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Abstract

Graph convolution networks (GCNs) for recommendations have emerged as an
important research topic due to their ability to exploit higher-order neighbors.
Despite their success, most of them suffer from the popularity bias brought by
a small number of active users and popular items. Also, a real-world user-item
bipartite graph contains many noisy interactions, which may hamper the sensitive
GCNs. Graph contrastive learning show promising performance for solving the
above challenges in recommender systems. Most existing works typically perform
graph augmentation to create multiple views of the original graph by randomly
dropping edges/nodes or relying on predefined rules, and these augmented views
always serve as an auxiliary task by maximizing their correspondence. However,
we argue that the graph structures generated from these vanilla approaches may
be suboptimal, and maximizing their correspondence will force the representation
to capture information irrelevant for the recommendation task. Here, we propose
a Contrastive Graph Structure Learning via Information Bottleneck (CGI) for
recommendation, which adaptively learns whether to drop an edge or node to obtain
optimized graph structures in an end-to-end manner. Moreover, we innovatively
introduce the Information Bottleneck into the contrastive learning process to avoid
capturing irrelevant information among different views and help enrich the final
representation for recommendation. Extensive experiments on public datasets are
provided to show that our model significantly outperforms strong baselines. 2

1 Introduction
Recommender systems have been widely deployed to alleviate information overload in diverse
scenarios including e-commerce, online news and multimedia contents, which requires high-quality
user and item representations learned from the historical interactions [7, 14, 43]. Recently, thanks
to the powerful capability in modeling graph-structured data, Graph Convolution Networks (GCNs)
provide an efficient way to integrate multi-hop neighbors into node representation learning and show
prominent performance in recommendation [37, 30, 8].

Although encouraging performance has been achieved, we argue that most GCN-based recommender
models suffer from the following two limitations, of which the impacts on the user’s exhibited
preference are presented in Fig. 1. i) Popularity Bias. Items inherently have different customer sizes,
and this imbalance can potentially lead to popularity bias [45]. In most recommender systems, the
customer size for items usually follows a long-tail distribution, which means a few items have massive
customers while the majority have few customers. Similarly, most users have few interactions. This
skewed data distribution will bias GCN-based models towards the popular users and items easily
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during multi-hop convolution, which may hamper the representation learning. ii) Interaction Noises.
User-item interactions usually contain noises especially in the scenarios with only implicit feedbacks
(e.g., clicks and purchases). More specifically, these noisy edges in the bipartite graph are not
necessarily aligned with user preferences [18], since it’s common that the user clicks something by
mistake or finds something boring after purchasing. GCN-based models are known to be vulnerable to
the quality of the input graphs [44], which means aggregating misleading neighborhood information
is likely to lead to sub-optimal performance. Recent advances in graph contrastive learning [27, 38]
have identified an effective training scheme for mitigating popularity bias and increasing robustness
for noise on graph-based tasks, which inspire many studies [31, 41, 33] to introduce this training
scheme to enhance representation learning for recommendations.

: User’s Real Preference: User’s Real Preference

: Optimal User Representation: Optimal User Representation

: User’s Interacted items: User’s Interacted items

: User’s Exhibited Preference: User’s Exhibited Preference

: Noisy Interaction: Noisy Interaction

: Popular Item: Popular Item
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Figure 1: A possible illustration of some user’s
interactions and preference. Dotted circles de-
note possible augmentation representations.

Nevertheless, existing studies have two limitations.
First, most methods perform data augmentation by
randomly dropping edges/nodes to change the graph
structure [31], shuffling the embeddings to corrupt
the node representations [41], or relying on pre-
defined rules [6]. However, within unsupervised
settings, structures created from these vanilla ap-
proaches may be suboptimal for recommendation
tasks and also lack persuasive rationales for why the
randomly dropped edges/nodes alleviate the popu-
larity bias and interaction noises. Like the obtained
representation No.1 in Fig. 1, structures created
from these vanilla approaches may deviate from the
optimal area. Second, most methods generate multiple views only to serve as an auxiliary task by
maximizing the agreement of node representations among these views, which may force the user or
item representation in different views to capture the information irrelevant for the recommendation
task. For example, the obtained representation No.1 in Fig. 1 contains much information irrelevant
to the real preference. So we believe that a good augmentation (e.g., No.2 in Fig. 1) should cover as
much optimal area as possible while being as small as possible to reduce useless information.

To address the aforementioned limitations, we propose Contrastive Graph Structure Learning via
Information Bottleneck (CGI) for recommendation, which contains two key components: learnable
graph augmentation and information bottleneck contrastive learning.

First, we propose learnable graph augmentation to learn whether to drop an edge or node to transform
the original bipartite graph into correlated views, which will be jointly optimized with the downstream
recommendation in an end-to-end fashion. As a result, these generated views can intentionally reduce
the influence of popular nodes while preserving information of the isolated nodes, and thus help to
mitigate the popularity bias. The intuition behind is that random dropout will indiscriminately drop
nodes or edges regardless of the corresponding node degrees, while by message passing mechanism,
GCNs are easier to reconstruct the missing information of popular users or items, but much harder to
reconstruct those isolated nodes with few connections, thus may overemphasize those high-degree
nodes. These generated views with debiased information are all fed into the GCN-based recommender
for multi-view representation learning to increase the ability against popularity bias.

Second, we proposed to integrate different views into a compact representation for the downstream
recommendation tasks, which can further improve the robustness of the model. Generally, when
information from different views complements each other, it can be expected that the multi-view
representation learning approaches can improve downstream performance [28]. So we argue that
simply maximizing the mutual information in the conventional graph contrastive learning may
push the representations of different views to capture information irrelevant to the downstream
task. Inspired by the recent advances of Information Bottleneck (IB) [32], which encourages the
representation to capture the minimum sufficient information for the downstream task, we utilize the
IB principle to minimize the mutual information between the original graph and the generated views
while maintaining the downstream recommendation performance of each view. By doing so, the
learnable graph augmenters can learn to remove noisy interactions in the original graph as much as
possible, since these interactions are of no help for the downstream recommendation. Also, the IB
principle helps representations of different views to capture collaborative information of different
semantics complement to each other.
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The contributions of this paper are summarized as follows. (1) We propose the CGI to construct
optimized graph structures by dropping nodes and edges adaptively for the multi-view representation
learning of users and items, which provides rationales for alleviating the popularity bias. (2) To
efficiently drop information irrelevant to the downstream recommendation, we innovatively integrate
information bottleneck into the multi-view contrastive learning process for recommendation and
prove that it can better mitigate interaction noises. (3) Experimental results show that our method
outperforms the state-of-the-art methods on three benchmark datasets from different domains.

2 Related Work
Graph-based Recommendation Early works exploiting the user-item bipartite graph for recom-
mendation like ItemRank [3] usually followed the label propagation mechanism to propagate users’
preference over the graph, i.e., encouraging connected nodes to have similar labels. In recent years,
Graph Convolution Networks (GCNs) have made great progress in representation learning tasks
including node classification and link prediction [5, 12, 35]. Motivated by the strength of GCNs,
several works [24, 8, 37, 30] have adapted GCNs on the user-item bipartite graph to learn more robust
latent representations for users and items in recommender systems.

Contrastive Learning Contrastive Learning (CL) [22, 9] was firstly proposed to train CNNs for
image representation learning. Graph Contrastive Learning (GCL) applies the idea of CL on GNNs.
DGI [27] and InfoGraph [19] learn node representations according to the mutual information between
nodes and the whole graph. Peng et al. [15] developed an unsupervised learning model trained by
maximizing mutual information of nodes between the input and output of a graph neural encoder.
Hu et al. [10] extend the idea to build contrastive pairs between nodes and subgraphs. In addition,
GCC [16] designs the pre-training task as subgraph instance discrimination in and across networks
and leverage CL to empower GNNs. And a very recent work SGL [31] supplements the classical
supervised task of recommendation with an auxiliary graph CL task, which generates multiple views
of a node and maximizes the agreement between different views. However, it differs from our work
in: (1) SGL [31] generates contrastive pairs by randomly dropping edges/nodes, while our work
adopts a learnable augmenter to optimize the generated views. (2) SGL [31] utilizes conventional
CL as an auxiliary task by maximizing the agreement of augmentation views, while we propose to
encourage the differences between the augmentation views and the original graph.

Learning by Information-Bottleneck Information Bottleneck (IB) [23] is an approach based on
information theory, which states that if the obtained representation discards information from the input
which is not useful for a given task, it will increase robustness for the downstream tasks. Besides, the
information bottleneck principle is used in multi-view representation learning [34, 29, 2]. Formally,
given the original data X with label Y, IB is to obtain a compact and effective representation Z of X.
And the objective of the IB principle is as follows:

max
Z

I(Y;Z)− βI(X;Z), (1)

where β is the coefficient to balance the mutual information I(Y,Z) and I(X,Z).

Recently, some works proposed to integrate the IB principle into the graph learning process. You
et al. [39] propose a variational graph auto-encoder to generate contrastive views and the downstream
contrastive learning utilizes IB performing on graph representations as the unsupervised loss. Both
Yu et al. [40] and Yu et al. [42] aim to directly reveal the vital substructure in the subgraph level,
among which [1] learns a node assignment matrix to extract the subgraph, and implements the IB of
two graphs by estimating the KL-divergence from graph latent representation with a statistic network
(DONSKER-VARADHAN Representation of KL-divergence). And Yu et al. [42] employ noise
injection to manipulate the graph, and customizes the Gaussian prior for each input graph and the
injected noise, so as to implement the IB of two graphs with a tractable variational upper bound. Our
CGI differs from them, since we do not directly aim to find an optimal graph structure, instead we try
to learn the graph structure complementing the original one. Then by integrating different views into a
compact representation, we obtain the optimal node representation for the downstream task. Sun et al.
[20] learn to mask node feature and generates new structure with the masked feature. Afterward, [20]
adopt GNN to learn the distribution of graph representation and utilize the KL-divergence between
the learned distribution and the prior distribution to implement the IB.

All these methods aim to find a better structure or representation to replace the original graph for
the downstream task, while our CGI follows a multi-view representation learning schema. IB is
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utilized to minimize the mutual information between the original graph and the generated views while
maintaining the downstream recommendation performance of each view. Besides the noise-invariance
property, IB helps representations of different views to capture collaborative information of different
semantics that complement each other.

AD-GCL [21] shares some ideas with our CGI but there are fundamental differences. Specifically,
AD-GCL focuses on training self-supervised GNNs for graph-level tasks. In contrast, CGI aims
to mitigate the popularity bias and interaction noises of node-level collaborative filtering (CF).
In addition, AD-GCL adopts an adversarial strategy aiming to maximize the agreement of final
representations of different views. Instead, our CGI minimizes the mutual information of different
views to capture collaborative information of different semantics. To the best of our knowledge, this
is the first study on leveraging the IB principle to enhance graph-based recommendations.

3 Preliminaries
Problem Definition. Let U = {u1, u2, . . . , um} denotes the set of users, and let I = {i1, i2, . . . , in}
denotes the set of items. We typically use a binary matrix R ∈ Rm×n to store user-item interactions
(e.g., purchases and clicks), where rui = 1 indicates that user u consumed item i while rui = 0
means that item i is unexposed to user u or user u is not interested in item i. Following most existing
works [30, 8], we represent interaction data as a user-item bipartite graph G = {V, E}, where the
node set V = U ∪ I and the edge set E = {eui|rui = 1, u ∈ U , i ∈ I}. The adjacency matrix AG
can be formulated as follows:

AG =

[
0 R
RT 0

]
. (2)

With respect to the adjacency matrix AG , the degree matrix DG ∈ N(m+n)×(m+n) is a diagonal
matrix, in which each entry DG [i, i] denotes the number of nonzero entries in the i-th row of AG .

GCN Paradigm. The core of graph convolution on graph G is to update the ego node by aggregating
the representations of its neighbor nodes, which can be formulated as follows:

E(l) = GCN(E(l−1),G), (3)

where E(l−1) is the current representations of nodes and E(l) is the updated representations after the
graph convolution layer. E(0) is the initial inputs, which are usually the ID embeddings (trainable
parameters). From the vector level, Eq. 3 can be interpreted as:

e(l)u = f
(l)
combine(e

(l−1)
u , f

(l)
aggregate({e

(l)
i |i ∈ Nu})), (4)

e
(l)
i = f

(l)
combine(e

(l−1)
i , f

(l)
aggregate({e(l)u |u ∈ Ni})), (5)

where Nu and Ni are the neighbor node set of user u and item i, respectively. There are many works
designing different fcombine and faggregate [5, 26, 35]. Usually, there will be readout function to
generate the final representations for the recommendation task:

e = freadout({e(l)|l = 0, 1, . . . , L}). (6)
For example, freadout can be concatenation [30], weighted sum [8] and retaining the last output [24].

LightGCN Brief. In this paper, we implement our CGI on the simple but effective GCN-based
recommendation model LightGCN. It adopts weighted sum aggregators and abandon the use of
feature transformation and nonlinear activation, of which the matrix form can be formulated as:

E(l) = (D
− 1

2

G AGD
− 1

2

G )E(l−1), l ∈ N+, (7)

where E(l−1) = [E
(l−1)
u ,E

(l−1)
i ] is the output of the previous LightGCN layer or the initial E(0). At

last, LightGCN implement the freadout by weighted sum, in which the weight of each layer is set as
1

L+1 following the original work.

After obtaining the representations of users and items, the inner product r̂ui = eTuei is used to predict
preference score, which is commonly adopted in most recommender system: LightGCN employ
the Bayesian Personalized Ranking (BPR) loss [17] to optimize the model parameters: Lrec =∑

(u,i,j)∈O −lnσ(r̂ui − r̂uj), where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} is the pairwise
training data, in which R+ denotes the observed interactions, and R− denotes the unobserved
interactions. In this work, we also choose it as the objective function for the recommendation task.
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Figure 2: The overview the CGI framework. We integrate both the node-dropping and edge-dropping
views together for a more comprehensive representation, though they can be applied separately.

4 Methodology
The framework of CGI is illustrated in Fig. 2 and we detail the inference in Appendix.

4.1 Learnable Multi-View Augmentation

Most of GCN-based recommendation like LightGCN [8] fully relies on the adjacency matrix AG to
refine the representations of users and items in Eq. 7. However, AG may contain many biased and
noisy information as discussed in Sec. 1, which continue to propagate misleading information as the
LightGCN goes deeper. On the other hand, the vanilla randomly dropout in most contrastive learning
for recommendation cannot create powerful views to alleviate popularity bias and interaction noises.
We hence utilize parameterized networks to generate the layer-wise optimized augmentation views.
Specifically, we assign different graph convolution layers with different learned subgraphs coupled
with the downstream recommendation and thus obtain multi-view user and item representations. We
elaborate on two types of learnable augmentations as follows.

Node-Dropping View As illustrated in Sect. 1, popular users or items in the graph may skew
the data distribution and thus hinder the GCN-based recommender. So we perform learnable node
dropping at each layer to mask those the influential nodes and create the Node-Dropping view, which
can be formulated as:

G(l)
ND = {{vi ⊙ ρ

(l)
i | vi ∈ V}, E}, (8)

where ρ
(l)
i ∈ {0, 1} is drawn from a Bernoulli distribution parameterized by ω

(l)
i , i.e., ρ(l)i ∼

Bern(ω
(l)
i ), which denotes whether to keep the node vi.

Simply removing the selected node alongside all its connections will cause a dramatic change of
the bipartite graph structure thus exerting influence on the information aggregation and making the
training unstable. Thus instead of removing the selected node, we replace the selected node v with
its local subgraph’s representation to obscure its original representation and retain its corresponding
edges. For node v, we perform random walk on the bipartite graph G with its walk length setting as
k, then we take the mean pooling of sampled nodes as v’s local subgraph’s representation.

Edge-Dropping View The goal of the Edge-Dropping view is to generate a subgraph filtering out
noisy edges and intentionally decreasing the influence of popular nodes for GCN layers. Similarly to
the Node-Dropping view, we create the Edge-Dropping view by learnable edge dropping:

G(l)
ED = {V, {eij ⊙ ρ

(l)
ij | eij ∈ E}}, (9)

where ρ
(l)
ij ∈ {0, 1} also follows ρ(l)ij ∼ Bern(ω

(l)
ij ) and denotes whether the edge eij is present.

5



Following [26], we adopt multi-layer perceptrons (MLPs) to the parameter ω(l)
i and ω

(l)
ij that control

the whether to mask node vi and edge eij , respectively, which can be formulated as:

ω
(l)
i = MLP (e

(l)
i ); ω

(l)
ij = MLP ([e

(l)
i ; e

(l)
j ]). (10)

To efficiently optimize the multi-view structure learning in an end-to-end manner, we adopt the
reparameterization trick [11] and relax the above binary entries ρ from being drawn from Bernoulli
distribution to a deterministic function of parameter ω and an independent random variable ϵ, which
can be formulate as:

ρ = σ((log ϵ− log (1− ϵ) + ω)/τ), (11)

where ϵ ∼ Uniform(0, 1), τ ∈ R+ indicates the temperature and σ(·) is the sigmoid function. With
τ > 0, the function is smoothed with a well-defined gradient ∂ρ

∂ω , enabling efficient optimization of
the learnable establishment of Node-Dropping view and Edge-Dropping view during training. In
inference, we drop the node or edge with a probability of less than 0.5.

Afterwards, we perform GCNs to obtain the representation of users and items on these views:

E
(l)
ND = GCN(E

(l−1)
ND ,G(l)

ND), E
(l)
ED = GCN(E

(l−1)
ED ,G(l)

ED), (12)

where the initial E(0)
ND = E

(0)
ED = E(0). After stacking L LightGCN layers, we also adopt the

weighted sum to construct their final representation END and EED, respectively. For simplicity,
we omit the augmentation type ND and ED in the symbols below, and use Ẽ to denote the
representations of these augmentation views.

4.2 Information Bottleneck Contrastive Learning
Although we couple the learnable augmentation process and the recommendation process together,
we find relying solely on the recommendation objective can not well guide the dropout process
to create optimal augmentation views. Thus we adopt the Information-Bottleneck principle to
retain the minimum sufficient information in each view for the downstream recommendation.
Specifically, different from conventional contrastive learning, we instead encourage the divergence
between the representations of the augmentation view and the original graph while maximizing the
information relevant to the recommendation task. By doing so, we can obtain comprehensive multi-
view representation and efficiently drop noisy collaborative information for the recommendation.
Accordingly, the objective in Eq. 1 is induced as:

min
(E,Ẽ)

L̃rec + I(E; Ẽ), (13)

where L̃rec is the BPR loss of the representation from the augmentation view and I(E, Ẽ) represents
the mutual information between representations from two corresponding views.

According to [25, 19], minimizing the InfoNCE loss [4] is equivalence to maximizing the lower
bound of the corresponding mutual information. So we adopt negative InfoNCE to estimate the
mutual information between the representations of the augmentation view and the original graph,
which consists of mutual information from both the user side and item side. Formally, for the user
side mutual information, we consider the representations of the same users in the augmentation
view and the original graph as the positive pairs (i.e., {(ei, ẽi) | vi ∈ U}), while representations
of two different users in the augmentation view and the original graph as the negative pairs (i.e.,
{(ei, ẽj) | vi, vj ∈ U , i ̸= j}):

I(Eu; Ẽu) =
∑
vi∈U

log
exp(s(ei, ẽi)/τ

′)∑
vj∈U exp(s(ei, ẽj)/τ ′)

, (14)

where s(·) measures the similarity between two vectors, which is set as cosine similarity function; τ ′
is the hyper-parameter indicating the temperature similar to Eq. 11. Analogously, we can obtain the
mutual information from item side I(Ei; Ẽi) and the overall mutual information can be obtained by
combining mutual information from two sides: I(E; Ẽ) = I(Eu; Ẽu) + I(Ei; Ẽi).
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4.3 Optimization

To obtain comprehensive multi-view representations, we utilize two parameterized networks to learn
to create the Node-Dropping view and the Edge-Dropping view simultaneously. In order to integrally
explore both views for better recommendation, we jointly optimize the recommendation tasks of
these views and the self-supervised IB contrastive learning:

L = Lrec + LND
rec + LED

rec + λ(I(E,END) + I(E,EED)) + β∥Θ∥22, (15)

where LND
rec and LNB

rec are the recommendation objective of the Node-Dropping view and Edge-
Dropping view respectively. The last term is an L2 regularization. λ and β are the hyper-parameters
controlling the effect strength of the IB contrastive learning task and L2 regularization, respectively.

Proposition 1. Formally, we denote the learned augmentation view as G̃, the noisy graph structure
as G′, and the downstream recommendation information as YRec. Suppose G′ is irrelevant to YRec,
the mutual information I(G′; G̃) is upper bounded by I(G; G̃)− I(YRec; G̃):

I(G′; G̃) ≤ I(G; G̃)− I(YRec; G̃). (16)

Proof. Following the Markov chain assumption in [1], we suppose G is defined by Y and G′. And
we can define the following Markov chain (YRec,G′) → G → G̃. According to the Data Processing
Inequality, we have:

I(G; G̃) ≥ I((YRec,G′); G̃) = I(G′; G̃) + I(YRec; G̃|G′)

= I(G′; G̃) +H(YRec|G′)−H(YRec|G′; G̃).
(17)

Since G′ and YRec are independent, we have H(YRec|G′) = H(YRec). Also, it’s straightforward that
H(YRec|G′; G̃) ≤ H(YRec|G̃). Thus we can simplify Eq. 17 as follow:

I(G; G̃) ≥ I(G′; G̃) +H(YRec)−H(YRec|G̃) = I(G′; G̃) + I(YRec; G̃). (18)

Thus we obtain that I(G′; G̃) ≤ I(G; G̃)− I(YRec; G̃), where I(YRec; G̃) is inverse proportional to
the L̃rec in Eq. 13. Eq. 16 proves that optimizing the IB contrastive objective in Eq. 13 is equivalent
to minimizing the mutual information between the learned augmentation view and noisy structure.
Specifically, it provides theoretical guarantees that the IB contrastive learning leads to the noise-
invariance property by compressing the information in both the augmentation views. Meanwhile, the
IB contrastive objective also restricts the augmentation view to be predictive for the recommendation
task, which can intentionally reduce the influence of popular nodes while preserving information of
the isolated nodes, and thus help to mitigate the popularity bias.

5 Experiments
5.1 Experimental Setup

Dataset Description Three public available datasets are employed in our experiments, i.e.,
Yelp2018, MovieLens-1M and Douban. The detailed description can be found in the Appendix.
For each dataset, we randomly select 80% of the historical interactions of each user as the training
set, 10% of those as the validation set, and the remaining 10% as the test set.

Evaluation metrics To evaluate the performance of all methods, we adopt a ranking-based metric
namely Normalized Discounted Cumulative Gain@k (NDCG@k) and a relevancy-based metric Hit
Ratio@k (RECALL@k). The formulations of the two metrics are in the Appendix. As suggested
by Krichene and Rendle [13], we perform item ranking on all the candidate items instead of the
sampled item sets to calculate above metrics, which guarantees that the evaluation process is unbiased.

Compared Methods We compare our CGI with three classes of baseline methods: (1) MF-
based methods, i.e., BPRMF [17] and NCF [7], (2) GNNs-based methods, i.e., NGCF [30] and
LightGCN [8], and (3) CL-based methods, i.e., DNN+SSL [36] and SGL [31]. We give a detailed
introduction to these baselines in the Appendix. Note that DNN+SSL applies augmentation on items’
feature which is not applicable in our case. So following [31], we apply the augmentations on ID
embeddings of items instead.
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Table 1: Comparison among models. Boldface denotes the highest score and underline indicates the
best result of the baselines.

Yelp2018 MovieLens-1MModel NDCG@10 RECALL@10 NDCG@20 RECALL@20 NDCG@10 RECALL@10 NDCG@20 RECALL@20

BPRMF 0.0138 0.0209 0.0191 0.0373 0.1225 0.1376 0.1407 0.1882
NCF 0.0224 0.0356 0.0289 0.0566 0.1430 0.1546 0.1576 0.2027

NGCF 0.0242 0.0384 0.0319 0.0629 0.1462 0.1651 0.1667 0.2285
LightGCN 0.0344 0.0530 0.0445 0.0850 0.1696 0.1865 0.1863 0.2420
DNN+SSL 0.0217 0.0344 0.0286 0.0564 0.1096 0.1238 0.1250 0.1714

SGL 0.0367 0.0552 0.0473 0.0891 0.1800 0.1965 0.1972 0.2520

CGI 0.0392 0.0584 0.0501 0.0932 0.1979 0.2180 0.2152 0.2772
Improv. +6.82% +5.90% +5.93% +4.58% +9.95% +10.91% +9.13% +9.97%
p-value 1.29e-3 3.53e-3 7.00e-4 3.59e-4 8.89e-4 4.22e-4 4.83e-4 5.07e-5

DoubanModel NDCG@10 RECALL@10 NDCG@20 RECALL@20

BPRMF 0.0496 0.0526 0.0516 0.0613
NCF 0.0694 0.0706 0.0659 0.0734

NGCF 0.0794 0.0823 0.0784 0.0897
LightGCN 0.0862 0.0876 0.0845 0.0940
DNN+SSL 0.0712 0.0738 0.0703 0.0804

SGL 0.0912 0.0906 0.0910 0.1012

CGI 0.0991 0.1007 0.0979 0.1119
Improv. +8.69% +11.18% +7.55% +10.55%
p-value 1.99e-3 4.40e-3 1.52e-4 1.60e-4

Hyper-parameter We initialize the latent vectors of both users and items with small random values
for all models. The parameters for baseline methods are initialized as in the original papers, and are
then carefully tuned to achieve optimal performances. For a fair comparison, the dimensions of both
the user and item embeddings are all fixed to 64. We use Adam with β1 = 0.9, β2 = 0.999, ϵ = 1e−8

to optimize all these methods. The batch size is set to 2048. The learning rate is set as 0.005 and
decayed at the rate of 0.9 every five epochs. We set λ = 0.02 and β = 0.01 for the coefficients in
Eq. 15. More details about hyper-parameter settings of baselines can be found in the Appendix.

5.2 Performance Comparisons
We summarize the performance of different algorithms in terms of NDCG@k and RECALL@k (k =
10, 20) over three datasets in Table 1. The experimental results demonstrate that CGI outperforms
other methods on all evaluation metrics. We conduct the significant test and p-values < 0.05 indicates
that the improvements of our CGI are statistically significant.

Besides, we observe that the GNNs-based methods perform better than the MF-based models. These
results verify that exploiting higher-order connectivity in the user-item bipartite graph is essential
to improve the recommendation performance. This may also be the reason why the performance of
DNN+SSL is inferior to those of SGL and our CGI when all applying contrastive learning. We can
see that the CL-based graph learning methods, including our CGI, consistently outperform the GNNs-
based models, which verifies the effectiveness of contrastive learning for representation learning.
Besides, our CGI outperforms SGL by a large margin. The results demonstrate that compared with
randomly dropping in SGL, the learnable graph augmentations optimized by information bottleneck
can create optimal augmentation views and capture more comprehensive collaborative signals.

5.3 Ablation Studies
Effectiveness of Learnable Augmentation To understand the respective effects of both the node-
dropping and edge-dropping in learnable augmentation, we conduct ablation studies on Yelp2018
and Movielens-1M. As shown in Table 2, we report NDCG@10 and RECALL@10 of CGI and SGL
in different versions. Specifically, CGIND and CGIED denote CGI with only node-dropping view
and edge-dropping view being adopted, respectively. SGLND and SGLED denotes the augmentation
view in SGL is created by random node dropout and edge dropout, respectively.

We find that: (1) Our CGI achieves obvious improvements compared with SGL in different types of
augmentation, which again verifies the effectiveness of the learnable graph augmentation optimized
by information bottleneck. (2) CGI performs better in both CGI-ND and CGI-ED. We ascribe these
to the ability of multi-view learning, which enables the final representation to capture collaborative
information of different semantics and thus enhances the robustness and expressiveness of the model.
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Yelp2018Model NDCG@10 RECALL@10

LightGCN 0.0344 0.0530
CGI 0.0392 0.0584

SGL-ND 0.0356 0.0544
CGI-ND 0.0369 0.0569

SGL-ED 0.0367 0.0552
CGI-ED 0.0379 0.0579

MovieLens-1MModel NDCG@10 RECALL@10

LightGCN 0.1696 0.1865
CGI 0.1979 0.2180

SGL-ND 0.1765 0.1948
CGI-ND 0.1934 0.2119

SGL-ED 0.1800 0.1965
CGI-ED 0.1916 0.2088

Table 2: Comparison among models.
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Figure 3: Performance of different item groups
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represent the performance degradation ratio.
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Figure 5: Effect of Information Bottleneck
on Yelp2018

(3) The performance of CGI-ED is better than that of CGI-ND in the sparse dataset Yelp2018, while
worse in the dense dataset Movielens-1M. We can speculate that the interaction noises are more
significant in the sparse dataset with less useful information, in which CGI-ND is not so flexible.
Because it will remove all influence (i.e., edges) of popular nodes, which is hard to be restored with
scarce interactions. But in the dense dataset, popularity bias becomes more significant, which makes
CGI-ND more efficient by blocking the influence from popular users or items.

Accuracy against Popularity Bias To verify whether CGI is capable of mitigating popularity bias,
We split the item set I into 5 groups (1-5) evenly based on their popularity. The larger the GroupID
is, the larger degrees the items have. Following [31], we decompose the RECALL@10 metric of the
whole dataset into the contributions of the above ten groups of items:

RECALL(g) =

∑k
i=1 rel

(g)
i

|Iu
test|

, (19)

where rel
(g)
i = 1 denotes the item at the rank i is in the test set and g-th item group at the same

time. As such, RECALL(g) measures the performance over the g-th item group. From Fig. 3, we
can see that recommender systems tend to recommend popular items, while leaving unpopular items
less likely to be discovered, which further exacerbates the long-tail distribution. Also, our CGI can
significantly improve the recommendation accuracy on long-tail items. Although both GCL methods
CGI and SGL, show no superiority on the top 20% items, from the overall improvements in Table 1,
we can see they can better capture the long-tail items’ information in user preference representations.

Robustness to Interaction Noises To verify CGI’s robustness to interaction noises, we generate dif-
ferent proportions of negative interactions (i.e., 5%, 10%, 15%, and 20%) to contaminate the training
set, and report the performance on the unchanged test set. Fig. 4 shows the NDCG@10 on Yelp2018
and Movielens-1M and the performance degradation ratio of the corresponding contaminated training
set. It’s obvious that the more noise we add, the worse performance all the models yield, since all
the models utilize LightGCN as the basic backbone, which fully relies on the adjacency matrix AG
to refine the representations of users and items in Eq. 7. However, the performance degradation of
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Table 3: Performance with Other GNN variants.

Model Yelp2018 Movielens-1M Douban
NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10

GC-MC 0.0214 0.0278 0.1350 0.1491 0.0671 0.0739
SGL+GC-MC 0.0218(+1.9%) 0.0281(+1.2%) 0.1412(+4.6%) 0.1577(+5.8%) 0.0687(+2.3%) 0.0762(+3.1%)
CGI+GC-MC 0.0218(+2.1%) 0.0282(+1.7%) 0.1422(+5.3%) 0.1585(+6.3%) 0.0687(+2.3%) 0.0765(+3.5%)

NGCF 0.0242 0.0384 0.1462 0.1651 0.0794 0.0823
SGL+NGCF 0.0260(+7.4%) 0.0418(+8.9%) 0.1609(+10.1%) 0.1871(+13.3%) 0.0833(+4.9%) 0.0857(+4.1%)
CGI+NGCF 0.0272(+12.5%) 0.0431(12.1%) 0.1660(%13.6%) 0.1937(+17.3%) 0.0840(+5.7%) 0.0875(+6.3%)

our CGI is smaller than other models in both datasets. What’s more, the gaps between CGI and
other models grow larger as the noise increase. This suggests that our CGI framework can mitigate
the noise in interaction data more efficiently, and our learnable augmentation optimized by the IB
contrastive learning exhibits good robustness in the presence of a high proportion of noise, which is
consistent with our proof in Sect. 4.3. We can observe that CGI is more robust on Movielens-1M.
This makes sense since Movielens-1M is much denser than Yelp2018 according to the statistics in
the Appendix and thus the bipartite graph of Yelp2018 will be more sensitive to the added noise.

Effectiveness of Information Bottleneck To investigate the effect of information bottleneck, we
consider the following variants of CGI with different contrastive learning strategies, our complete
methods (CGI), our method without introducing contrastive learning (GL), and our method that
maximizes the correspondence among different views (i.e., min L̃rec − I(E; Ẽ)) (GCL). Fig. 5
shows the recommending training loss w.r.t. the number of training steps and the evaluation results
on Yelp, from which we observe that the multi-view graph learning frameworks driven by contrastive
learning are easier to converge. Specifically, when maximizing the mutual information among views,
the GCL framework drops more quickly at the very beginning and turns to a steadily decreasing state
afterward. However, with IB contrastive learning, the recommending loss of our CGI appears to have
a declining trend after an initial sharp drop, instead of getting an early-stop, which is more likely to
converge to a better local optimum. This is probably why CGI has better performance than both GL
and GCL, as illustrated by the right part of Fig. 5. Also, we find that the multi-view graph learning
can benefit more from the IB contrastive learning than the conventional one, since it can encourage to
drop the noisy information irreverent for the recommendation as illustrated in Sect. 4.3.

Performance with Other GNNs To verify the generalization of our method on other GNNs, we
tried CGI and the baseline SGL on two other popular GNN-based recommenders GC-MC [24] and
NGCF [30]. The experimental results are shown in Table 3. Both graph contrastive learning methods
have shown improvements to the backbones. On NGCF, CGI shows consistent superiority compared
to SGL. On GC-MC, CGI does not have significant improvement compared to SGL, probably due to
the fact that GC-MC only utilizes one layer of GCN, which means it can only adopt 1-hop neighbors
for learning, thus making the learnable augmentation challenging to fetch enough information.

6 Conclusions

In this paper, we propose novel Contrastive Graph Structure Learning via Information Bottleneck
(CGI) to learn better augmentation from different aspects for the multi-view representation learning
of recommendation. In particular, we propose a fully differentiable learner to drop nodes and edges to
construct different types of augmentation views coupled with the recommendation. We innovatively
integrate information bottleneck into the multi-view contrastive learning process for recommendation
and prove its efficiency. The extensive experiments conducted on three public datasets verify the
effectiveness of CGI.
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