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Abstract

We develop a variant of the Monteiro-Svaiter (MS) acceleration framework that
removes the need to solve an expensive implicit equation at every iteration. Con-
sequently, for any p � 2 we improve the complexity of convex optimization with
Lipschitz pth derivative by a logarithmic factor, matching a lower bound. We
also introduce an MS subproblem solver that requires no knowledge of problem
parameters, and implement it as either a second- or first-order method via exact
linear system solution or MinRes, respectively. On logistic regression our method
outperforms previous second-order acceleration schemes, but under-performs New-
ton’s method; simply iterating our first-order adaptive subproblem solver performs
comparably to L-BFGS.

1 Introduction

We consider the problem of minimizing a convex function f : X ! R over closed convex set
X ✓ Rd, given access to an oracle O : X ! X that minimizes a local model of f around a given
query point. A key motivating example of such an oracle is the cubic-regularized Newton step

Ocr(y) = argmin
x2X

⇢
f(y) +rf(y)>(x� y) +

1

2
(x� y)>r2f(y)(x� y) +

M

6
kx� yk3

�
, (1)

i.e., minimizing the second-order Taylor approximation of f around y plus a cubic regularization
term. However, our results apply to additional oracles including a simple gradient step, regularized
higher-order Taylor expansions [5, 19, 7, 23, 8, 35, 21, 41, 36, 26], ball-constrained optimization [12],
and new adaptive oracles that we develop.

Seminal work by Monteiro and Svaiter [32] (MS) shows how to accelerate the basic oracle iteration
xt+1 = O(xt). Their algorithm is based on the fact that many oracles, including Ocr, implicitly
approximate proximal points. That is, for every y and x = O(y), there exists �x,y > 0 such
that x ⇡ argmin

x02X
�
f(x0) + 1

2�x,ykx0
� yk2

 
, with the approximation error controlled by

a specific condition they define. MS prove that, under this condition, the accelerated proximal
point method [22, 40] (with dynamic regularization parameter) maintains its rate of convergence.
Applying their framework to Ocr and assuming r2f is Lipschitz, they achieve error bounds that
decay as O(t�7/2 log t) after t oracle calls, improving the O(t�2) rate of the basic Ocr iteration [37]
and the O(t�3) rate of an earlier accelerated method [33]. Subsequent works apply variations of
the MS framework to different oracles, obtaining improved theoretical guarantees for functions
with continuous higher-order derivatives [19, 7, 23, 41, 2], parallel optimization [6], logistic and
`1 regression [8, 12], minimizing functions with Hölder continuous higher derivatives [41], and
distributionally-robust optimization [13, 11].

However, all of these algorithms based on the MS framework share a common drawback: the iterate
yt used to produce xt+1 = O(yt) depends on the proximal parameter �t+1 = �xt+1,yt , which itself
depends on both xt+1 and yt. This circular dependence necessitates solving an implicit equation for
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�t+1; MS (and many subsequent results based upon it) propose bisection procedures for doing so
using a number of oracle calls logarithmic in the problem parameters. From a theoretical perspective,
the additional bisection complexity introduces a logarithmic gap between the upper bounds due to
MS-based algorithms and the best known lower bounds [3, 21] in a number of settings.

From a practical perspective, the use of bisection in the MS framework is undesirable as it potentially
discards the optimization progress made by oracle calls during each bisection. In his textbook,
Nesterov [34, §4.3.3] argues that the logarithmic cost of bisection likely renders the MS scheme for
accelerating Ocr inferior in practice to algorithms whose error decays at the asymptotically worse rate
O(t�3) but do not require bisection; he notes that removing the bisection from the MS algorithm is an
“open and challenging question in Optimization Theory.” Carmon et al. [13] also point out bisection as
one of the main hurdles in making their theoretical scheme practical, while Song et al. [41] note this
limitation and propose a heuristic alternative to bisection. (See Appendix A for extended discussion
of related work, including a concurrent and independent result by Kovalev and Gasnikov [27].)

1.1 Our contributions

We settle this open question, providing a variant of MS acceleration that does not require bisection
(Section 2). When combined with certain existing MS oracles (Section 3.1), our algorithm obtains
complexity bounds that are optimal up to constant factors, improving over prior art by a logarithmic
factor (see Table 1). In addition, our algorithm has no parameters sensitive to tuning.

We then go a step further and (in Section 3.2) develop an adaptive alternative to Ocr (Equation (1)).
Our oracle does not require tuning the parameter M , which in theory should be proportional to
the (difficult to estimate) Lipschitz constant of r2f . Using our oracle, we obtain the optimal
Hessian evaluation complexity O(t�(4+3⌫)/2) for functions with order-⌫ Hölder Hessian (Lipschitz
Hessian is the ⌫ = 1 special case), without requiring any knowledge of the Hölder constant and
order ⌫. Our oracle is also efficient: while existing complexity bounds for computing Ocr require
a logarithmic number of linear system solutions per call, our oracle requires a double-logarithmic
number. Moreover, when used with our acceleration method, the number of linear system solves per
iteration is essentially constant.

We also provide a first-order implementation of our adaptive oracle (Section 3.3). It approximately
solves linear systems via first-order operations (Hessian-vector products) using MinRes/Conjugate
Residuals [42, 18] with a simple, adaptive, stopping criterion lifted directly from our analysis. Our
oracle attains the optimal first-order evaluation complexity for smooth functions up to an additive
logarithmic term, without knowledge of the gradient Lipschitz constant or any parameter tuning.
Moreover, it maintains an optimal outer iteration complexity for Hölder Hessian of any order.

Finally, we report empirical results (Section 4).3 On logistic regression problems, combining our
optimal acceleration scheme with our adaptive oracle outperforms previously proposed acceler-
ated second-order methods. However, we also show that (while somewhat helpful for Ocr with
a conservative choice of H), adding momentum to well-tuned or adaptive second-order methods
is harmful in logistic regression: simply iterating our oracle—or, better yet, applying Newton’s
method—dramatically outperforms all “accelerated” algorithms. This important fact seems to have
gone unobserved in the literature on accelerated second-order methods, despite logistic regression ap-
pearing in many related experiments [41, 16, 30, 24]. Simply iterating our adaptive oracle outperforms
the classical accelerated gradient descent, and performs comparably to L-BFGS.

1.2 Limitations and outlook

While our algorithms resolve an enduring theoretical open problem in convex optimization, and are
free of sensitive parameters that typically hinder theoretically-optimal methods, practical performance
remains a limitation. On logistic regression, Newton’s method is remarkably fast, and our acceleration
scheme does not seem to help our adaptive oracle. We do not fully understand why this is so, but
we suspect that it has to do with additional structure in logistic regression, which Newton’s method
can automatically exploit but momentum cannot. We believe that future research should identify the
structure that makes Newton’s method so efficient, and modifying momentum schemes to leverage it.

3The code for our experiments is available at https://github.com/danielle-hausler/ms-optimal.
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Scalability is another important limitation. While our first-order oracle significantly improves
scalability over the second-order oracle from which it is built, it still relies on exact gradient and
Hessian-vector products. Therefore, it will have difficulty scaling up to very large datasets. Never-
theless, we hope that further scalability improvements may be possible by building an oracle that
utilizes cheap stochastic gradient estimates instead of exact gradients, bringing with it the exciting
prospect of a new and powerful adaptive stochastic gradient method. The alternative, probabilistic
approximation condition we propose in Appendix C might be helpful in this regard.

2 Removing bisection from the Monteiro-Svaiter framework

Algorithm 1: Optimal MS Acceleration
Input: Initial x0, function f , oracle O

Parameters: Initial �0
0, multiplicative

adjustment factor ↵ > 1
1 Set v0 = x0, A0 = 0
2 x̃1,�1 = O(x0;�0

0) , �0
1 = �1

3 for t = 0, 1, . . . , do
4 a0

t+1 = 1
2�0

t+1

�
1 +

p
1 + 4�0

t+1At

�

5 A0
t+1 = At + a0

t+1

6 yt =
At

A
0
t+1

xt +
a
0
t+1

A
0
t+1

vt

7 if t > 0 then x̃t+1,�t+1 = O(yt;�0
t+1)

8 if �t+1  �0
t+1 then

9 at+1 = a0
t+1, At+1 = A0

t+1

10 xt+1 = x̃t+1

11 �0
t+2 = 1

↵
�0
t+1

12 else
13 �t+1 =

�
0
t+1

�t+1

14 at+1 = �t+1a0t+1, At+1 = At + at+1

15 xt+1 = (1��t+1)At

At+1
xt +

�t+1A
0
t+1

At+1
x̃t+1

16 �0
t+2 = ↵�0

t+1

17 vt+1 = vt � at+1rf(x̃t+1)

Algorithm 0: MS Acceleration
Input: Initial x0, function f , oracle O

Parameters: Bisection limits �`, �h,
and tolerance ⇢ > 1

1 Set v0 = x0, A0 = 0
2 for t = 0, 1, . . . , do
3 �`

t+1,�
h

t+1 = �`,�h

4 �0
t+1 =

�
`
t+1+�

h
t+1

2

5 a0
t+1 = 1

2�0
t+1

�
1 +

p
1 + 4�0

t+1At

�

6 A0
t+1 = At + a0

t+1

7 yt =
At

A
0
t+1

xt +
a
0
t+1

A
0
t+1

vt

8 x̃t+1,�t+1 = O(yt;�0
t+1)

9 if �t+1 2 [ 1
⇢
�0
t+1,�

0
t+1] then

10 at+1 = a0
t+1, At+1 = A0

t+1

11 xt+1 = x̃t+1

12 else if �t+1 < 1
⇢
�0
t+1 then

13 �h

t+1 = �0
t+1

14 Go to line 4
15 else
16 �l

t+1 = �0
t+1

17 Go to line 4
18 vt+1 = vt � at+1rf(x̃t+1)

In this section we present our acceleration algorithm (Algorithm 1) which removes bisection from the
MS method (shown in stylized form as Algorithm 0) and thereby attains optimal rates of convergence.
For simplicity, in this section and the next we focus on unconstrained optimization (X = Rd) and
assume that f is continuously differentiable, so that rf exists. In Appendix C we extend our
framework to general closed and convex domains and non-differentiable convex objectives.

The key object in both the original MS algorithm and our new variant is an oracle O that approximately
minimizes a local model of f at a query point y. In particular, O satisfies the following approximation
error bound, adapted from Monteiro and Svaiter [32, eq. (3.3)] (� in [32] is 1/� in our notation).

Definition 1 (MS oracle). An oracle O : Rd
⇥ R+ ! Rd

⇥ R+ is a �-MS oracle for function
f : Rd

! R if for every y 2 Rd and �0 > 0, the points (x,�) = O(y;�0) satisfy
��x�

�
y � 1

�
rf(x)

���  �kx� yk. (2)

Definition 1 endows the oracle with an additional output � and an additional input �0. The value
of � has the following simple interpretation: any point x satisfying (2) approximately minimizes
F (x0) = f(x0) + �

2 kx
0
� yk2 in the sense that krF (x)k  ��kx� yk. In particular, computing an

exact proximal point x� = argmin
x0 F (x0) and outputting (x,�) implements a 0-MS oracle. The

input �0 is optional: oracle implementations in prior work do not require it, but our new adaptive
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oracles (described in the next section) use it for improved efficiency. In Appendix C we provide a
slightly more general approximation condition for MS oracles that handles non-smooth objectives
and bounded domains, as well as a different, stochastic condition similar to that of [4, 11].

Let us discuss the key differences between our algorithm (Algorithm 1) and the stylized MS algorithm
(Algorithm 0). At every iteration, Algorithm 0 searches for a value �0

t+1 such that x̃t+1,�t+1 =
O(yt;�0

t+1) satisfies �t+1 ⇡ �0
t+1 (note that yt depends on �0

t+1). This is done via a bisection
procedure iteratively shrinking an interval that contains a successful choice of �0

t+1.4 This bisection
process is inefficient in the sense that every time we reach lines 14 and 17 (highlighted in red) all of
the optimization progress made by the last oracle call is discarded.

In contrast, even though our algorithm queries O in the same way (with yt computed based on a guess
�0
t+1), it makes use of the oracle output even if �t+1 is very far from �0

t+1, thus never discarding
progress made by the oracle. Instead of performing a bisection, we compare �0

t+1 and �t+1 to guide
our next guess �0

t+2. When �0 overshoots �, we decrease it by a factor ↵ (line 11, highlighted in
green) and set xt and At as in Algorithm 0. When it undershoots, we multiply it by ↵ (line 16).
In this case, we perform an additional key algorithmic modification which we call the momentum
damping mechanism: we scale down the growth of the parameter At+1 and replace the next iterate
with a convex combination of xt and x̃t+1 to ensure that our overly optimistic guess for �t+1 does
not destabilize the algorithm.5 In Appendix E.6 we demonstrate empirically that this mechanism is
important for stabilizing Algorithm 1.

Different MS oracles attain different rates of convergence when accelerated via the MS framework.
In the following definition, we distill a key property that determines this rate.
Definition 2 (Movement bound). For s � 1, c,� > 0, and x, y 2 Rd we say that (x, y,�) satisfy a
(s, c)-movement bound if

kx� yk �

⇢
(�/cs)1/(s�1) s <1
1/c s =1 ,

(3)

where a (1, c)-movement bound simply means that �  c.

In the next section, we will show how to build MS oracles that, given query y, output (x,�) such that
(x, y,�) always satisfy a (s, c)-movement bound, for certain s and c depending on the oracle type
and function structure (e.g., level of smoothness). For example, when f has H-Lipschitz Hessian, the
cubic-regularized Newton step with M = 2H is a 1

2 -MS oracle that guarantees a (2,
p
H)-movement

bound. With the necessary definitions in hand, we are ready to state our main result: the iteration
(and MS oracle query) complexity of Algorithm 1.
Theorem 1. Let f : Rd

! R be convex and differentiable, and consider Algorithm 1 with parameters
↵ > 1, �0 > 0, and a �-MS oracle (Definition 1) for f with � 2 [0, 0.99). Let s � 1 and c > 0, and
suppose that for all t such that �t > �0

t
or t = 1, the iterates (x̃t, yt�1,�t) satisfy a (s, c)-movement

bound (Definition 2). There exist C↵,s = O
⇣

s

min{s,ln↵}↵
s+1
3s+1

⌘
and K↵ = O

�
1

ln↵
↵1/3

�
such that6

for any x? 2 Rd and ✏ > 0, we have f(xT )� f(x?)  ✏ when

T �

8
><

>:

C↵,s ·

⇣
c
skx0�x?ks+1

✏

⌘ 2
3s+1

s <1

K↵ · (ckx0 � x?k)
2
3 log �1kx0�x?k2

✏
s =1.

Proof sketch. The remainder of this section is an overview of the proof of Theorem 1, which we
provide in full in Appendix B. To simplify this proof sketch, we treat ↵, c, and 1/(1� �) as O(1),

4Algorithm 0 simplifies the bisection routine of Monteiro and Svaiter [32] and implicitly assumes that an
initial interval [�`

,�
h] always contains a valid solution. One can guarantee such an interval exists by selecting

very small �` and very large �
h. Alternatively, one may construct a valid initial interval via a bracketing

procedure, as we do in the empirical comparison. Either way, the cost is logarithmic in problem parameters.
5It is also possible to set xt+1 = argminx2{x̃t+1,xt} f(x) instead of the convex combination in line 15 and

maintain our theoretical guarantees.
6For a fixed s � 1, the value of ↵ minimizing our complexity bound is ↵? = e

3s+1
s+1 . In practice, performance

is not sensitive to the choice of ↵ (see Appendix E.3).
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and focus on s <1. To highlight the novel aspects of the proof, let us first briefly recall the analysis
of Algorithm 0 [32, 19, 7, 23, 12]. For every t  T let

Et := f(xt)� f(x?) , Dt :=
1

2
kvt � x?k

2 and Mt =
1

2
kx̃t � yt�1k

2.

The key facts about the standard MS iterations are

ET 
D0

AT

,
X

t2[T ]

�tAtMt  O(D0) and
p
AT � ⌦(1)

X

t2[T ]

1p
�0
t

. (4)

The first fact implies that the optimality gap at iteration T is inversely proportional to AT , while the
latter two facts imply that AT grows rapidly. More specifically, substituting the movement bound
Mt � ⌦

�
(�t)2/(s�1)

�
and �0

t
� ⌦(�t) (thanks to the bisection) yields

P
t2[T ] �

0
t

s+1
s�1At = O(D0).

Combining this with the third fact in (4) and using the reverse Hölder inequality allows one to
conclude that, for k = s+1

3s+1 and k0 = s�1
3s+1 , we have Ak

T
� ⌦(D�k

0

0 )
P

t2[T ] A
k
0

i
, which, upon

further algebraic manipulation, yields AT � ⌦(T (3s+1)/2D�(s�1)/2
0 ). Plugging this back to to the

first fact in (4) gives the claimed convergence rate.

Having described the standard MS analysis, we move on to our algorithm. Our first challenge is
re-establishing the facts (4). The difficult case is �t > �0

t
, where the standard cancellation that occurs

in the MS analysis may fail. This is where the momentum damping mechanism (lines 14 and 15 of
our algorithm) comes into play, allowing us to show that (See Proposition 1 in the appendix)

ET 
D0

AT

,
X

t2S>
T [{1}

�0
t
AtMt  O(D0) and

p
AT � ⌦(1)

X

t2S
T

1p
�0
t

, (5)

where S
�
T

:= {t 2 [T ] | �t � �0
t
} and S

>

T
, S

T
, S<

T
and S

=
T

are analogously defined.

Comparing (4) and (5), the price of removing the bisection becomes evident: at each iteration
(except the first) only one of the terms forcing the growth of At receives a contribution. The second
challenge of our proof is establishing a lower bound on

p
AT in terms of the 1/

p
�0
t

values for
t 2 S

>

T
[ {1}, where the movement bound holds for Mt. This is where the multiplicative �0 update

rule (lines 11 and 16 of the algorithm) comes into play: it allows us to “credit” the contribution of
every “down iterate” (in S


T

) to an adjacent “up” iterate (S>

T
[ {1}) and furthermore argue that the

contribution gets an exponential bonus based on the distance between the two. Consequently, we
are able to identify a set QT ✓ S

>

T
[ {1} of iterates, and a sequence {rt} such that (see Lemma 1)

p
AT � ⌦(1)

P
t2QT

q
↵rt�1

�
0
t

and
P

t2[T ] rt =
T�1
2 .

Repeating the reverse Hölder argument of prior work, we obtain the recursive bound

Ak

T
� ⌦(D�k

0

0 )
X

t2QT

Ak
0

t
↵krt � ⌦(D�k

0

0 )
X

t2QT

Ak
0

t
rt (6)

with k = s+1
3s+1 and k0 = s�1

3s+1 as before. The final challenge of our proof is to show that such
recursion implies sufficient growth of At. This is where careful algebra comes into play; we show that
(6) implies that AT � ⌦

⇣
(
P

t2[T ] rt)
(3s+1)/2D�(s�1)/2

0

⌘
(see Lemmas 3 and 4) which establishes

our result since
P

t2[T ] rt =
T�1
2 .

3 MS oracle implementations

In this section we describe several oracles that satisfy both Definition 1 (the MS condition) and
Definition 2 (movement bounds) and may therefore be used by Algorithm 1. Section 3.1 briefly
reviews oracles that have appeared in prior work, while Section 3.2 and Section 3.3 describe our new
adaptive oracle implementations. We summarize the key oracle properties and resulting complexity
bounds in Table 1.

3.1 Oracles from prior work

Here we consider several previously-studied oracles of the form (x,�) = O(y), where we omit the
second argument �0 since prior work does not leverage it to improve implementation efficiency.
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Assumption Oracle Complexity with Algorithm 1 Lower bound

r
pf is (1, ⌫)-Hölder ⇤

Op,⌫-reg O
⇣
✏�

2
3(p+⌫)�2

⌘
evals of rpf ⌦

⇣
✏�

2
3(p+⌫)�2

⌘
[3, 21]

r
3f is 1-Lipschitz O3-reg-so O

⇣
✏�

1
5

⌘
Hessian evals ⌦

⇣
✏�

1
5

⌘
[3, 21]

N/A Or-ball O
⇣
r�

2
3 log 1

✏

⌘
oracle calls ⌦

⇣
r�

2
3

⌘
[12]

Stable Hessian Or-BaCoN O
⇣
r�

2
3 log 1

✏

⌘
Hessian evals -

r
2f is (1, ⌫)-Hölder †

OaMSN
(Alg. 2)

O
⇣
✏�

2
4+3⌫

⌘
Hessian evals ⌦

⇣
✏�

2
4+3⌫

⌘
[3, 21]

O
⇣
✏�

2
4+3⌫

⌘
+ eO(1) linear systems -

rf is `-Lipschitz and
r

2f is (1, ⌫)-Hölder †
OaMSN-fo
(Alg. 3)

O
⇣
( ✏
`
)�

1
2

⌘
+ eO(1) first-order evals ⌦

⇣
( ✏
`
)�

1
2

⌘
[34]

O
⇣
min

n
( ✏
`
)�

1
2 , ✏�

2
4+3⌫

o⌘
iterations -

Table 1. Complexity bounds for finding x such that f(x)�f(x?)  ✏ assuming kx�x?k  1, attained
by MS oracles from the literature (top 4 rows, described in Section 3.1) and oracles we develop (bottom
two rows). In all cases we improve on prior work by a logarithmic factor. ⇤We require p+ ⌫ � 2. †Our
adaptive oracles do not require knowledge of continuity constants or even the Hölder order ⌫ 2 [0, 1].

Gradient descent step [e.g., 34]. As a gentle start, consider the oracle Ogd(y) = (y� ⌘rf(y), 1
⌘
),

i.e., an oracle that returns x by taking standard gradient step with size ⌘ and � = 1/⌘. Obviously, the
oracle always satisfies a (1, ⌘�1)-movement bound. Moreover, if we assume that rf is L-Lipschitz,
then kx� (y � 1

�
rf(x))k = ⌘krf(x)�rf(y)k  ⌘Lkx� yk. Therefore, when ⌘�1

� L/� the
oracle is a �-MS oracle.

Taylor descent step [5, 35, 19, 7, 23, 41]. Generalizing both Ogd and the cubic-regularized Newton
step oracle Ocr, we define for every integer p � 1 and ⌫ 2 [0, 1] the oracle Op,⌫-reg, that, for
parameter C and input y returns (x,�) = Op,⌫-reg(y) where

x = argmin
x02Rd

⇢
f̃p(x

0; y) +
M

p!(p+ ⌫)
kx0
� ykp+⌫

�
, � =

M

p!
kx� ykp+⌫�2 (7)

and f̃p(x; y) :=
P

p

i=0
1
i!r

if(y)[(x � y)⌦i] is the Taylor expansion of f around y evaluated at
x. Oracles Ogd and Ocr correspond to the special cases O1,1-reg (with ⌘ = M�1) and O2,1-reg,
respectively. Clearly, by definition, the oracle always satisfies a (p + ⌫ � 1, (M/p!)1/(p+⌫�1))-
movement bound. Moreover, it is easy to show that

����x�
✓
y �

1

�
rf(x)

◆���� =
1

�
krf(x)�rf̃p(x; y)k =

p!

M

krf(x)�rf̃p(x; y)k

kx� ykp+⌫�2
.

For any p � 1 and ⌫ 2 [0, 1] we say that

r
pf is (H, ⌫)-Hölder if for all x, y we have krpf(x)�rpf(y)kop  Hkx� yk⌫ .

(An (H, 1)-Hölder derivative is H-Lipschitz.) If rpf is (H, ⌫)-Hölder, Taylor’s theorem gives
krf(x)�rf̃p(x; y)k 

H

p! kx�yk
p+⌫�1 [41, Lemma 2.5], and so kx�(y� 1

�
rf(x))k  H

M
kx�yk.

Therefore, when M � H/� the oracle is a �-MS oracle.

Exploiting third-order smoothness with a second order oracle [36, 26]. For p > 2, comput-
ing Op,⌫-reg is typically intractable due to the need to compute the high-order derivative tensors
r

3f(y),r4f(y), . . . ,rpf(y). Nevertheless for p = 3 Nesterov [36] designs an approximate solver
for (7), which we denote O3-reg-so, using only r2f(y) and a logarithmic number of gradient eval-
uations. When r3f is (L3, 1)-Hölder, [36] shows that O3-reg-so is a valid MS-oracle satisfying a
(3, O(L3))-movement bound, on par with the movement bound of O3,1-reg.
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Exact ball optimization oracle [12]. For a given query y, consider the exact minimizer of f
constrained to a ball of radius r around y, i.e., consider an oracle Or-ball such that (x,�) = Or-ball(y)

satisfy x 2 argmin
x0:kx0�ykr

f(x0) and � = krf(x)k
kx�yk . One may easily verify that (unless � =

krf(x)k = 0) we have x = y � 1
�
rf(x), and therefore the oracle is a 0-MS oracle. Moreover,

when f is convex, we have either kx� yk = r or x is a global minimizer of f , and so we may assume
without loss of generality that the oracle satisfies an (1, 1/r) movement bound.

Ball-Constrained Newton (BaCoN) oracle [12]. Exactly implementing Or-ball is generally in-
tractable. Nevertheless, Carmon et al. [12, Alg. 3] describe a method Or-BaCoN based on solving
a sequence of eO(1) trust-region problems (ball-constrained Newton steps), which we call that, for
functions that are O(1)-Hessian stable in a ball of radius r (or 1/r-quasi-self-concordant) and have a
finite condition number, outputs (x,�) satisfying the 1

2 -MS oracle condition and an (1, O(1/r))-
movement bound. Implementing Or-BaCoN requires only a single Hessian evaluation and a number
of linear system solutions that is polylogarithmic in problem parameters. Subsequent works imple-
menting ball oracles [13, 4, 11] satisfy an approximation guarantee different than the MS condition,
similar to the one we describe in Appendix C.

3.2 An adaptive Monteiro-Svaiter-Newton oracle

The oracle implementations in Section 3.1 satisfy movement bounds by design and the MS condi-
tion (2) by assumption. For example, the cubic-regularized Newton step oracle Ocr is guaranteed
to satisfy the MS condition only when the regularization parameter M is sufficiently larger than
the Lipschitz constant of r2f . This suggests that M must be carefully tuned to ensure good per-
formance. Prior work attempt to dynamically adjust M in order to meet certain approximation
conditions [14, 20, 21, 24]. However, even computing a single cubic-regularized Newton step entails
searching for � that satisfies k[r2f(y) + �I]�1

rf(y)k = M�

2 . Therefore, such a search over M is
essentially a (potentially) redundant double search over �.

We propose a more direct and more adaptive MS oracle recipe: search for the smallest � for which the
regularized Newton step x = y� [r2f(y)+�I]�1

rf(y) satisfies the MS condition (2).7 This yields
valid MS oracle by construction, independently of any assumption. Moreover, it is simple to argue that
when r2f is (H, ⌫)-Hölder continuous for some ⌫ 2 [0, 1], such oracle would guarantee the same
movement bound as O2,⌫-reg with the best choice parameters M and ⌫ (see Appendix D.1)—even
though our recipe requires neither of these parameters!

Exactly fulfilling this recipe, i.e., finding the ideal minimal �? that satisfies the MS condition, is
difficult. Fortunately, to adaptively guarantee movement bounds, it suffices to find a value � such the
corresponding regularized Newton step satisfies the MS condition, while the step corresponding to
�/2 does not; Algorithm 2 finds precisely such a �.

Let us describe the operation of Algorithm 2. If the input �0 is invalid (i.e., its corresponding
regularized Newton step does not satisfy the MS condition so that CHECKMS(�0; y,�) evaluates to
False), we set �invld  �0 and test a double-exponentially increasing series of �’s, until reaching
a valid �vld (line 11). If �0 is valid and the LAZY flag is set, we return it immediately. Otherwise
(if LAZY is not set) we set �vld = �0 and decrease it at a double-exponential rate until finding
an invalid �invld (line 5). In either case (so long as LAZY is not set) we obtain an (invalid,valid)
pair (�invld,�vld) such that �vld/�invld = 22

k?

at the cost of 2 + k? linear system solutions. We
then perform precisely k? log-scale bisection steps in order to shrink �vld/�invld down to 2 while
maintaining the invariant that �vld is valid and �invld is invalid (line 15).

The following theorem bounds the complexity of Algorithm 2 in terms of linear-system solution
number, and establishes a movement bound for its output assuming thatr2f is locally Hölder around
the query point. We defer the proof of the theorem and its following corollary to Appendix D.2.
Theorem 2. Algorithm 2 with parameter � is a �-MS oracle OaMSN. For any y 2 Rd, computing
(x,�) = OaMSN(y) requires at most 2 + 2 log2

�
1 +

��log2 �

�0

��� linear systems solutions. If LAZY is
False or � > �0, and if r2f is (H, ⌫)-Hölder in a ball of radius 2kx� yk around y, then (x, y,�)
satisfy a

�
1 + ⌫, (2H/�)1/(1+⌫)/�

�
-movement bound.

7The prior works [30, 17] also directly consider quadratically-regularized Newton steps, but employ approxi-
mation conditions other than (2) to select the parameter �.
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Algorithm 2: OaMSN

Input: Query y 2 Rd, �0 > 0. Flag LAZY.
Parameters: MS factor � 2 (0, 1).

1 if CHECKMS(�0; y,�) then
2 if LAZY then return

y � [r2f(y) + �0I]�1
rf(y), �0

3 else
4 �vld  �0 , k  0

5 while CHECKMS(�vld/22
k

; y,�)
do

6 �vld  �vld/22
k

7 k  k + 1

8 k?  k , �invld  �vld/22
k?

9 else
10 �invld  �0 , k  0

11 while not CHECKMS(�invld22
k

; y,�)
do

12 �invld  �invld22
k

13 k  k + 1

14 k?  k , �vld  �invld22
k?

15 while �invld < �vld/2 do
16 � 

p
�invld�vld

17 if CHECKMS(�; y,�) then �vld  �
18 else �invld  �

19 return y� [r2f(y)+�vldI]�1
rf(y), �vld

20 function CHECKMS(�; y,�)
21 x = y � [r2f(y) + �I]�1

rf(y)
22 if

��x� (y � 1
�
rf(x))

��  �kx� yk
then return True

23 else return False

Algorithm 3: OaMSN-fo

Input: y 2 Rd, �0 > 0. Flag LAZY.
Parameters: MS factor � 2 (0, 1).

1 � �0 , FAILEDCHECK  False
2 Repeat
3 A r2f(y) + �I , b �rf(y)

. Apply MinRes/Conjugate Residuals [18]
until obtaining w s.t. kAw � bk 

��
2 kwk

4 x y + CONJRES(A, b,��)
5 if

��x� (y � 1
�
rf(x))

��  �kx� yk
then

6 if LAZY or FAILEDCHECK then
7 return x, �
8 else � �/2

9 else
10 FAILEDCHECK  True
11 � 2�

12 function CONJRES(A, b,��)
13 w0  0
14 p0  r0  Aw0 � b . ri = Awi � b

15 s0  q0  Ar0 . qi = Api

16 i 0
17 while krik > ��

2 kwik do
18 wi+1  wi �

hri,sii
kqik2 pi

19 ri+1  ri �
hri,sii
kqik2 qi

20 si+1  Ari+1

21 pi+1  
hri+1,si+1i

hri,sii pi + ri+1

22 qi+1  
hri+1,si+1i

hri,sii qi + si+1

23 i i+ 1

24 return wi

To understand the LAZY option of Algorithm 2, note that when �0 is valid we will necessarily output
�  �0. In such case Theorem 1 does not require a movement bound (except for the first iteration).
Therefore, we might as well save on computation and return �0. The following Corollary 3 gives the
overall complexity bound for the combination of Algorithm 1 and OaMSN, leveraging “lazy” oracle
calls to show that the number of linear system solves per iteration is essentially constant.
Corollary 3. Consider Algorithm 1 with initial point x0, parameters ↵ satisfying 1.1  ↵ =
O(1) and �0

0, and �-MS oracle OaMSN (with LAZY = True in all but the first iteration) with
� 2 (0.01, 0.99). For any H, ✏ > 0, ⌫ 2 [0, 1] and any x? 2 Rd, if f is convex with (H, ⌫)-
Hölder Hessian, the algorithm produces an iterate xT such that f(xT )  f(x?) + ✏ using T =

O
⇣�

Hkx0 � x?k
2+⌫/✏

�2/(4+3⌫)
⌘

Hessian evaluations and O
⇣
T + log logmax

n
HR

⌫

�
0
0
, �

0
0R

2

✏

o⌘
lin-

ear system solutions, where R is the distance between x0 and argmin
x0 f(x0).

Note that as long as �0
0 is in the range

⇥
2�2THR⌫ , 22

T

✏R�2
⇤
, the double logarithmic term in our

bound on linear system solution number is O(T ). Therefore, the overall bound is O(T ) for an
extremely large range of �0

0 values.

3.3 First-order implementation via MinRes/Conjugate Residuals

We now present a first-order implementation of our adaptive oracle, OaMSN-fo (Algorithm 3), which
replaces exact linear system solutions with approximations obtained via Hessian-vector products and
the MinRes/Conjugate Residuals method [42, 18]. Similar to Algorithm 2, the algorithm searches
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for � such that x� ⇡ y � [r2f(y) + �I]�1
rf(y) satisfies the MS condition, but x�/2 does not.

Departing from the double-exponential scheme of Algorithm 2, here we adopt the following doubling
scheme that allows us to control the cost of the x� approximation. If �0 is such that x�0 does not
satisfy the MS condition, we repeatedly test � = 2�0, 4�0, 8�0, . . . and return the first one for which
x� satisfies the MS condition. If x�0 satisfies the MS condition and the algorithm is LAZY, we
immediately return it. Otherwise, we repeatedly test � = 1

2�
0, 1

4�
0, 1

8�
0, . . . until reaching � for

which x� does not satisfy the MS condition, and return x2�.

The subroutine CONJRES of Algorithm 3 takes as input a matrix A, a vector b, and accuracy parameter
��, and iteratively generates {wi} that approximate A�1b. The construction of the MinRes/Conjugate
Residuals method guarnatees that wi minimizes the norm of the residual ri = Awi � b in the Krylov
subspace span{b, Ab, . . . , Ai�1b}. The key algorithmic decision here is when to stop the iterations:
stop too early, and the approximation for the Newton step might not be accurate enough to guarantee
a movement bound; stop too late, and incur a high Hessian-vector product complexity. We introduce
a simple stopping condition (line 17) that strikes a balance. On the one hand, we show that whenever
the condition krik  ��

2 kwik holds, the resulting point x can certify roughly the same movement
bounds as exact Newton steps. On the other hand, by invoking the complexity bounds in [28] and
using the the optimality of krik, we guarantee that the stopping condition is met within a number of
iterations proportional to 1/

p
�. The structure of our doubling scheme for � then allows us to relate

the overall first-order complexity to the lowest value of � queried, obtaining the following guarantees.
See proofs in Appendix D.3.
Theorem 4. Algorithm 3 with parameter � is a �-MS oracle OaMSN-fo. For any y 2 Rd, com-
puting (x,�) = OaMSN-fo(y) requires at most O

⇣q
1 + kr2f(y)kop

�min{�,�0}

⌘
Hessian-vector product and

O(
��log �

�0

��) gradient computations. If LAZY is False or � > �0, and if r2f is (H, ⌫)-Hölder, then
(x, y,�) satisfy a

�
1 + ⌫, (6H/�)1/(1+⌫)

�
-movement bound.

Corollary 5. Consider Algorithm 1 with initial point x0, parameters ↵ satisfying 1.1  ↵ = O(1)
and �0

0, and �-MS oracle OaMSN-fo with LAZY set to True in all but the first iteration and
� 2 (0.01, 0.99). For any L,H, ✏ > 0, ⌫ 2 [0, 1] and any x? 2 Rd, if f is convex with
(H, ⌫)-Hölder Hessian and L-Lipschitz gradient, the algorithm produces an iterate xT such

that f(xT )  f(x?) + ✏ within T = O

✓⇣
Hkx0�x?k2+⌫

✏

⌘2/(4+3⌫)
◆

iterations and at most

O

✓⇣
Lkx0�x?k2

✏

⌘1/2
+
q

L

�
0
0
+ log �

0
0
L

◆
gradient and Hessian-vector product evaluations.

Note that the L-Lipschitz gradient assumption implies an (L, 0)-Hölder Hessian assumption, giv-
ing the iteration complexity bound we state in Table 1. Moreover, note that our algorithm
has the optimal O(

p
Lkx0 � x?k

2/✏) complexity for any �0
0 in the range ⌦(✏/kx0 � x?k

2) to
L exp

n
O(

p
Lkx0 � x?k

2/✏)
o

. By choosing a large �0
0 (say 106) we may guarantee that only the

logarithmic term is added to the optimal first-order evaluation complexity.

4 Experiments

We conduct three sets of experiments. First, we consider Ocr with a fixed parameter M and compare
previous acceleration schemes to Algorithm 1. Second, we combine Algorithm 1 with our adaptive
OaMSN and test it against previous adaptive accelerated (second-order) methods and Newton’s method.
Finally, we compare Algorithm 1 with our first-order adaptive oracle OaMSN-fo to other first-order
methods. We provide full implementation details in Appendix E.1. Figure 1 summarizes our results
for logistic regression on the ‘a9a’ dataset [15]; see Appendix E.2 for similar results on three
additional datasets. These experiments were conducted with no tuning of Algorithm 1: the parameters
� and ↵ were simply set to 1

2 and 2, respectively. An additional experiment, reported in Appendix E.3,
shows that the algorithm is indeed insensitive to that choice.

Non-adaptive methods. We use the non-adaptive oracle Ocr (1), and take M to be 0.2H̄ where, for
feature vectors �1, . . . ,�n, H̄ = k 1

n

P
n

i=1 �i�T

i
kop maxi2[n]k�ik is an upper bound on 6

p
3 ⇡ 10

times the Lipschitz constant of the logistic regression Hessian [see, e.g., 41]. Fixing the MS oracle
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Figure 1. Empirical results for logistic regression on the “a9a” dataset. See Section 4 for description,
and Appendix E.2 for additional datasets. Boldface legend entries denote methods we contribute.

allows for a controlled comparison of different acceleration schemes: Figure 1(a) shows that standard
MS acceleration with a carefully-implemented bisection outperforms standard cubic regularization
(CR) and its accelerated counterpart (ACR) [33, Alg. 4.8], and removing the bisection via Algorithm 1
yields the best results. We also implemented the heuristic suggested by Song et al. [41], where
instead of a bisection in Algorithm 0 we select a sequence �0

t
such that At =

1
Mkx0�x?k (t/3)

7/2.
In Appendix E.4 we tune the M parameter for each method separately, finding that the optimal M
for CR is near 0, so that Ocr is nearly a Newton step (and not a valid MS oracle).

Adaptive methods and Newton’s method. We compare the following adaptive accelerated second-
order methods (which do not require an estimate of the Hessian Lipschitz constant): Adaptive
ACR [21, Algorithm 4] (which adaptively sets M in Ocr), standard MS acceleration (Algorithm 0)
with OaMSN (Algorithm 2, with LAZY = False) and Algorithm 1 with OaMSN (with LAZY = True
in all but the first iteration). Figure 1(b) shows that the latter converges significantly faster than
the other adaptive acceleration schemes. However, the classical “unaccelerated” Newton iteration
xt+1 = �(r2f(xt))�1

rf(xt) strongly outperforms all “accelerated” methods, indicating that
momentum mechanisms might actually be slowing down convergence in logistic regression problems.
To test this, we consider the following simple iteration of (the non-lazy variant) of our oracle:
xt+1,�t+1 = OaMSN(xt;�t/2); it significantly improves over Algorithm 1.

These results beg the question: is momentum ever useful for second-order methods? In Appendix E.5
we test different schemes on the lower bound construction [3, 21]. We find momentum is helpful for
Ocr, but not for the adaptive oracle OaMSN. What makes Newton’s method perform so well on logistic
regression, and whether simply iterating OaMSN is worst-case optimal, are important questions for
future work.

First-order methods. We compare our first-order adaptive OaMSN-fo (Algorithm 3) to the following
baselines: gradient descent and accelerated gradient descent [38] with a tuned step size ⌘, and L-
BFGS-B from SciPy [10, 44, 43]. In light of the above comparison with Newton’s method, we also test
the following simple iteration of (the lazy variant) of our oracle: xt+1,�t+1 = OaMSN-fo(xt;�t/2).
Figure 1(c) shows that forgoing (second-order) momentum is better for the first-order oracle, too:
Algorithm 1 performs comparably to tuned AGD (without tuning a single parameter), and the equally
adaptive OaMSN-fo iteration performs comparably to with L-BFGS-B.
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