ ′ in the range of [0.1, 1.0].
Also, we observe from Fig. 6 that, with the increase of k, the performance is boosted at first since a
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larger group of neighbors can bring more accurate subgraph representation. However, it drops when
k reaches 20 in Yelp2018 and 80 in Movielens-1M, because it may bring too much noise irrelevant
to the local graph structure. Intuitively, the denser dataset requires a larger random walk length k,
which is consistent with our observations.
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Figure 6: Parameter Studies of CGI
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