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Abstract

Generalization in image-based reinforcement learning (RL) aims to learn a robust
policy that could be applied directly on unseen visual environments, which is a
challenging task since agents usually tend to overfit to their training environment.
To handle this problem, a natural approach is to increase the data diversity by
image based augmentations. However, different with most vision tasks such as
classification and detection, RL tasks are not always invariant to spatial based
augmentations due to the entanglement of environment dynamics and visual ap-
pearance. In this paper, we argue with two principles for augmentations in RL:
First, the augmented observations should facilitate learning a universal policy,
which is robust to various distribution shifts. Second, the augmented data should be
invariant to the learning signals such as action and reward. Following these rules,
we revisit image-based RL tasks from the view of frequency domain and propose a
novel augmentation method, namely Spectrum Random Masking (SRM),which
is able to help agents to learn the whole frequency spectrum of observation for
coping with various distributions and compatible with the pre-collected action and
reward corresponding to original observation. Extensive experiments conducted on
DMControl Generalization Benchmark demonstrate the proposed SRM achieves
the state-of-the-art performance with strong generalization potentials.

1 Introduction

Reinforcement Learning (RL) from image-based observations is a task where representation and
decision-making are jointly learned from visual signals. Although this type of RL methods has made
significant progresses due to the development of deep Convolution Neural Networks (CNNs), most
of them suffer from drastic performance decline on previously unseen environments [24, 44, 4],
especially for image-based inputs [44, 32, 4, 48, 27]. The reason is that classical RL methods assume
the environments of training and testing are identical [17]. However, there usually exists significant
distributions divergences between them in real-world scenarios. The high dimensionality of visual
inputs coupled with the shifted distributions of environment make the generalization of RL tasks even
more challenging [30].

To handle this challenge, one natural way is to decrease the distribution gap of training and testing data
by simulating the diversity of test environments in training. Recent studies show that the appropriate
data augmentation could facilitate the generalization of the policy network [41]. Most of these data
augmentation methods have been carried out directly in the spatial domain [19], such as flipping and
rotation. However, the dynamic of environment has the disadvantages of lacking sensitivity to such
spatial-based data augmentation [28]. An example is illustrated in Fig. 1: when horizontal flipping is
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Figure 1: For image recognition task (left), the features of original images o and flipped images ô
should be invariant for classification. In contrast, for cartpole swingup task (right) in RL whose goal
is to swing up an unactuated pole, such invariant feature will guide policy network to output same
actions for o and ô. However, for ô, the better action is to apply reversed forces to this cart base to
keep swingup. Thus the pre-collected action and reward for o are not accurate for ô any more.

applied on observations, the corresponding left and right actions should be reversed, thus collected
rewards could not reflect the correct response.

Considering above problem, instead of working in the spatial domain, we aim to study the gen-
eralization of image-based RL from a frequency domain perspective. Our motivation stems from
the recent studies Fourier analysis in computer vision [42]: different types of spatial corruptions
influence the model robustness toward different frequency ranges. For example, the high frequency
data augmentations such as random Gaussian noise bias the model towards utilizing low frequency
information in the input, and improve robustness to corruptions with high frequencies. Moreover,
single spatial-based data augmentation rarely improves model robustness of corruption types with
different frequency characteristics. Inspired by this phenomenon, we conjecture that the observation’s
Fourier statistics for the same RL task also vary across different environment distributions. In Fig. 2,
we visualize the observation’s spectrum magnitude of the the original environment as well as the
averaged delta between 4 shifted environment distributions on DeepMind Control suite [34]. The
shifted environments show distinct spectrum difference with the original environment, with each one
varying at different frequency regions. Knowing that a deep model often tends to bias on certain
frequency band [39], we hypothesis that the diverse spectrum pattern across environment distributions
is the key challenge of image-based RL generalization.

Based on the above analyses, we focus on the Frequency-based augmentation instead of the spatial-
based one by introducing a Spectrum Random Masking (SRM) regularization, as shown in Fig. 3.
Our proposed SRM can be easily compatible for most existing RL benchmarks. To prevent the
model from focusing on a certain frequency range on input images, SRM randomly discards partial
frequency of observations at training phase, and forces the policy to select the appropriate action
with remaining information. In this way, we can increase the robustness to different corruptions
(high, middle or low frequency characteristics) by considering the entire frequency distribution.
Specifically, an input observation is operated by three steps: (1) the Fast Fourier transformation (FFT),
(2) Spectrum random masking, and (3) the inverse Fourier transformation (IFFT), which enhances
the diversity of training observations while maintaining the main content.

To summarize, this paper has the following contributions: (1) We provide a new frequency perspective
for data augmentation in RL. In contrast to previous spatial-based methods, the proposed SRM are
performed consistently for task-agnostic RL environments and could deal with diverse distribution
by focusing on the whole frequency information. (2) The proposed SRM is a plug-and-play method
that does not require any extra parameters or any additional observations from the environment.
Moreover, it is complementary to existing data augmentation and regularization approaches. (3) We
conduct comprehensive experiments to demonstrate SRM could bring performance gains on various
image-based environments with high generalization potentials.

2 Background

Reinforcement learning. A RL problem is typically described as a Markov Decision Process (MDP)
M =< S,A,P,R, γ >, where S and A denotes the state space and action space respectively [33].
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Figure 2: Spectrum magnitude of the original environment observation E[∥F(O)∥] and the obser-
vation spectrum magnitude difference E[∥F(O −D(O))∥] of four shifted environments. F is the
2D Fourier transform and D is the environment shift function. Sample observation images for each
environment are placed on the left of corresponding spectrum map. A total of 500K frames on the
cartpole swingup task in DeepMind Control suite are used for calculation and the results are averaged.

P(st+1|st, at) is the state transition, R(st, at) is the reward function, and γ ∈ [0, 1) is the discount
factor. Here we consider a Partially Observable MDP (POMDP) [2]M =< O,A,P,R, γ > for
the continuous control task because S is often not directly obtained from raw images, where O is
the high-dimensional observation space of images. Following the convention [25], the POMDP is
converted into an MDP by stacking several consecutive environment frames {ot, ot−1, ot−2} into a
single state st ∈ O.

The goal of typical RL is to find an optimal policy π∗
θ which maximizes the expected cumulative

reward over the entire distribution of MDPs [33]:

J(π) =
∑
t

E(st,at)∼ρπ
[r(st, at)], (1)

where ρπ(st, at) is the state-action marginal of the trajectory distribution. In this work, rather than
learning an optimal policy on a single MDP, we consider a generalizable πθ, which is able to obtain
high discounted return on a set of MDPsM =< O,A,P,R, γ >, where the observations in O are
unseen in training.

Soft Actor-Critic. Soft Actor-Critic (SAC) [9, 10] is a popular off-policy method for continuous
control tasks. It learns a state-action value function Q(s, a) and a stochastic policy π(a|s) to find the
optimal policy based on the maximum entropy RL framework:

J(π) =
∑
t

E(st,at)∼ρπ
[r(st, at) + αH(π(·|st))], (2)

where α is the temperature parameter which determines the relative importance of the entropy term
against the reward. α = 0 degenerates SAC into conventional RL. H(·) provides a substantial
improvement in exploration and robustness by enabling the probability of action output to be diverse
as much as possible, rather than being concentrated on one action. Specially, Q(s, a) is approximated
by minimizing the soft Bellman residual:

JQ = E(st,at)∼D(Q(st, at)− (rt + γV (st+1)))
2, (3)

where D denotes the replay buffer, and V st+1 is the soft target value network approximated as:

V st+1 = Eat+1∼π[Q(st+1, at+1)− α log π(at+1|st+1)], (4)

where Q is the target Q function, and the weights can be an exponentially moving average of the
weights in Q. In the policy improvement step, the policy is updated by minimizing the divergence
between the policy and the exponential of the soft Q function:

Jπ = Est∼D

[
DKL(π(·|st)

∥∥∥exp(Q(st, ·))
Z(st)

)
]
. (5)

3 Methodology

3.1 Spectrum Random Masking

We firstly introduce how to generate new samples by spectrum random masking strategy in this
section. Suppose we have a grayscale image observation 2 oi ∈ RH×W , the Fourier domain spectrum

2For RGB images, we apply the same operation separately on each color channel.
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Figure 3: The framework and several examples of SRM. For three consecutive observations, SRM
is adopted as data augmentation respectively. There are three types of masking strategies including
directly erase, disturbed by noise or swapping. During training, the masking strategy, position and
ratio could be dynamic changed.

F(oi) can be calculated by fast Fourier transformation [26]:

F(oi)(u, v) = (

H−1∑
h=0

W−1∑
w=0

oi(h,w)e
−j2π(uh/H+vw/W )), (6)

where u ∈ [0, H − 1] and v ∈ [0,W − 1] are horizontal and vertical indexes of frequency domain
components, and oi(h,w) is the pixel value at position (h,w). Note the subscript i is just the index
of the sample and irrelevant with the time step. For better processing and visualization, we use the
shifted version of F(oi) with the lowest frequency component placed in the center of the spectrum.

After transforming images from spatial to frequency domain, we construct a binary masking matrix
M ∈ {0, 1}H×W . We introduce two radius parameters r1, r2 ∈ [0, 0.5] to control the position and
ratio of the spectral neighborhood to be masked3 (r1 < r2). As shown in Fig. 3, M is constructed
by setting the region in the annulus between two concentric circles (with radius r1 and r2) to 0.
∆r = r2 − r1 decides the size of mask regions. The area ratio of masking region is defined as
rp = r22 − r21 . Hence we propose 3 typical types of masking strategies: erasing, noise and swapping.
If the frequency component lies between r1 and r2, it will be masked; otherwise, the frequency
signals will be kept:

F̂(oi) = M · F(oi) + (1−M) · F(Z), (7)

where Z is calculated by the specific masking strategy. For the erasing strategy, we set Z to 0H×W ,
and only the non-masked frequency components will be fully explored in follow-up training. The
random noise strategy sets Z to a random noise image. The swapping strategy replaces the removed
frequency components with the same frequency components from another image I by setting Z = I,
which draws inspiration from Cutmix [43] and Mixup [47]. Considering that the third-party data I is
not always available, during training, we randomly shuffle the training batch and pick I = oj (j ̸= i)
from the shuffled batch, where oj has the same batch index with oi.

The masking strategy also influences the supervised signals since it is correlated with oi. Suppose
that ai, ri is the supervised signals for observation oi, where ai and ri stands for action and reward,
respectively. For erasing and random noise strategy, ai and ri are kept unchanged. For the swapping
strategy, the supervised signals depended on the area ratio of masking region rp. If rp < 0.5, we
keep ai and ri unchanged, else we replace ai, ri with aj and rj .

Once the masked Fourier spectrum F̂(oi)(u, v) is obtained, we inverse shift and restore it to the
spatial domain by the corresponding inverse Fourier transformation F−1:

ôi(h,w) =
1

HW

H−1∑
h=0

W−1∑
w=0

F̂(oi)(u, v)ej2π(uh/H+vw/W ). (8)

3Here we assume the diagonal length of the 2D Fourier spectrum is 1.0 to deal with different image sizes.
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Algorithm 1 Spectrum Random Masking
Input: Sample batch of transitions: {oi, ai, ri, o′i|i = 1, · · · ,K} ∼ B; Zero matrix 0 ∈ RH×W ;
Random noise image N ∈ RH×W ; Masking matrix M ∈ {0, 1}H×W .
Output: Augmented transitions {ôi, âi, r̂i, ô′i|i = 1, · · · ,K}
Init: r1 ← Rand(0, 0.5), r2 ← Rand(r1, 0.5),∆r = r2 − r1, rp = r22 − r21 .

1: for i = 1, · · · ,K do
2: Fast Fourier transformation according to Eq. 6: F(oi)← oi
3: if Masking strategies is ‘Erasing’ then
4: F̂(oi) = M · F(oi) + (1−M) · F(0), âi ← ai, r̂i ← ri
5: else if Masking strategies is ‘Noise’ then
6: F̂(oi) = M · F(oi) + (1−M) · F(N), âi ← ai, r̂i ← ri
7: else if Masking strategies is ‘Swapping’ then
8: Random Shuffle Batch: {oj , aj , rj , o′j |j = 1, · · · ,K}

F̂(oi) = M · F(oi) + (1−M) · F(oj)
9: if rp ≤ 0.5 then

10: âi ← ai, r̂i ← ri
11: else
12: âi ← aj , r̂i ← rj
13: end if
14: end if
15: Inverse Fourier transformation according to Eq. 8: ôi ← F̂(oi)
16: Execute Steps (2)∼(15) with o′i to get ô′i
17: end for

For observation oi, its next observation oi′ also goes through the same SRM operation as oi. Algo-
rithm 1 details how to generate new samples by SRM.

3.2 Reinforcement Learning with SRM

In off-policy RL, observations are sampled from a replay buffer. One intuitive way to use data
augmentation in RL is to perform augmentation before passing them to the agent for training [41, 19].
Meanwhile, the augmentation procedure on stacked consecutive state frames st = {ot, ot−1, ot−2}
should be consistent to keep temporal information (such as positions and velocities) invariant. Given
an augmentation function τ(·, v) with parameter v ∈ V , the augmented observation ŝt ∈ Ô of the
original observation st ∈ O can be obtained by ŝt = τ(st, v). Optimally, τ : O × V → Ô should
maintain Q-values and policy π of the agent:{

Q(st, at) = Q(τ(st, v), at),

π(at|st) = π(at|τ(st, v)),
(9)

where at ∈ A is the action of st. However, practically it is unstable to learn value and policy
functions even from the original observations, not to mention the augmented data that vary wildly in
appearances. As a result, only several weak data augmentations such as random shift and random
cropping could be employed in a plain way in RL optimization, as shown in DrQ [41] and RAD [19].
In contrast, strong data augmentations such as random convolution and rotation are always been
applied in a specific way. In SVEA [13], both original and augmented images are used to optimize
the Q-function, but only the former are adopted to compute Q-target of the Bellman equation. In
SECANT [7], expert policy with weak augmentations guides student policy with strong augmentations
for learning robust representations. Attractively, as we will show in the experiment section, SRM has
the merit of both weak and strong data augmentations: it can be plugged into any image-based RL
methods in a plain way, while providing significant performance improvement.

During training, we apply SRM with a probability of 0.5 on each batch of observations. No data
augmentation is applied at test time. To evaluate the effectiveness of SRM, we adopt two popular
methods DrQ [41] and SVEA [13] as our base algorithms. The former is a naive method where data
augmentations are plugged into RL algorithms directly, and the corresponding SAC objectives are
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Figure 4: Comparisons of SRM with five data augmentation and one regularization methods. The
average performance in the last column shows the generalization ability of SRM.

respectively replaced by:

JQ = E(st,at)∼D

[ (Q(st, at) +Q(ŝt, ât))

2
− (rt + γ

V (st+1) + V (ŝt+1)

2
)2
]
. (10)

The latter is delicately designed where Q-target is computed strictly from unaugmented data to
alleviate the problem of high-variance, and its goal is:

JQ = E(st,at)∼D

[ (Q(st, at) +Q(ŝt, ât))

2
− (rt + γV (st+1))

2
]
. (11)

By jointly solving the Q-function with policy and value network in Eqs. (4) and (5), the RL systems
has the potential to learn from diverse observations for policy learning.

4 Experiments

4.1 Task Setup and Evaluation Protocol

Environments We conduct our experiment on 5 tasks from DeepMind Control Suite (DMCon-
trol) [34], which offers a set of challenging continuous control tasks and has been widely used as a
common benchmark for visual RL [11, 1]. There are 2 kinds of observations in DMControl: state
vector-based and image-based, and the latter is used in our experiment. It has been evidenced that the
learning of state-based observations is easier than high dimensional image-based observations [18].
To evaluate the generalization, we train the agent from DMControl and report results tested on
DMControl Generalization Benchmark (DMControl-GB) [14], which includes four distinct test
distributions with slight/strong color/video attack: color-easy, color-hard, video-easy and video-hard..

Implementation Details For a fair comparison, we implement all methods following [13], where
the same hyperparameters and network architecture are adopted. We use a 11-layer feed-forward
convolution network as the shared encoder, which is followed by independent linear projections for
the actor and critic. During training, the masking ratio and position of SRM are randomly chosen, and
the ranges of r1 and ∆r are set as [0, 0.5] and [0, 0.05] for each batch of observations, respectively.
Note SRM is a data augmentation method and needs to combine with other learning baselines. To
validate the effectiveness, 3 state-of-the-art baselines are employed: DrQ [41], SVEA-C [13] and
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Table 1: Comparison with state-of-the-art methods on color-easy, color-hard, video-easy and video-
hard benchmarks. C and O denotes random convolution and overlay respectively. The best results are
in bold.

Color, CURL RAD PAD SODA-C SODA-O DrQ DrQ SVEA-C SVEA-C SVEA-O SVEA-O
Easy +SRM +SRM +SRM

walker, 645 636 687 - 811 826 912 758 941 868 910
walk ± 55 ± 33 ± 119 - ± 41 ± 10 ± 21 ± 72 ± 20 ± 18 ± 26

walker, 866 807 894 - 960 929 967 832 978 974 980
stand ± 46 ± 67 ± 39 - ± 4 ± 6 ± 3 ± 40 ± 4 ± 1 ± 1

cartpole, 668 763 812 - 859 852 878 865 871 862 867
swingup ± 74 ± 29 ± 20 - ± 15 ± 15 ± 1 ± 3 ± 4 ± 8 ± 7

ball_in_cup, 565 727 775 - 969 840 972 969 980 976 978
catch ± 168 ± 87 ± 159 - ± 3 ± 36 ± 4 ± 8 ± 1 ± 1 ± 2
finger, 781 789 870 - 915 861 947 904 961 963 976
spin ± 139 ± 160 ± 54 - ± 43 ± 55 ± 21 ± 40 ± 20 ± 12 ± 14

Average 705 744 808 - 903 876 935 866 946 929 942
± 96 ± 75 ± 78 - ± 21 ± 42 ± 10 ± 33 ± 10 ± 8 ± 10

Color, CURL RAD PAD SODA-C SODA-O DrQ DrQ SVEA-C SVEA-C SVEA-O SVEA-O
Hard +SRM +SRM +SRM

walker, 445 400 468 697 692 520 806 760 907 749 836
walk ± 99 ± 61 ± 47 ± 66 ± 68 ± 91 ± 88 ± 145 ± 36 ± 61 ± 27

walker, 662 644 797 930 893 770 874 942 966 933 965
stand ± 54 ± 88 ± 46 ± 12 ± 12 ± 71 ± 14 ± 26 ± 11 ± 24 ± 13

cartpole, 454 590 630 831 805 586 802 837 863 832 833
swingup ± 110 ± 53 ± 63 ± 21 ± 28 ± 52 ± 28 ± 23 ± 15 ± 23 ± 24

ball_in_cup, 231 541 563 892 949 365 796 961 966 959 948
catch ± 92 ± 29 ± 50 ± 37 ± 19 ± 210 ± 36 ± 7 ± 12 ± 5 ± 27
finger, 691 667 803 901 793 776 889 977 974 972 971
spin ± 12 ± 154 ± 72 ± 51 ± 128 ± 134 ± 22 ± 5 ± 63 ± 6 ± 33

Average 497 568 652 850 826 603 833 895 935 889 911
± 73 ± 77 ± 56 ± 37 ± 51 ± 112 ± 38 ± 41 ± 27 ± 24 ± 25

Video CURL RAD PAD SODA-C SODA-O DrQ DrQ SVEA-C SVEA-C SVEA-O SVEA-O
Easy +SRM +SRM +SRM

walker, 556 606 717 635 768 682 823 618 836 819 854
walk ± 133 ± 63 ± 79 ± 48 ± 38 ± 89 ± 32 ± 144 ± 40 ± 71 ± 42

walker, 852 745 935 903 955 873 947 795 932 961 966
stand ± 75 ± 146 ± 20 ± 56 ± 13 ± 83 ± 9 ± 70 ± 10 ± 8 ± 42

cartpole, 404 373 521 474 758 485 740 606 808 782 812
swingup ± 67 ± 72 ± 76 ± 143 ± 62 ± 105 ± 24 ± 85 ± 21 ± 27 ± 16

ball_in_cup, 316 481 436 539 875 318 651 659 882 871 924
catch ± 119 ± 26 ± 55 ± 111 ± 56 ± 157 ± 19 ± 110 ± 100 ± 106 ± 35
finger, 502 400 691 363 695 533 607 764 816 808 925
spin ± 19 ± 64 ± 80 ± 185 ± 97 ± 119 ± 92 ± 86 ± 93 ± 33 ± 4

Average 526 521 660 583 810 578 754 688 855 848 896
± 83 ± 74 ± 62 ± 109 ± 53 ± 111 ± 35 ± 99 ± 53 ± 49 ± 28

Video CURL RAD PAD SODA-C SODA-O DrQ DrQ SVEA-C SVEA-C SVEA-O SVEA-O
Hard +SRM +SRM +SRM

walker, 58 56 93 - 381 104 225 224 364 377 535
walk ± 18 ± 9 ± 29 - ± 72 ± 22 ± 29 ±7 ± 63 ± 93 ± 35

walker, 45 231 278 - 771 289 325 525 729 834 863
stand ± 5 ± 39 ± 72 - ± 83 ± 49 ± 70 ±39 ± 29 ± 46 ± 57

cartpole, 114 110 123 - 492 138 254 213 425 393 523
swingup ± 15 ± 16 ± 24 - ± 64 ± 9 ± 58 ±26 ± 5 ± 45 ± 23

ball_in_cup, 115 97 66 - 327 92 237 413 339 403 566
catch ± 33 ± 29 ± 61 - ± 100 ± 23 ± 6 ±57 ± 17 ± 174 ± 135
finger, 27 34 56 - 302 71 92 430 335 335 419
spin ± 21 ± 11 ± 18 - ± 41 ± 45 ± 36 ±44 ± 21 ± 58 ± 32

Average 72 106 123 - 455 139 227 361 438 468 581
± 18 ± 21 ± 41 - ± 72 ± 30 ± 40 ±35 ± 27 ± 83 ± 56

SVEA-O [13], denoted as “DrQ+SRM”, “SVEA-C+SRM” and “SVEA-O+SRM” respectively. O
and C represent random convolution and random overlay respectively, which are set as the default
augmentation used in SVEA [13]. For DrQ, SVEA-C and SVEA-O, the better performances between
the reported ones of the original paper and our re-run ones using the source codes are reported in our
experiment. We provide 3 candidate masking strategies erasing, noise and swapping in Algorithm 1,
all of them can achieve higher performance than baseline as shown in Table 5 . Since erasing performs
better than others, it is chosen as the default masking strategy in the following experiments if not
otherwise mentioned. All methods are trained for 500K frames. We run 5 times with random seeds
and report the averaged results.
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Figure 5: The results of different masking strategies. Either way, disturbed in frequency domain is a
useful way to improvement performance.

4.2 Comparisons

Comparisons with state-of-the-arts The comparisons are exhibited in Table 1. For the direct
comparison, “DrQ+SRM”, “SVEA-C+SRM” and “SVEA-O+SRM” outperform DrQ, SVEA-C and
SVEA-O with a clear margin, respectively. In addition, the usage of SRM reduces the standard
deviation and shows the strong leaning stability. It indicates that performing augmentation in the
frequency domain is effective for image-based RL tasks. In addition, the performance of other
methods such as CURL [18], PAD [12], RAD [19] and SODA [14] are also reported. Since our
method is implemented with different learning baselines with them, the results are just provided for
reference. Overall, it is evident that SRM provides new state-of-the-art performance for the task.

Comparisons with spatial-based data augmentation Here we compare SRM with 5 spatial-based
data augmentation methods and 1 removal regularization strategy, including random convolution [20],
random rotation [8], random cutout [5], random flip [19] and dropout [31]. DrQ is employed as the
baseline learning method. When utilizing each data augmentation method, 50% of frames are remain
un-augmented. This is because we find that directly using all kinds of data augmentation is harmful
to policy stability. The dropout layer is added after every nonlinearity layer in the MLP of actor and
critic networks and the dropout probability is set to 0.1.

Since the video hard task is extremely hard and the learning of DrQ is oscillating, we show learning
curves of the different data augmentations in the benchmarks of color-easy, color-hard and video-easy.
As shown in Fig. 4, the spatial data augmentation methods are less effective and even degrade perfor-
mance, especially for flip and rotation. The reason is that these augmentations inevitably changes
the environment dynamics, leading to inaccurate state transitions. In contrast, SRM outperforms the
baseline in most scenarios and achieve comparable results in the rest scenarios. It demonstrates that
the generalization ability of frequency based SRM is stronger than its spatial-based counterparts. Note
that the “random cov” performs well on color hard and is less effective than SRM in other situations.
The reason is that applying random convolution mainly changes the low frequency components (i.e.,
colors and textures) of an image, which makes the agent robust to color changes. However, when
facing environments that differs significantly on higher frequency components, random convolution
becomes less effective. Compared with “random cov”, SRM works more generally to different
scenarios.

Fig. 4 also tells that, although the removal based methods dropout and cutout has been proved to be
able to improve generalization for discriminative models, they decrease the performance of RL tasks.
For cutout, randomly cutting a region of an input image is prone to information loss, especially when
the target region (e.g., the cartpole in cartpole swingup task) is removed. The performance decrease
of dropout can be attributed to the chaotic nature of the RL training when facing with random dropped
hidden units. In contrast, each frequency component in the Fourier spectrum has the global vision of
the whole image, thus SRM does not remove critical image regions. Meanwhile, as an augmentation
method, SRM also does not influence hidden units of networks.
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Figure 6: The influence of masking position. Masking frequency on a random band is better than on
a fixed band.
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Figure 7: The influence of masking ratio. Masking frequency within a random ratio is better than
within a fixed ratio.

4.3 Ablation Study

Spectrum Masking Strategies There are four different frequency masking strategies including
erasing, noise, swapping and a mixture of the first three. As shown in Fig. 5, we study the choice
of masking value on the performance of RL and have the following observations: First, all of these
masking strategies are able to improve the average performance. This benefits from the mechanism of
random masking which attempt to strengthen the whole frequency learning while suppress overfitting
to certain frequency range. This also demonstrates that the agent may underfit to certain frequency
range and overfit to other range when directly training with original observations. Second, with the
increasing complexity of frequency disturbance, the performance of mixture is sometimes much
worse than solely using erasing or swapping. This phenomenon can be attributed to introduce more
variance by mixture.

Spectrum Masking Position To explore how the low and high frequency affect policy training, we
set r1 to 0.1, 0.2, 0.3, 0.4 respectively, and ∆r to 0.1. According to Frequency Principle (F-Principle),
DNN tends to captures the frequency from low to high components in ascending complexity order.
This is consistent with our results as shown in Fig. 6. At the early training stage, masking low
frequency lead to slower improvement, while masking high frequency leads to a similar improvement
with the non-SRM baseline. In the later period, remaining high frequency is able to achieve higher
results than remaining low frequency. Moreover, SRM could get the best results in most benchmarks
than fixed masking position. It demonstrates that learning frequency from low to high uniformly in a
random way is beneficial.

Spectrum Masking Ratio To better control the masking ratio, we set△r to 0.05, 0.1,0.2,0.3 and 0.4
respectively. The results are shown in Fig. 7. Notably, SRM with random masking ratio consistently
outperforms the DrQ baseline under all parameters setting, especially for harder environment. In
addition, we can observe that masking ratio has little influence on original environment, which can be
attributed to the remaining of a decent percentage of un-augmented frames.

5 Related works

Generalization in RL draws increasing attention in recent years. Existing methods can be roughly
categorized into two groups: (1) increasing distribution similarity between training and testing
environments by augmentation methods (such as data augmentation and environment generation) [16,
20, 41, 18, 19, 14, 28] and (2) handling differences between the training and testing MDPs (such
as regularisation) [15, 22, 45, 46, 6, 1, 21, 36, 23, 29, 37]. Our method belongs to the first group
but works in the frequency domain, which is ignored by most current RL methods. To explain
the generalization behaviors of CNN, recent works in computer vision also provide new insights
from the frequency domain aspect [39, 35, 42, 40, 38, 3]. However, they mainly consider the
domain shift between fixed datasets on discrimination tasks (e.g., classification and segmentation). In
contrast, we consider the dynamic environment in RL as well as the joint representation learning and
dedecision-making process. Moreover, CNN tendssince CNN tends to rely on either low frequency
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or high frequency components for fixed tasks during training [39], existing methods rarely consider
regularizing the model on all frequency ranges. Differently, our method considers the broad frequency
difference between different RL environment distributions and regularizes the model on all frequency
ranges uniformly.

6 Conclusions

In this work, we investigated the generalization of image-based RL from a frequency domain
perspective. Motivated by the distinct spectral impacts of different environment distribution shifts, we
develop Spectrum Random Masking (SRM), a simple yet effective frequency domain augmentation
methodwhich randomly discards certain frequency bands of the observation. Experimental results
show that SRM improves model robustness under various distribution shifts without violating the
environment dynamics. The effectiveness of SRM highlights a promising future research direction
for researchers to take into account the frequency domain intrinsic mechanism of RL models. As
RL tasks are essentially different from conventional computer vision tasks (e.g., image recognition),
we believe that different conclusions will be made to provide further intuition and benefit the model
performance.

Limitations: As an image-based augmentation method, our proposed SRM resort to enhancing the
diversity of image-base observations while maintaining the crucial reward-related content, which
facing challenges when image observations are incomplete or only state information can be observed.
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