
Contrastive Graph Structure Learning via
Information Bottleneck for Recommendation

Chunyu Wei1∗, Jian Liang1∗, Di Liu1, Fei Wang2

1Alibaba Group, China
2Department of Population Health Sciences, Weill Cornell Medicine, USA

weicy15@icloud.com
{xuelang.lj, wendi.ld}@alibaba-inc.com

few2001@med.cornell.edu

Abstract

Graph convolution networks (GCNs) for recommendations have emerged as an
important research topic due to their ability to exploit higher-order neighbors.
Despite their success, most of them suffer from the popularity bias brought by
a small number of active users and popular items. Also, a real-world user-item
bipartite graph contains many noisy interactions, which may hamper the sensitive
GCNs. Graph contrastive learning show promising performance for solving the
above challenges in recommender systems. Most existing works typically perform
graph augmentation to create multiple views of the original graph by randomly
dropping edges/nodes or relying on predefined rules, and these augmented views
always serve as an auxiliary task by maximizing their correspondence. However,
we argue that the graph structures generated from these vanilla approaches may
be suboptimal, and maximizing their correspondence will force the representation
to capture information irrelevant for the recommendation task. Here, we propose
a Contrastive Graph Structure Learning via Information Bottleneck (CGI) for
recommendation, which adaptively learns whether to drop an edge or node to obtain
optimized graph structures in an end-to-end manner. Moreover, we innovatively
introduce the Information Bottleneck into the contrastive learning process to avoid
capturing irrelevant information among different views and help enrich the final
representation for recommendation. Extensive experiments on public datasets are
provided to show that our model significantly outperforms strong baselines. 2

1 Introduction
Recommender systems have been widely deployed to alleviate information overload in diverse
scenarios including e-commerce, online news and multimedia contents, which requires high-quality
user and item representations learned from the historical interactions [7, 14, 43]. Recently, thanks
to the powerful capability in modeling graph-structured data, Graph Convolution Networks (GCNs)
provide an efficient way to integrate multi-hop neighbors into node representation learning and show
prominent performance in recommendation [37, 30, 8].

Although encouraging performance has been achieved, we argue that most GCN-based recommender
models suffer from the following two limitations, of which the impacts on the user’s exhibited
preference are presented in Fig. 1. i) Popularity Bias. Items inherently have different customer sizes,
and this imbalance can potentially lead to popularity bias [45]. In most recommender systems, the
customer size for items usually follows a long-tail distribution, which means a few items have massive
customers while the majority have few customers. Similarly, most users have few interactions. This
skewed data distribution will bias GCN-based models towards the popular users and items easily

∗Equal contributions from both authors. This work is done when Chunyu Wei works as an intern at Alibaba.
2The code is available on https://github.com/weicy15/CGI.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

during multi-hop convolution, which may hamper the representation learning. ii) Interaction Noises.
User-item interactions usually contain noises especially in the scenarios with only implicit feedbacks
(e.g., clicks and purchases). More specifically, these noisy edges in the bipartite graph are not
necessarily aligned with user preferences [18], since it’s common that the user clicks something by
mistake or finds something boring after purchasing. GCN-based models are known to be vulnerable to
the quality of the input graphs [44], which means aggregating misleading neighborhood information
is likely to lead to sub-optimal performance. Recent advances in graph contrastive learning [27, 38]
have identified an effective training scheme for mitigating popularity bias and increasing robustness
for noise on graph-based tasks, which inspire many studies [31, 41, 33] to introduce this training
scheme to enhance representation learning for recommendations.

: User’s Real Preference: User’s Real Preference

: Optimal User Representation: Optimal User Representation

: User’s Interacted items: User’s Interacted items

: User’s Exhibited Preference: User’s Exhibited Preference

: Noisy Interaction: Noisy Interaction

: Popular Item: Popular Item

2

1

Figure 1: A possible illustration of some user’s
interactions and preference. Dotted circles de-
note possible augmentation representations.

Nevertheless, existing studies have two limitations.
First, most methods perform data augmentation by
randomly dropping edges/nodes to change the graph
structure [31], shuffling the embeddings to corrupt
the node representations [41], or relying on pre-
defined rules [6]. However, within unsupervised
settings, structures created from these vanilla ap-
proaches may be suboptimal for recommendation
tasks and also lack persuasive rationales for why the
randomly dropped edges/nodes alleviate the popu-
larity bias and interaction noises. Like the obtained
representation No.1 in Fig. 1, structures created
from these vanilla approaches may deviate from the
optimal area. Second, most methods generate multiple views only to serve as an auxiliary task by
maximizing the agreement of node representations among these views, which may force the user or
item representation in different views to capture the information irrelevant for the recommendation
task. For example, the obtained representation No.1 in Fig. 1 contains much information irrelevant
to the real preference. So we believe that a good augmentation (e.g., No.2 in Fig. 1) should cover as
much optimal area as possible while being as small as possible to reduce useless information.

To address the aforementioned limitations, we propose Contrastive Graph Structure Learning via
Information Bottleneck (CGI) for recommendation, which contains two key components: learnable
graph augmentation and information bottleneck contrastive learning.

First, we propose learnable graph augmentation to learn whether to drop an edge or node to transform
the original bipartite graph into correlated views, which will be jointly optimized with the downstream
recommendation in an end-to-end fashion. As a result, these generated views can intentionally reduce
the influence of popular nodes while preserving information of the isolated nodes, and thus help to
mitigate the popularity bias. The intuition behind is that random dropout will indiscriminately drop
nodes or edges regardless of the corresponding node degrees, while by message passing mechanism,
GCNs are easier to reconstruct the missing information of popular users or items, but much harder to
reconstruct those isolated nodes with few connections, thus may overemphasize those high-degree
nodes. These generated views with debiased information are all fed into the GCN-based recommender
for multi-view representation learning to increase the ability against popularity bias.

Second, we proposed to integrate different views into a compact representation for the downstream
recommendation tasks, which can further improve the robustness of the model. Generally, when
information from different views complements each other, it can be expected that the multi-view
representation learning approaches can improve downstream performance [28]. So we argue that
simply maximizing the mutual information in the conventional graph contrastive learning may
push the representations of different views to capture information irrelevant to the downstream
task. Inspired by the recent advances of Information Bottleneck (IB) [32], which encourages the
representation to capture the minimum sufficient information for the downstream task, we utilize the
IB principle to minimize the mutual information between the original graph and the generated views
while maintaining the downstream recommendation performance of each view. By doing so, the
learnable graph augmenters can learn to remove noisy interactions in the original graph as much as
possible, since these interactions are of no help for the downstream recommendation. Also, the IB
principle helps representations of different views to capture collaborative information of different
semantics complement to each other.

2

The contributions of this paper are summarized as follows. (1) We propose the CGI to construct
optimized graph structures by dropping nodes and edges adaptively for the multi-view representation
learning of users and items, which provides rationales for alleviating the popularity bias. (2) To
efficiently drop information irrelevant to the downstream recommendation, we innovatively integrate
information bottleneck into the multi-view contrastive learning process for recommendation and
prove that it can better mitigate interaction noises. (3) Experimental results show that our method
outperforms the state-of-the-art methods on three benchmark datasets from different domains.

2 Related Work
Graph-based Recommendation Early works exploiting the user-item bipartite graph for recom-
mendation like ItemRank [3] usually followed the label propagation mechanism to propagate users’
preference over the graph, i.e., encouraging connected nodes to have similar labels. In recent years,
Graph Convolution Networks (GCNs) have made great progress in representation learning tasks
including node classification and link prediction [5, 12, 35]. Motivated by the strength of GCNs,
several works [24, 8, 37, 30] have adapted GCNs on the user-item bipartite graph to learn more robust
latent representations for users and items in recommender systems.

Contrastive Learning Contrastive Learning (CL) [22, 9] was firstly proposed to train CNNs for
image representation learning. Graph Contrastive Learning (GCL) applies the idea of CL on GNNs.
DGI [27] and InfoGraph [19] learn node representations according to the mutual information between
nodes and the whole graph. Peng et al. [15] developed an unsupervised learning model trained by
maximizing mutual information of nodes between the input and output of a graph neural encoder.
Hu et al. [10] extend the idea to build contrastive pairs between nodes and subgraphs. In addition,
GCC [16] designs the pre-training task as subgraph instance discrimination in and across networks
and leverage CL to empower GNNs. And a very recent work SGL [31] supplements the classical
supervised task of recommendation with an auxiliary graph CL task, which generates multiple views
of a node and maximizes the agreement between different views. However, it differs from our work
in: (1) SGL [31] generates contrastive pairs by randomly dropping edges/nodes, while our work
adopts a learnable augmenter to optimize the generated views. (2) SGL [31] utilizes conventional
CL as an auxiliary task by maximizing the agreement of augmentation views, while we propose to
encourage the differences between the augmentation views and the original graph.

Learning by Information-Bottleneck Information Bottleneck (IB) [23] is an approach based on
information theory, which states that if the obtained representation discards information from the input
which is not useful for a given task, it will increase robustness for the downstream tasks. Besides, the
information bottleneck principle is used in multi-view representation learning [34, 29, 2]. Formally,
given the original data X with label Y, IB is to obtain a compact and effective representation Z of X.
And the objective of the IB principle is as follows:

max
Z

I(Y;Z)− βI(X;Z), (1)

where β is the coefficient to balance the mutual information I(Y,Z) and I(X,Z).

Recently, some works proposed to integrate the IB principle into the graph learning process. You
et al. [39] propose a variational graph auto-encoder to generate contrastive views and the downstream
contrastive learning utilizes IB performing on graph representations as the unsupervised loss. Both
Yu et al. [40] and Yu et al. [42] aim to directly reveal the vital substructure in the subgraph level,
among which [1] learns a node assignment matrix to extract the subgraph, and implements the IB of
two graphs by estimating the KL-divergence from graph latent representation with a statistic network
(DONSKER-VARADHAN Representation of KL-divergence). And Yu et al. [42] employ noise
injection to manipulate the graph, and customizes the Gaussian prior for each input graph and the
injected noise, so as to implement the IB of two graphs with a tractable variational upper bound. Our
CGI differs from them, since we do not directly aim to find an optimal graph structure, instead we try
to learn the graph structure complementing the original one. Then by integrating different views into a
compact representation, we obtain the optimal node representation for the downstream task. Sun et al.
[20] learn to mask node feature and generates new structure with the masked feature. Afterward, [20]
adopt GNN to learn the distribution of graph representation and utilize the KL-divergence between
the learned distribution and the prior distribution to implement the IB.

All these methods aim to find a better structure or representation to replace the original graph for
the downstream task, while our CGI follows a multi-view representation learning schema. IB is

3

utilized to minimize the mutual information between the original graph and the generated views while
maintaining the downstream recommendation performance of each view. Besides the noise-invariance
property, IB helps representations of different views to capture collaborative information of different
semantics that complement each other.

AD-GCL [21] shares some ideas with our CGI but there are fundamental differences. Specifically,
AD-GCL focuses on training self-supervised GNNs for graph-level tasks. In contrast, CGI aims
to mitigate the popularity bias and interaction noises of node-level collaborative filtering (CF).
In addition, AD-GCL adopts an adversarial strategy aiming to maximize the agreement of final
representations of different views. Instead, our CGI minimizes the mutual information of different
views to capture collaborative information of different semantics. To the best of our knowledge, this
is the first study on leveraging the IB principle to enhance graph-based recommendations.

3 Preliminaries
Problem Definition. Let U = {u1, u2, . . . , um} denotes the set of users, and let I = {i1, i2, . . . , in}
denotes the set of items. We typically use a binary matrix R ∈ Rm×n to store user-item interactions
(e.g., purchases and clicks), where rui = 1 indicates that user u consumed item i while rui = 0
means that item i is unexposed to user u or user u is not interested in item i. Following most existing
works [30, 8], we represent interaction data as a user-item bipartite graph G = {V, E}, where the
node set V = U ∪ I and the edge set E = {eui|rui = 1, u ∈ U , i ∈ I}. The adjacency matrix AG
can be formulated as follows:

AG =

[
0 R
RT 0

]
. (2)

With respect to the adjacency matrix AG , the degree matrix DG ∈ N(m+n)×(m+n) is a diagonal
matrix, in which each entry DG [i, i] denotes the number of nonzero entries in the i-th row of AG .

GCN Paradigm. The core of graph convolution on graph G is to update the ego node by aggregating
the representations of its neighbor nodes, which can be formulated as follows:

E(l) = GCN(E(l−1),G), (3)

where E(l−1) is the current representations of nodes and E(l) is the updated representations after the
graph convolution layer. E(0) is the initial inputs, which are usually the ID embeddings (trainable
parameters). From the vector level, Eq. 3 can be interpreted as:

e(l)u = f
(l)
combine(e

(l−1)
u , f

(l)
aggregate({e

(l)
i |i ∈ Nu})), (4)

e
(l)
i = f

(l)
combine(e

(l−1)
i , f

(l)
aggregate({e(l)u |u ∈ Ni})), (5)

where Nu and Ni are the neighbor node set of user u and item i, respectively. There are many works
designing different fcombine and faggregate [5, 26, 35]. Usually, there will be readout function to
generate the final representations for the recommendation task:

e = freadout({e(l)|l = 0, 1, . . . , L}). (6)
For example, freadout can be concatenation [30], weighted sum [8] and retaining the last output [24].

LightGCN Brief. In this paper, we implement our CGI on the simple but effective GCN-based
recommendation model LightGCN. It adopts weighted sum aggregators and abandon the use of
feature transformation and nonlinear activation, of which the matrix form can be formulated as:

E(l) = (D
− 1

2

G AGD
− 1

2

G)E(l−1), l ∈ N+, (7)

where E(l−1) = [E
(l−1)
u ,E

(l−1)
i] is the output of the previous LightGCN layer or the initial E(0). At

last, LightGCN implement the freadout by weighted sum, in which the weight of each layer is set as
1

L+1 following the original work.

After obtaining the representations of users and items, the inner product r̂ui = eTuei is used to predict
preference score, which is commonly adopted in most recommender system: LightGCN employ
the Bayesian Personalized Ranking (BPR) loss [17] to optimize the model parameters: Lrec =∑

(u,i,j)∈O −lnσ(r̂ui − r̂uj), where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} is the pairwise
training data, in which R+ denotes the observed interactions, and R− denotes the unobserved
interactions. In this work, we also choose it as the objective function for the recommendation task.

4

𝐄
(1)

𝐄
(1)

𝐄
(1)GCN

Layer

Original

Bipartite Graph

Original

Bipartite Graph

MLP

Edge

Embeddings

MLP

Edge

Embeddings

Node

Embeddings

MLP

Node

Embeddings

MLP

Reparametrization

Reparametrization

𝒢

GCN

Layer 𝐄ND
(1)

𝐄ND
(1)

𝐄ND
(1)

GCN

Layer
𝐄ED
(1)

𝐄ED
(1)

𝐄ED
(1)

𝒢ND
(1)

𝒢ND
(1)

𝒢ND
(1)

𝒢ED
(1)

𝒢ED
(1)

𝒢ED
(1)

Layer 1

Layer 𝑙Layer 𝑙

𝐄ND𝐄ND𝐄ND

𝐄𝐄𝐄

𝐄ED𝐄ED𝐄ED

Recommending Loss

Minimize

 I(𝐄, 𝐄ED)I(𝐄, 𝐄ED)
Minimize

 I(𝐄, 𝐄ED)

Minimize

 I(𝐄, 𝐄ND)I(𝐄, 𝐄ND)
Minimize

 I(𝐄, 𝐄ND)

: User

: Item

: User

: Item

EmbeddingsEmbeddings

: User

: Item

Embeddings

Figure 2: The overview the CGI framework. We integrate both the node-dropping and edge-dropping
views together for a more comprehensive representation, though they can be applied separately.

4 Methodology
The framework of CGI is illustrated in Fig. 2 and we detail the inference in Appendix.

4.1 Learnable Multi-View Augmentation

Most of GCN-based recommendation like LightGCN [8] fully relies on the adjacency matrix AG to
refine the representations of users and items in Eq. 7. However, AG may contain many biased and
noisy information as discussed in Sec. 1, which continue to propagate misleading information as the
LightGCN goes deeper. On the other hand, the vanilla randomly dropout in most contrastive learning
for recommendation cannot create powerful views to alleviate popularity bias and interaction noises.
We hence utilize parameterized networks to generate the layer-wise optimized augmentation views.
Specifically, we assign different graph convolution layers with different learned subgraphs coupled
with the downstream recommendation and thus obtain multi-view user and item representations. We
elaborate on two types of learnable augmentations as follows.

Node-Dropping View As illustrated in Sect. 1, popular users or items in the graph may skew
the data distribution and thus hinder the GCN-based recommender. So we perform learnable node
dropping at each layer to mask those the influential nodes and create the Node-Dropping view, which
can be formulated as:

G(l)
ND = {{vi ⊙ ρ

(l)
i | vi ∈ V}, E}, (8)

where ρ
(l)
i ∈ {0, 1} is drawn from a Bernoulli distribution parameterized by ω

(l)
i , i.e., ρ(l)i ∼

Bern(ω
(l)
i), which denotes whether to keep the node vi.

Simply removing the selected node alongside all its connections will cause a dramatic change of
the bipartite graph structure thus exerting influence on the information aggregation and making the
training unstable. Thus instead of removing the selected node, we replace the selected node v with
its local subgraph’s representation to obscure its original representation and retain its corresponding
edges. For node v, we perform random walk on the bipartite graph G with its walk length setting as
k, then we take the mean pooling of sampled nodes as v’s local subgraph’s representation.

Edge-Dropping View The goal of the Edge-Dropping view is to generate a subgraph filtering out
noisy edges and intentionally decreasing the influence of popular nodes for GCN layers. Similarly to
the Node-Dropping view, we create the Edge-Dropping view by learnable edge dropping:

G(l)
ED = {V, {eij ⊙ ρ

(l)
ij | eij ∈ E}}, (9)

where ρ
(l)
ij ∈ {0, 1} also follows ρ(l)ij ∼ Bern(ω

(l)
ij) and denotes whether the edge eij is present.

5

Following [26], we adopt multi-layer perceptrons (MLPs) to the parameter ω(l)
i and ω

(l)
ij that control

the whether to mask node vi and edge eij , respectively, which can be formulated as:

ω
(l)
i = MLP (e

(l)
i); ω

(l)
ij = MLP ([e

(l)
i ; e

(l)
j]). (10)

To efficiently optimize the multi-view structure learning in an end-to-end manner, we adopt the
reparameterization trick [11] and relax the above binary entries ρ from being drawn from Bernoulli
distribution to a deterministic function of parameter ω and an independent random variable ϵ, which
can be formulate as:

ρ = σ((log ϵ− log (1− ϵ) + ω)/τ), (11)

where ϵ ∼ Uniform(0, 1), τ ∈ R+ indicates the temperature and σ(·) is the sigmoid function. With
τ > 0, the function is smoothed with a well-defined gradient ∂ρ

∂ω , enabling efficient optimization of
the learnable establishment of Node-Dropping view and Edge-Dropping view during training. In
inference, we drop the node or edge with a probability of less than 0.5.

Afterwards, we perform GCNs to obtain the representation of users and items on these views:

E
(l)
ND = GCN(E

(l−1)
ND ,G(l)

ND), E
(l)
ED = GCN(E

(l−1)
ED ,G(l)

ED), (12)

where the initial E(0)
ND = E

(0)
ED = E(0). After stacking L LightGCN layers, we also adopt the

weighted sum to construct their final representation END and EED, respectively. For simplicity,
we omit the augmentation type ND and ED in the symbols below, and use Ẽ to denote the
representations of these augmentation views.

4.2 Information Bottleneck Contrastive Learning
Although we couple the learnable augmentation process and the recommendation process together,
we find relying solely on the recommendation objective can not well guide the dropout process
to create optimal augmentation views. Thus we adopt the Information-Bottleneck principle to
retain the minimum sufficient information in each view for the downstream recommendation.
Specifically, different from conventional contrastive learning, we instead encourage the divergence
between the representations of the augmentation view and the original graph while maximizing the
information relevant to the recommendation task. By doing so, we can obtain comprehensive multi-
view representation and efficiently drop noisy collaborative information for the recommendation.
Accordingly, the objective in Eq. 1 is induced as:

min
(E,Ẽ)

L̃rec + I(E; Ẽ), (13)

where L̃rec is the BPR loss of the representation from the augmentation view and I(E, Ẽ) represents
the mutual information between representations from two corresponding views.

According to [25, 19], minimizing the InfoNCE loss [4] is equivalence to maximizing the lower
bound of the corresponding mutual information. So we adopt negative InfoNCE to estimate the
mutual information between the representations of the augmentation view and the original graph,
which consists of mutual information from both the user side and item side. Formally, for the user
side mutual information, we consider the representations of the same users in the augmentation
view and the original graph as the positive pairs (i.e., {(ei, ẽi) | vi ∈ U}), while representations
of two different users in the augmentation view and the original graph as the negative pairs (i.e.,
{(ei, ẽj) | vi, vj ∈ U , i ̸= j}):

I(Eu; Ẽu) =
∑
vi∈U

log
exp(s(ei, ẽi)/τ

′)∑
vj∈U exp(s(ei, ẽj)/τ ′)

, (14)

where s(·) measures the similarity between two vectors, which is set as cosine similarity function; τ ′
is the hyper-parameter indicating the temperature similar to Eq. 11. Analogously, we can obtain the
mutual information from item side I(Ei; Ẽi) and the overall mutual information can be obtained by
combining mutual information from two sides: I(E; Ẽ) = I(Eu; Ẽu) + I(Ei; Ẽi).

6

4.3 Optimization

To obtain comprehensive multi-view representations, we utilize two parameterized networks to learn
to create the Node-Dropping view and the Edge-Dropping view simultaneously. In order to integrally
explore both views for better recommendation, we jointly optimize the recommendation tasks of
these views and the self-supervised IB contrastive learning:

L = Lrec + LND
rec + LED

rec + λ(I(E,END) + I(E,EED)) + β∥Θ∥22, (15)

where LND
rec and LNB

rec are the recommendation objective of the Node-Dropping view and Edge-
Dropping view respectively. The last term is an L2 regularization. λ and β are the hyper-parameters
controlling the effect strength of the IB contrastive learning task and L2 regularization, respectively.

Proposition 1. Formally, we denote the learned augmentation view as G̃, the noisy graph structure
as G′, and the downstream recommendation information as YRec. Suppose G′ is irrelevant to YRec,
the mutual information I(G′; G̃) is upper bounded by I(G; G̃)− I(YRec; G̃):

I(G′; G̃) ≤ I(G; G̃)− I(YRec; G̃). (16)

Proof. Following the Markov chain assumption in [1], we suppose G is defined by Y and G′. And
we can define the following Markov chain (YRec,G′) → G → G̃. According to the Data Processing
Inequality, we have:

I(G; G̃) ≥ I((YRec,G′); G̃) = I(G′; G̃) + I(YRec; G̃|G′)

= I(G′; G̃) +H(YRec|G′)−H(YRec|G′; G̃).
(17)

Since G′ and YRec are independent, we have H(YRec|G′) = H(YRec). Also, it’s straightforward that
H(YRec|G′; G̃) ≤ H(YRec|G̃). Thus we can simplify Eq. 17 as follow:

I(G; G̃) ≥ I(G′; G̃) +H(YRec)−H(YRec|G̃) = I(G′; G̃) + I(YRec; G̃). (18)

Thus we obtain that I(G′; G̃) ≤ I(G; G̃)− I(YRec; G̃), where I(YRec; G̃) is inverse proportional to
the L̃rec in Eq. 13. Eq. 16 proves that optimizing the IB contrastive objective in Eq. 13 is equivalent
to minimizing the mutual information between the learned augmentation view and noisy structure.
Specifically, it provides theoretical guarantees that the IB contrastive learning leads to the noise-
invariance property by compressing the information in both the augmentation views. Meanwhile, the
IB contrastive objective also restricts the augmentation view to be predictive for the recommendation
task, which can intentionally reduce the influence of popular nodes while preserving information of
the isolated nodes, and thus help to mitigate the popularity bias.

5 Experiments
5.1 Experimental Setup

Dataset Description Three public available datasets are employed in our experiments, i.e.,
Yelp2018, MovieLens-1M and Douban. The detailed description can be found in the Appendix.
For each dataset, we randomly select 80% of the historical interactions of each user as the training
set, 10% of those as the validation set, and the remaining 10% as the test set.

Evaluation metrics To evaluate the performance of all methods, we adopt a ranking-based metric
namely Normalized Discounted Cumulative Gain@k (NDCG@k) and a relevancy-based metric Hit
Ratio@k (RECALL@k). The formulations of the two metrics are in the Appendix. As suggested
by Krichene and Rendle [13], we perform item ranking on all the candidate items instead of the
sampled item sets to calculate above metrics, which guarantees that the evaluation process is unbiased.

Compared Methods We compare our CGI with three classes of baseline methods: (1) MF-
based methods, i.e., BPRMF [17] and NCF [7], (2) GNNs-based methods, i.e., NGCF [30] and
LightGCN [8], and (3) CL-based methods, i.e., DNN+SSL [36] and SGL [31]. We give a detailed
introduction to these baselines in the Appendix. Note that DNN+SSL applies augmentation on items’
feature which is not applicable in our case. So following [31], we apply the augmentations on ID
embeddings of items instead.

7

Table 1: Comparison among models. Boldface denotes the highest score and underline indicates the
best result of the baselines.

Yelp2018 MovieLens-1MModel NDCG@10 RECALL@10 NDCG@20 RECALL@20 NDCG@10 RECALL@10 NDCG@20 RECALL@20

BPRMF 0.0138 0.0209 0.0191 0.0373 0.1225 0.1376 0.1407 0.1882
NCF 0.0224 0.0356 0.0289 0.0566 0.1430 0.1546 0.1576 0.2027

NGCF 0.0242 0.0384 0.0319 0.0629 0.1462 0.1651 0.1667 0.2285
LightGCN 0.0344 0.0530 0.0445 0.0850 0.1696 0.1865 0.1863 0.2420
DNN+SSL 0.0217 0.0344 0.0286 0.0564 0.1096 0.1238 0.1250 0.1714

SGL 0.0367 0.0552 0.0473 0.0891 0.1800 0.1965 0.1972 0.2520

CGI 0.0392 0.0584 0.0501 0.0932 0.1979 0.2180 0.2152 0.2772
Improv. +6.82% +5.90% +5.93% +4.58% +9.95% +10.91% +9.13% +9.97%
p-value 1.29e-3 3.53e-3 7.00e-4 3.59e-4 8.89e-4 4.22e-4 4.83e-4 5.07e-5

DoubanModel NDCG@10 RECALL@10 NDCG@20 RECALL@20

BPRMF 0.0496 0.0526 0.0516 0.0613
NCF 0.0694 0.0706 0.0659 0.0734

NGCF 0.0794 0.0823 0.0784 0.0897
LightGCN 0.0862 0.0876 0.0845 0.0940
DNN+SSL 0.0712 0.0738 0.0703 0.0804

SGL 0.0912 0.0906 0.0910 0.1012

CGI 0.0991 0.1007 0.0979 0.1119
Improv. +8.69% +11.18% +7.55% +10.55%
p-value 1.99e-3 4.40e-3 1.52e-4 1.60e-4

Hyper-parameter We initialize the latent vectors of both users and items with small random values
for all models. The parameters for baseline methods are initialized as in the original papers, and are
then carefully tuned to achieve optimal performances. For a fair comparison, the dimensions of both
the user and item embeddings are all fixed to 64. We use Adam with β1 = 0.9, β2 = 0.999, ϵ = 1e−8

to optimize all these methods. The batch size is set to 2048. The learning rate is set as 0.005 and
decayed at the rate of 0.9 every five epochs. We set λ = 0.02 and β = 0.01 for the coefficients in
Eq. 15. More details about hyper-parameter settings of baselines can be found in the Appendix.

5.2 Performance Comparisons
We summarize the performance of different algorithms in terms of NDCG@k and RECALL@k (k =
10, 20) over three datasets in Table 1. The experimental results demonstrate that CGI outperforms
other methods on all evaluation metrics. We conduct the significant test and p-values < 0.05 indicates
that the improvements of our CGI are statistically significant.

Besides, we observe that the GNNs-based methods perform better than the MF-based models. These
results verify that exploiting higher-order connectivity in the user-item bipartite graph is essential
to improve the recommendation performance. This may also be the reason why the performance of
DNN+SSL is inferior to those of SGL and our CGI when all applying contrastive learning. We can
see that the CL-based graph learning methods, including our CGI, consistently outperform the GNNs-
based models, which verifies the effectiveness of contrastive learning for representation learning.
Besides, our CGI outperforms SGL by a large margin. The results demonstrate that compared with
randomly dropping in SGL, the learnable graph augmentations optimized by information bottleneck
can create optimal augmentation views and capture more comprehensive collaborative signals.

5.3 Ablation Studies
Effectiveness of Learnable Augmentation To understand the respective effects of both the node-
dropping and edge-dropping in learnable augmentation, we conduct ablation studies on Yelp2018
and Movielens-1M. As shown in Table 2, we report NDCG@10 and RECALL@10 of CGI and SGL
in different versions. Specifically, CGIND and CGIED denote CGI with only node-dropping view
and edge-dropping view being adopted, respectively. SGLND and SGLED denotes the augmentation
view in SGL is created by random node dropout and edge dropout, respectively.

We find that: (1) Our CGI achieves obvious improvements compared with SGL in different types of
augmentation, which again verifies the effectiveness of the learnable graph augmentation optimized
by information bottleneck. (2) CGI performs better in both CGI-ND and CGI-ED. We ascribe these
to the ability of multi-view learning, which enables the final representation to capture collaborative
information of different semantics and thus enhances the robustness and expressiveness of the model.

8

Yelp2018Model NDCG@10 RECALL@10

LightGCN 0.0344 0.0530
CGI 0.0392 0.0584

SGL-ND 0.0356 0.0544
CGI-ND 0.0369 0.0569

SGL-ED 0.0367 0.0552
CGI-ED 0.0379 0.0579

MovieLens-1MModel NDCG@10 RECALL@10

LightGCN 0.1696 0.1865
CGI 0.1979 0.2180

SGL-ND 0.1765 0.1948
CGI-ND 0.1934 0.2119

SGL-ED 0.1800 0.1965
CGI-ED 0.1916 0.2088

Table 2: Comparison among models.

1 2 3 4 5
Item Group

0.01

0.02

0.03

0.04

0.05

Re
ca

ll

Yelp2018
model

LightGCN
SGL
CGI

1 2 3 4 5
Item Group

0.02

0.04

0.06

0.08

0.10

0.12

Re
ca

ll

Movielens-1M
model

LightGCN
SGL
CGI

Figure 3: Performance of different item groups

0.0 0.05 0.1 0.15 0.2
Noise Ratio

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

ND
CG

@
10

Yelp2018
LightGCN
SGL
CGI

0.0 0.05 0.1 0.15 0.2
Noise Ratio

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

ND
CG

@
10

Movielens-1M
LightGCN
SGL
CGI

0.0

0.1

0.2

0.3

0.4

0.5

Dr
op

 R
at

e

LightGCN
SGL
CGI

0.0

0.1

0.2

0.3

0.4

0.5

Dr
op

 R
at

e

LightGCN
SGL
CGI

Figure 4: Performance comparison over different noise
ratio. The bar represents the NDCG@10 and the line
represent the performance degradation ratio.

0 2500 5000 7500 10000 12500 15000
Training step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
c

Lo
ss

GL
GCL
CGI

NDCG@10 Recall@10
Metric

0.030

0.032

0.034

0.036

0.038

0.040

ND
CG

@
10

GL
GCL
CGI

0.0500

0.0525

0.0550

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

Re
ca

ll@
10

Figure 5: Effect of Information Bottleneck
on Yelp2018

(3) The performance of CGI-ED is better than that of CGI-ND in the sparse dataset Yelp2018, while
worse in the dense dataset Movielens-1M. We can speculate that the interaction noises are more
significant in the sparse dataset with less useful information, in which CGI-ND is not so flexible.
Because it will remove all influence (i.e., edges) of popular nodes, which is hard to be restored with
scarce interactions. But in the dense dataset, popularity bias becomes more significant, which makes
CGI-ND more efficient by blocking the influence from popular users or items.

Accuracy against Popularity Bias To verify whether CGI is capable of mitigating popularity bias,
We split the item set I into 5 groups (1-5) evenly based on their popularity. The larger the GroupID
is, the larger degrees the items have. Following [31], we decompose the RECALL@10 metric of the
whole dataset into the contributions of the above ten groups of items:

RECALL(g) =

∑k
i=1 rel

(g)
i

|Iu
test|

, (19)

where rel
(g)
i = 1 denotes the item at the rank i is in the test set and g-th item group at the same

time. As such, RECALL(g) measures the performance over the g-th item group. From Fig. 3, we
can see that recommender systems tend to recommend popular items, while leaving unpopular items
less likely to be discovered, which further exacerbates the long-tail distribution. Also, our CGI can
significantly improve the recommendation accuracy on long-tail items. Although both GCL methods
CGI and SGL, show no superiority on the top 20% items, from the overall improvements in Table 1,
we can see they can better capture the long-tail items’ information in user preference representations.

Robustness to Interaction Noises To verify CGI’s robustness to interaction noises, we generate dif-
ferent proportions of negative interactions (i.e., 5%, 10%, 15%, and 20%) to contaminate the training
set, and report the performance on the unchanged test set. Fig. 4 shows the NDCG@10 on Yelp2018
and Movielens-1M and the performance degradation ratio of the corresponding contaminated training
set. It’s obvious that the more noise we add, the worse performance all the models yield, since all
the models utilize LightGCN as the basic backbone, which fully relies on the adjacency matrix AG
to refine the representations of users and items in Eq. 7. However, the performance degradation of

9

Table 3: Performance with Other GNN variants.

Model Yelp2018 Movielens-1M Douban
NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10

GC-MC 0.0214 0.0278 0.1350 0.1491 0.0671 0.0739
SGL+GC-MC 0.0218(+1.9%) 0.0281(+1.2%) 0.1412(+4.6%) 0.1577(+5.8%) 0.0687(+2.3%) 0.0762(+3.1%)
CGI+GC-MC 0.0218(+2.1%) 0.0282(+1.7%) 0.1422(+5.3%) 0.1585(+6.3%) 0.0687(+2.3%) 0.0765(+3.5%)

NGCF 0.0242 0.0384 0.1462 0.1651 0.0794 0.0823
SGL+NGCF 0.0260(+7.4%) 0.0418(+8.9%) 0.1609(+10.1%) 0.1871(+13.3%) 0.0833(+4.9%) 0.0857(+4.1%)
CGI+NGCF 0.0272(+12.5%) 0.0431(12.1%) 0.1660(%13.6%) 0.1937(+17.3%) 0.0840(+5.7%) 0.0875(+6.3%)

our CGI is smaller than other models in both datasets. What’s more, the gaps between CGI and
other models grow larger as the noise increase. This suggests that our CGI framework can mitigate
the noise in interaction data more efficiently, and our learnable augmentation optimized by the IB
contrastive learning exhibits good robustness in the presence of a high proportion of noise, which is
consistent with our proof in Sect. 4.3. We can observe that CGI is more robust on Movielens-1M.
This makes sense since Movielens-1M is much denser than Yelp2018 according to the statistics in
the Appendix and thus the bipartite graph of Yelp2018 will be more sensitive to the added noise.

Effectiveness of Information Bottleneck To investigate the effect of information bottleneck, we
consider the following variants of CGI with different contrastive learning strategies, our complete
methods (CGI), our method without introducing contrastive learning (GL), and our method that
maximizes the correspondence among different views (i.e., min L̃rec − I(E; Ẽ)) (GCL). Fig. 5
shows the recommending training loss w.r.t. the number of training steps and the evaluation results
on Yelp, from which we observe that the multi-view graph learning frameworks driven by contrastive
learning are easier to converge. Specifically, when maximizing the mutual information among views,
the GCL framework drops more quickly at the very beginning and turns to a steadily decreasing state
afterward. However, with IB contrastive learning, the recommending loss of our CGI appears to have
a declining trend after an initial sharp drop, instead of getting an early-stop, which is more likely to
converge to a better local optimum. This is probably why CGI has better performance than both GL
and GCL, as illustrated by the right part of Fig. 5. Also, we find that the multi-view graph learning
can benefit more from the IB contrastive learning than the conventional one, since it can encourage to
drop the noisy information irreverent for the recommendation as illustrated in Sect. 4.3.

Performance with Other GNNs To verify the generalization of our method on other GNNs, we
tried CGI and the baseline SGL on two other popular GNN-based recommenders GC-MC [24] and
NGCF [30]. The experimental results are shown in Table 3. Both graph contrastive learning methods
have shown improvements to the backbones. On NGCF, CGI shows consistent superiority compared
to SGL. On GC-MC, CGI does not have significant improvement compared to SGL, probably due to
the fact that GC-MC only utilizes one layer of GCN, which means it can only adopt 1-hop neighbors
for learning, thus making the learnable augmentation challenging to fetch enough information.

6 Conclusions

In this paper, we propose novel Contrastive Graph Structure Learning via Information Bottleneck
(CGI) to learn better augmentation from different aspects for the multi-view representation learning
of recommendation. In particular, we propose a fully differentiable learner to drop nodes and edges to
construct different types of augmentation views coupled with the recommendation. We innovatively
integrate information bottleneck into the multi-view contrastive learning process for recommendation
and prove its efficiency. The extensive experiments conducted on three public datasets verify the
effectiveness of CGI.

Acknowledgments and Disclosure of Funding

This work was supported by Alibaba Group through Alibaba Research Intern Program.

10

References
[1] A. Achille and S. Soatto. Emergence of invariance and disentanglement in deep representations.

J. Mach. Learn. Res., 19:50:1–50:34, 2018.

[2] M. Federici, A. Dutta, P. Forré, N. Kushman, and Z. Akata. Learning robust representations via
multi-view information bottleneck. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[3] M. Gori and A. Pucci. Itemrank: A random-walk based scoring algorithm for recommender
engines. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages 2766–2771, 2007.

[4] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May
13-15, 2010, volume 9, pages 297–304, 2010.

[5] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
1024–1034, 2017.

[6] K. Hassani and A. H. K. Ahmadi. Contrastive multi-view representation learning on graphs. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
4116–4126, 2020.

[7] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative filtering. In
Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth,
Australia, April 3-7, 2017, pages 173–182, 2017.

[8] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. Lightgcn: Simplifying and powering
graph convolution network for recommendation. In Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual
Event, China, July 25-30, 2020, pages 639–648, 2020.

[9] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio. Learning deep representations by mutual information estimation and maximization.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[10] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. S. Pande, and J. Leskovec. Strategies for pre-
training graph neural networks. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[11] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

[12] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

[13] W. Krichene and S. Rendle. On sampled metrics for item recommendation. In KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA,
USA, August 23-27, 2020, pages 1748–1757, 2020.

[14] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun. xdeepfm: Combining explicit
and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018, pages 1754–1763, 2018.

11

[15] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, and J. Huang. Graph representation
learning via graphical mutual information maximization. In WWW ’20: The Web Conference
2020, Taipei, Taiwan, April 20-24, 2020, pages 259–270, 2020.

[16] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang, and J. Tang. GCC: graph
contrastive coding for graph neural network pre-training. In KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020, pages 1150–1160, 2020.

[17] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: bayesian personalized
ranking from implicit feedback. In UAI 2009, Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009, pages 452–461,
2009.

[18] Y. Saito, S. Yaginuma, Y. Nishino, H. Sakata, and K. Nakata. Unbiased recommender learning
from missing-not-at-random implicit feedback. In WSDM ’20: The Thirteenth ACM Interna-
tional Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020,
pages 501–509, 2020.

[19] F. Sun, J. Hoffmann, V. Verma, and J. Tang. Infograph: Unsupervised and semi-supervised
graph-level representation learning via mutual information maximization. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, 2020.

[20] Q. Sun, J. Li, H. Peng, J. Wu, X. Fu, C. Ji, and P. S. Yu. Graph structure learning with variational
information bottleneck. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pages 4165–4174, 2022.

[21] S. Suresh, P. Li, C. Hao, and J. Neville. Adversarial graph augmentation to improve graph
contrastive learning. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, 2021.

[22] Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. In Computer Vision - ECCV
2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XI,
volume 12356, pages 776–794, 2020.

[23] N. Tishby, F. C. N. Pereira, and W. Bialek. The information bottleneck method. CoRR,
physics/0004057, 2000.

[24] R. van den Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion. CoRR,
abs/1706.02263, 2017.

[25] A. van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

[26] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[27] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep graph
infomax. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019.

[28] Z. Wan, C. Zhang, P. Zhu, and Q. Hu. Multi-view information-bottleneck representation learning.
In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 10085–10092, 2021.

12

[29] Q. Wang, C. Boudreau, Q. Luo, P. Tan, and J. Zhou. Deep multi-view information bottleneck. In
Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary,
Alberta, Canada, May 2-4, 2019, pages 37–45, 2019.

[30] X. Wang, X. He, M. Wang, F. Feng, and T. Chua. Neural graph collaborative filtering. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, pages 165–174, 2019.

[31] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie. Self-supervised graph learning for
recommendation. In SIGIR ’21: The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages
726–735, 2021.

[32] T. Wu, H. Ren, P. Li, and J. Leskovec. Graph information bottleneck. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[33] X. Xia, H. Yin, J. Yu, Y. Shao, and L. Cui. Self-supervised graph co-training for session-based
recommendation. In CIKM ’21: The 30th ACM International Conference on Information and
Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, pages
2180–2190, 2021.

[34] C. Xu, D. Tao, and C. Xu. Large-margin multi-viewinformation bottleneck. IEEE Trans. Pattern
Anal. Mach. Intell., 36(8):1559–1572, 2014.

[35] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019, 2019.

[36] T. Yao, X. Yi, D. Z. Cheng, F. X. Yu, A. K. Menon, L. Hong, E. H. Chi, S. Tjoa, J. Kang,
and E. Ettinger. Self-supervised learning for deep models in recommendations. CoRR,
abs/2007.12865, 2020.

[37] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph con-
volutional neural networks for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018, pages 974–983, 2018.

[38] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with
augmentations. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[39] Y. You, T. Chen, Z. Wang, and Y. Shen. Bringing your own view: Graph contrastive learning
without prefabricated data augmentations. In WSDM ’22: The Fifteenth ACM International
Conference on Web Search and Data Mining, Virtual Event / Tempe, AZ, USA, February 21 - 25,
2022, pages 1300–1309, 2022.

[40] J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He. Graph information bottleneck for subgraph
recognition. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, 2021.

[41] J. Yu, H. Yin, J. Li, Q. Wang, N. Q. V. Hung, and X. Zhang. Self-supervised multi-channel hy-
pergraph convolutional network for social recommendation. In WWW ’21: The Web Conference
2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 413–424, 2021.

[42] J. Yu, J. Cao, and R. He. Improving subgraph recognition with variational graph information
bottleneck. pages 19396–19405, 2022.

[43] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai. Deep
interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK,
August 19-23, 2018, pages 1059–1068, 2018.

13

[44] D. Zhu, Z. Zhang, P. Cui, and W. Zhu. Robust graph convolutional networks against adversarial
attacks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 1399–
1407, 2019.

[45] Z. Zhu, Y. He, X. Zhao, and J. Caverlee. Popularity bias in dynamic recommendation. In KDD
’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, Singapore, August 14-18, 2021, pages 2439–2449, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discuss them in Appendix
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss

them in Appendix
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Our codes are
made publicly available on github.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specify all training details in Section 5.1 and Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Appendix. We run experiments multiple times and
report statistical significance in Section 5.2 consistent with previous works.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We discuss them in Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] The code and the data are public.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Our codes are shared using a URL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] The code and the data are public.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Preliminaries
	Methodology
	Learnable Multi-View Augmentation
	Information Bottleneck Contrastive Learning
	Optimization

	Experiments
	Experimental Setup
	Performance Comparisons
	Ablation Studies

	Conclusions

