
A Appendix

A.1 A Counter Example of a Basis of the Null Space

We consider a special case of Eq. (9), where ai(x) ≡ 0, bi(x) ≡ 1, gi(x) ≡ 0, and the dimension is
d = 3.

n1(x)pj1(x) + n2(x)pj2(x) + n3(x)pj3(x) = 0, x ∈ γi, ∀i = 1, . . . ,mj . (A1)

And a counter example of B(x) is given by

B(x) = [β1(x),β2(x)],

β1(x) = [n2(x),−n1(x), 0]
⊤,

β2(x) = [n3(x), 0,−n1(x)]
⊤.

(A2)

One could verify that the above formula of B(x) is a basis of the null space, if n1(x) ̸= 0,∀x ∈ γi.
For a special case where γi is a plane parallel to the x-axis, however, we have n1(x) ≡ 0,∀x ∈ γi. In
this case, β1(x),β2(x) are no longer linearly independent and cannot represent all possible solutions
to (pj1(x), pj2(x), pj3(x)). Therefore, Eq. (A2) is not an admissible choice for B(x).

A.2 A Basis of the Null Space in Low Dimensions

Let ñ = (ai, bin)
/√

a2i + b2i , g̃i = gi
/√

a2i + b2i , and p̃j = (uj ,pj). Eq. (9) is equivalent to

ñ(x) · p̃j(x) = g̃i(x), x ∈ γi, ∀i = 1, . . . ,mj . (A3)

For d = 1, we can rewrite Eq. (A3) as (the dimension of p̃j is d+ 1)

ñ1(x)p̃j1(x) + ñ2(x)p̃j2(x) = g̃i(x), x ∈ γi, ∀i = 1, . . . ,mj . (A4)

And we can find that the following basis is an acceptable one

B(x) = [ñ2(x),−ñ1(x)]
⊤, (A5)

since B(x) = 0 ⇔ ñ(x) = 0, and the latter contradicts the fact that ñ · ñ = 1. Then, we can use B
to construct the general solution p̃γi

j under d = 1.

And for d = 2, Eq. (A3) becomes

ñ1(x)p̃j1(x) + ñ2(x)p̃j2(x) + ñ3(x)p̃j3(x) = g̃i(x), x ∈ γi, ∀i = 1, . . . ,mj . (A6)

An acceptable B(x) is given by

B(x) = [β1(x),β2(x),β3(x)],

β1(x) = [0, ñ3(x),−ñ2(x)]
⊤,

β2(x) = [−ñ3(x), 0, ñ1(x)]
⊤,

β3(x) = [ñ2(x),−ñ1(x), 0]
⊤.

(A7)

We note that β1(x),β2(x),β3(x) live in the null space and rank(B(x)) = 2. So B(x) contains a
basis in the null space, which can be used to construct the general solution p̃γi

j under d = 2.

A.3 Explanation for the General Solution

We first show how to find an admissible expression of B(x) in arbitrary dimensions with respect
to Eq. (A3) which is equivalent to original formulation of the BC (see Eq. (9)). We perform a
Gram–Schmidt orthogonalization of ñ (whose dimension is d+ 1) on each vector in the standard
basis to get

βk(x) = ek − ek · ñ(x)
ñ(x) · ñ(x)

ñ(x) = ek −
(
ek · ñ(x)

)
ñ(x), k = 1, . . . , d+ 1, (A8)

where [e1, . . . , ed+1] = Id+1, and obviously all βk(x), k = 1, . . . , d + 1, are in the Null(ñ⊤).
We set B(x) = [β1(x), . . . ,βd+1(x)] = Id+1 − ñ(x)ñ(x)⊤. Furthermore, we can prove that
rank(B(x)) = d,∀x ∈ γi (see Lemma A.1). Therefore, for ∀x ∈ γi, B(x) always contains a basis
of Null(ñ⊤), and we consider such a B(x) to be an ideal choice for the general solution p̃γi

j .

1

Lemma A.1. rank(B(x)) = d holds for all x ∈ γi, where B(x) = Id+1 − ñ(x)ñ(x)⊤.

Proof. For all x ∈ γi, we have known that B = Id+1 − ññ⊤, where ñ · ñ = ñ⊤ñ = 1, and

Bñ = (Id+1 − ññ⊤)ñ = ñ− ññ⊤ñ = ñ− ñ = 0. (A9)

Hence, rank(B) ≤ d. Besides, we notice that H = Id+1 − 2ññ⊤ is a Householder matrix, which
is an invertible matrix, since

H⊤H = (Id+1 − 2ññ⊤)2 = Id+1 − 4ññ⊤ + 4ññ⊤ññ⊤ = Id+1 − 4ññ⊤ + 4ññ⊤ = Id+1.
(A10)

So rank(H) = d+ 1, and we have

d+ 1 = rank(Id+1 − 2ññ⊤) ≤ rank(Id+1 − ññ⊤) + rank(ññ⊤) = rank(B) + 1, (A11)

which can deduce d ≤ rank(B). Therefore, rank(B) = d.

Finally, we show that the general solution in Eq. (10) satisfies the BC in Eq. (A3).

ñ(x) · p̃γi

j (x) = ñ(x) ·B(x)NNγi

j (x) + ñ(x) · ñ(x)g̃i(x)

= ñ(x) ·
(
Id+1 − ñ(x)ñ(x)⊤

)
NNγi

j (x) + g̃i(x)

= g̃i(x),

(A12)

where we omit the trainable parameters for simplicity. Besides, the discussion of B(x) in low-
dimensional cases (i.e., d = 1 and d = 2, see Appendix A.3) is similar, and we will leave it to the
reader.

A.4 Theoretical Guarantee of the Constructed Ansatz

In Appendix A.3, we have demonstrated that B(x) contains a basis of the null space of the BC for
∀x ∈ γi and the general solution in Eq. (10) satisfies the corresponding BC. In this subsection, we
will show that our constructed ansatz in Eq. (11) is theoretically correct. We first prove that the ansatz
in Eq. (11) satisfies all the BCs under the following assumptions.

Assumption A.2. The problem domain Ω is bounded.

Assumption A.3. The shortest distance between γ1, . . . , γmj
is greater than zero for j = 1, . . . , n.

Assumption A.4. All the extended distance functions l∂Ω, lγi , i = 1, . . . ,mj are continuous and
satisfy that minx∈∂Ω\γi

lγi(x) ≥ Ci, ∀x ∈ γi, i = 1, . . . ,mj for j = 1, . . . , n, where Ci is a
positive constant.

Theorem A.5. ∀ϵ > 0, there exists β0
s ∈ R, such that

|ñ(x) · (ûj , p̂j)− g̃i(x)| < ϵ, (A13)

holds for all βs > β0
s , x ∈ γi, i = 1, . . . ,mj , j = 1, . . . , n, where ñ = (ai, bin)

/√
a2i + b2i ,

g̃i = gi
/√

a2i + b2i , and B(x) = Id+1 − ñ(x)ñ(x)⊤.

Proof. For any x ∈ γi, we have l∂Ω(x) = 0 according to the definition of the extended distance
functions. Thus, (ûj , p̂j) is now equal to

(ûj , p̂j) =

mj∑
k=1

exp
[
− αkl

γk(x)
]
p̃γk

j (x), (A14)

2

where we omit the trainable parameters. Then, according to Assumptions A.2 ∼ A.4, we can choose
a sufficiently large βi

s (see Eq. (12) for the relationship between αi and βs), such that

|ñ(x) · (ûj , p̂j)− g̃i(x)| =

∣∣∣∣∣ñ(x) ·
(

mj∑
k=1

exp
[
− αkl

γk(x)
]
p̃γk

j (x)

)
− g̃i(x)

∣∣∣∣∣
<
∣∣ñ(x) · exp [− αil

γi(x)
]
p̃γi

j (x)− g̃i(x)
∣∣

+

∣∣∣∣∣∣ñ(x) ·
∑
k ̸=i

exp
[
− αkl

γk(x)
]
p̃γk

j (x)

∣∣∣∣∣∣
≤
∣∣ñ(x) · p̃γi

j (x)− g̃i(x)
∣∣+
∣∣∣∣∣∣
∑
k ̸=i

exp
[
− αkl

γk(x)
]
p̃γk

j (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k ̸=i

exp
[
− αkl

γk(x)
]
p̃γk

j (x)

∣∣∣∣∣∣
< ϵ,

(A15)

where we note that lγi(x) = 0 and lγk(x) > 0,∀k ̸= i for all x ∈ γi. Let β0
s = max{βi

s | i =
1, . . . ,mj}, then according to the arbitrariness of j, we conclude that the theorem holds.

Next, we will prove that our ansatz can approximate the solution to the PDEs with arbitrarily low
errors under following assumptions in addition to Assumptions A.2 ∼ A.4.

Assumption A.6. The solution to the PDEs u(x) is unique, bounded, and at least first order
continuous by element.

Assumption A.7. ai(x), bi(x), and gi(x) are continuous (hence g̃i(x) is continuous, too) in γi for
i = 1, . . . ,mj , j = 1, . . . , n.

Assumption A.8. Since B(x) = Id+1 − ñ(x)ñ(x)⊤ is a real symmetric matrix, we can perform an
orthogonal diagonalization B(x) = P (x)⊤Λ(x)P (x), where Λ(x) = diag(λ1(x), . . . , λd(x), 0),
λ1(x) > · · · > λd(x) > 0. We assume that ñ(x), P (x), and Λ(x) are piece-wise continuous by
element in γi for i = 1, . . . ,mj , j = 1, . . . , n.

To begin with, we prove this lemma.

Lemma A.9. ∀ϵ > 0, there exists θγi

j ∈ Θγi

j , such that∥∥p̃γi

j (x;θγi

j)− q(x)
∥∥
1
< ϵ, (A16)

holds for all x ∈ γi if q(x) is continuous in γi and satisfies the BC (i.e., ñ(x) · q(x) = g̃i(x),∀x ∈
γi), where Θγi

j is the parameter space of the neural network NNγi

j , ∥ · ∥1 is the 1-norm of matrices
(operator norm), and p̃γi

j as well as q are both of dimension d+ 1. The above conclusion holds for
all i = 1, . . . ,mj , j = 1, . . . , n.

Proof. From Eq. (A8) and Lemma A.1, we know that B(x) contain a basis of Null(ñ⊤). Since q(x)
satifies the BC, we can represent it as

q(x) = B(x)r(x) + ñ(x)g̃i(x). (A17)

Then we will show that there exists a piece-wise continuous choice of r(x). We rewrite Eq. (A17) as

q(x) = P (x)⊤Λ(x)P (x)r(x) + ñ(x)g̃i(x). (A18)

Since B(x) has d + 1 column vectors, which is greater than the dimension of Null(ñ⊤) (i.e., d),
the choice of q(x) is not unique. We can choose a particular q(x) which satisfies that the last
element of P (x)r(x) is zero (i.e., P (x)r(x) = [. . . , 0]⊤). Next, we continue with the equivalent

3

transformation of Eq. (A18).
P (x)⊤Λ(x)P (x)r(x) + ñ(x)g̃i(x) = q(x),

⇐⇒ P (x)⊤Λ(x)P (x)r(x) = q(x)− ñ(x)g̃i(x),

⇐⇒ Λ(x)P (x)r(x) = P (x) (q(x)− ñ(x)g̃i(x)) ,

⇐⇒ diag(1, . . . , 1, 0)P (x)r(x) = Λ′(x)P (x) (q(x)− ñ(x)g̃i(x)) ,

⇐⇒ P (x)r(x) = Λ′(x)P (x) (q(x)− ñ(x)g̃i(x)) ,

(A19)

where Λ′(x) = diag(1/λ1(x), . . . , 1/λd(x), 0). The last equivalence holds because the last element
of P (x)r(x) is always zero. From Assumption A.7 and A.8, combining the above formula, we have
that P (x)r(x) is piece-wise continuous by element. Noticing that r(x) = P (x)⊤P (x)r(x), we
know that the r(x) we chosen is also piece-wise continuous by element.

We notice that
∥B(x)∥1 =

∥∥Id+1 − ñ(x)ñ(x)⊤
∥∥
1

≤ ∥Id+1∥1 +
∥∥ñ(x)ñ(x)⊤∥∥

1

≤ 1 + d+ 1

= d+ 2.

(A20)

According to the Universal Approximation of neural networks [2], ∀ϵ > 0, there exists θγi

j ∈ Θγi

j ,
such that ∥∥NNγi

j (x;θγi

j)− r(x)
∥∥
1
<

ϵ

d+ 2
, (A21)

holds for all x ∈ γi. Therefore,∥∥p̃γi

j (x;θγi

j)− q(x)
∥∥
1
=
∥∥B(x)

(
NNγi

j (x;θγi

j)− r(x)
)∥∥

1

≤ ∥B(x)∥1
∥∥NNγi

j (x;θγi

j)− r(x)
∥∥
1

< ϵ.

(A22)

According to the arbitrariness of i and j, we conclude that the lemma holds.

Finally, we state the following theorem.
Theorem A.10. ∀ϵ > 0, there exists βs ∈ R, θmain ∈ Θmain, θγi

j ∈ Θγi

j , i = 1, . . . ,mj , such that

∥(ûj , p̂j)− (uj ,∇uj)∥1 < ϵ, (A23)
holds for all x ∈ Ω∪∂Ω, j = 1, . . . , n, where Θ∗ is the parameter space of the corresponding neural
network, ∥ · ∥1 is the 1-norm. The ground truth solution to the PDEs is u(x) = (u1(x), . . . , un(x)).

Proof. For x ∈ γi, i = 1, . . . ,mj , (uj ,∇uj) is continuous (according to Assumption A.6) and
satisfies the BC (which the solution needs to meet). From Lemma A.9, the definition of (ûj , p̂j)
in Eq. (11), and Assumptions A.2 ∼ A.4, we can find θγi

j ∈ Θγi

j and a large enough βi
s such that

Eq. (A23) holds for all x ∈ γi.

Then we fix βs = max{βi
s | i = 1, . . . ,mj} and θγi

j ∈ Θγi

j , i = 1, . . . ,mj (which are what we
determined for x ∈ γi, i = 1, . . . ,mj). From Assumption A.2, we have |l∂Ω(x)| < C, ∀x ∈ Ω,
where C is a positive constant. For x ∈ Ω, according to the Universal Approximation Theorem of
neural networks [1], there exists θmain ∈ Θmain satisfying that∥∥∥∥∥ (uj ,∇uj)−

∑mj

i=1 exp
[
− αil

γi(x)
]
p̃γi

j (x;θγi

j)

l∂Ω(x)
−NNmain(x;θmain)

∥∥∥∥∥
1

<
ϵ

C
. (A24)

Therefore,
∥(ûj , p̂j)− (uj ,∇uj)∥1

=

∥∥∥∥(uj ,∇uj)−
mj∑
i=1

exp
[
− αil

γi(x)
]
p̃γi

j (x;θγi

j)− l∂Ω(x)NNmain(x;θmain)

∥∥∥∥
1

=

∥∥∥∥ (uj ,∇uj)−
∑mj

i=1 exp
[
− αil

γi(x)
]
p̃γi

j (x;θγi

j)

l∂Ω(x)
−NNmain(x;θmain)

∥∥∥∥
1

∣∣l∂Ω(x)∣∣
<

ϵ

C
· C = ϵ.

(A25)

4

Figure A1: Illustration of the extension from γairfoil to Ω ∪ ∂Ω.

According to the arbitrariness of j, we have proven this theorem.

Besides, we note that it is easy to extend the above theorems to time-dependent cases (the ansatz is
given in Appendix A.6), which will not be discussed separately here.

A.5 Extension of the Parameter Functions in the BCs

In Eq. (9), it is noted that ai, bi, n or gi may be only defined at γi. But they are included in our
ansatz (see Eq. (10) and Eq. (11)), which is defined in Ω ∪ ∂Ω. So we need to extend their definition
smoothly to Ω ∪ ∂Ω, using interpolation or approximation via neural networks. We consider the
airfoil boundary (i.e, γairfoil) in Section 5.3 as a motivating example.

Supposing f(x) is only defined in γairfoil, our task is to extend its definition to Ω ∪ ∂Ω. As shown in
Figure A1, we first place two reference points (i.e., x0 and x1) on the front and rear half of the airfoil.
For any x ∈ Ω∪ ∂Ω, it can be expressed as polar coordinates with respect to x0 and x1, respectively.
We concatenate the two polar coordinates to form a new space. We next perform interpolation and
approximation under the new space. This is because in the new space we can better characterize the
shape of the airfoil. It is true that there are many ways for coordinate transformations, not limited to
the example here.

As for the interpolation, we can sample several points at the γairfoil to obtain the dataset
{((θ(i)0 , θ

(i)
1), f (i))}Ni=1. For any x ∈ Ω∪∂Ω, we generate the corresponding extended f(x) by inter-

polating in the dataset. The interpolation method used here depends on the smoothness requirements
of the ansatz. In addition, the number of reference points can also be changed, and in experiments we
found that only one reference point is enough.

Approximation via neural networks is a general method that does not require manual de-
sign. In this case, we can sample several points at the γairfoil to construct our dataset
{((ϕ0(x

(i)), ϕ1(x
(i))), f (i))}Ni=1, followed by training a neural network on the dataset, i.e.

NN(ϕ0(x
(i)), ϕ1(x

(i))) ≈ f (i). For any x ∈ Ω ∪ ∂Ω, we take NN(ϕ0(x), ϕ1(x)) as the corre-
sponding extended f(x). We can also train the neural network in the original space. However,
experimental results show that training on the new space can achieve better results. The reason may
be that the complex geometry become smoother and easier to learn in the new space.

It is worth noting that, in addition to the cases mentioned above, the extended distance functions l(x)
(here we omit the superscript and see Eq. (4) for its definition) may also need to be handled similarly.
Because for the complex geometry, the distance function can be very complex and we may want
to replace it with a cheap surrogate model. The methods are similar, including approximating the
distance function with a neural network, or constructing splines function [5].

A.6 The Hard-Constraint Framework for Time-dependent PDEs

In this section, we consider the following time-dependent PDEs

F [u(x, t)] = 0, x = (x1, . . . , xd) ∈ Ω, t ∈ (0, T], (A26)

where t is the temporal coordinate, and the other notations are the same as those in Section 3.1. For
each uj , j = 1, . . . , n, we pose suitable boundary conditions (BCs)

ai(x, t)uj + bi(x, t)
(
n(x) · ∇uj

)
= gi(x, t), x ∈ γi, t ∈ (0, T], ∀i = 1, . . . ,mj , (A27)

5

and an initial condition (IC)
uj(x, 0) = fj(x), x ∈ Ω. (A28)

Following the pipeline described in Section 3.2, we can find the general solution p̃γi

j (x, t) as

p̃γi

j = B(x, t)NNγi

j (x, t) + ñ(x, t)g̃i(x, t), (A29)

where ñ = (ai, bin)
/√

a2i + b2i , g̃i = gi
/√

a2i + b2i , NNγi

j : Rd+1 → Rd+1 is a neural network,
and B(x, t) = Id+1 − ñ(x, t)ñ(x, t)

⊤. And we omit the trainable parameters of neural networks
for neatness.

Finally, we can construct our ansatz (ûj , p̂j) as

(u†
j , p̂j) = l∂Ω(x)NNmain(x, t) +

mj∑
i=1

exp
[
− αil

γi(x)
]
p̃γi

j (x, t), ∀j = 1, . . . , n, (A30a)

ûj = u†
j(x, t)

(
1− exp [−βtt]

)
+ fj(x) exp [−βtt], ∀j = 1, . . . , n, (A30b)

where u†
j is an intermediate variable that incorporates hard constraints in spatial dimensions, NNmain :

Rd+1 → Rd+1 is the main neural network, l∂Ω, lγi , i = 1, . . . ,mj are extended distance functions
(see Eq. (4)), αi (i = 1, . . . ,mj) is determined in Eq. (12), and βt ∈ R is a hyper-parameter of the
“hardness” in the temporal domain.

A.7 Supplements to the Theoretical Analysis

In this section, we first give some supplements to the problem setting in Section 4. Then we present
the proof of Theorem 4.1. Finally, we will characterize the mechanism described in Section 4 with
another tool, the condition number.

A.7.1 Supplements to the Problem Setting

As mentioned in Section 4, we consider the following 1D Poisson’s equation

∆u(x) = −a2 sin ax, x ∈ (0, 2π), (A31a)
u(x) = 0, x = 0 ∨ x = 2π, (A31b)

where a ∈ R and u is the physical quantity of interest. Here we use a single-layer neural network of
width K as our ansatz, i.e., û = c⊤σ(wx+ b), where c,w, b ∈ RK , σ is an element-wise activation
function (for simplicity, we take σ as tanh). To study the impact of the extra fields alone, we train
û in a soft-constrained manner. For ease of discussion, we consider the loss function in continuous
form

L(θ) = LF (θ) + LB(θ) ≈
1

2π

∫ 2π

0

(
∆û(x) + a2 sin(ax)

)2
dx+

(
û(0)

)2
+
(
û(2π)

)2
, (A32)

where θ = (c,w, b) is a set of trainable parameters.

Let p = ∇u = du/dx. We reformulate Eq. (A31) via the extra fields to obtain

∇p(x) = −a2 sin ax, x ∈ (0, 2π), (A33a)
p(x) = ∇u(x), x ∈ (0, 2π), (A33b)
u(x) = 0, x = 0 ∨ x = 2π. (A33c)

Our ansatz becomes û = c⊤σ(wx+ b) and p̂ = c⊤p σ(wx+ b), where cp ∈ RK is a weight vector
with respect to the output p̂. We can see that the loss term of the BC does not change while that of the
PDE becomes

L̃F (θ̃) ≈
1

2π

∫ 2π

0

[(
∇p̂(x) + a2 sin(ax)

)2
+
(
p̂(x)−∇û(x)

)2]
dx, (A34)

where θ̃ = (c,w, b, cp) is a set of trainable parameters.

6

A.7.2 Proof of Theorem 4.1

In this part, we provide detailed proof of Theorem 4.1.

We first derive the derivatives of the ansatz for the original PDEs (we recall that σ is tanh and we
have σ′ = 1− σ2)

dû

dx
= c⊤

[(
1− σ2(wx+ b)

)
◦w
]
, (A35a)

d2û

dx2
= −2c⊤

[
σ(wx+ b) ◦

(
1− σ2(wx+ b)

)
◦w2

]
. (A35b)

We will abbreviate σ(wx+ b) as σ, and then we have

dû

dx
= c⊤

[
(1− σ2) ◦w

]
, (A36a)

d2û

dx2
= −2c⊤

[
σ ◦ (1− σ2) ◦w2

]
. (A36b)

Now, we can provide a bound for (∂LF/∂c)
⊤ as

∣∣∣∣(∂LF

∂c

)⊤∣∣∣∣ = 1

2π

∣∣∣∣∣
∫ 2π

0

2
(d2û
dx2

+ a2 sin(ax)
)
·
(
∂
(d2û
dx2

)/
∂c

)
dx

∣∣∣∣∣
=

2

π

∣∣∣∣∣
∫ 2π

0

(
− 2c⊤

[
σ ◦ (1− σ2) ◦w2

]
+ a2 sin(ax)

)
·
[
σ ◦ (1− σ2) ◦w2

]
dx

∣∣∣∣∣
≤ 2

π

(∫ 2π

0

(
− 2c⊤

[
σ ◦ (1− σ2) ◦w2

]
+ a2 sin(ax)

)2
dx

) 1
2

·

(∫ 2π

0

[
σ ◦ (1− σ2) ◦w2

]2
dx

) 1
2

(Cauchy − Schwarz)

≤ 2

π

(∫ 2π

0

(
2|c|⊤w2 + a2

)2
dx

) 1
2

·

(∫ 2π

0

w4 dx

) 1
2

= 4
(
2|c|⊤w2 + a2

)
w2

≤ 8
(
|c|⊤w2 + a2

)
w2,

(A37)

where ≤ between two vectors is an element-wise comparison. Thus, (∂LF/∂c)
⊤ can be bounded by

∣∣∣∣(∂LF

∂c

)⊤∣∣∣∣ = O
(
|c|⊤w2 + a2

)
·w2. (A38)

7

Similarly, for (∂LF/∂w)⊤, we have∣∣∣∣(∂LF

∂w

)⊤∣∣∣∣ = 1

2π

∣∣∣∣∣
∫ 2π

0

2
(d2û
dx2

+ a2 sin(ax)
)
·
(
∂
(d2û
dx2

)/
∂w

)
dx

∣∣∣∣∣
=

2

π

∣∣∣∣∣
∫ 2π

0

(
− 2c⊤

[
σ ◦ (1− σ2) ◦w2

]
+ a2 sin(ax)

)
· c ◦

[
2σ ◦ (1− σ2) ◦w + x(1− 3σ2) ◦ (1− σ2) ◦w2

]
dx

∣∣∣∣∣
≤ 2

π

(∫ 2π

0

(
− 2c⊤

[
σ ◦ (1− σ2) ◦w2

]
+ a2 sin(ax)

)2
dx

) 1
2

·

(∫ 2π

0

c2 ◦
[
2σ ◦ (1− σ2) ◦w

+ x(1− 3σ2) ◦ (1− σ2) ◦w2
]2

dx

) 1
2

≤ 2

π

(∫ 2π

0

(
2|c|⊤w2 + a2

)2
dx

) 1
2

·

(∫ 2π

0

c2 ◦ (w + 2πw2)2 dx

) 1
2

= 4
(
2|c|⊤w2 + a2

)
· |c| ◦ (|w|+ 2πw2)

≤ 16π
(
|c|⊤w2 + a2

)
· |c| ◦ (|w|+w2).

(A39)

Thus, the bound for (∂LF/∂w)⊤ is given by∣∣∣∣(∂LF

∂w

)⊤∣∣∣∣ = O
(
|c|⊤w2 + a2

)
·
(
|c| ◦ |w| ◦ (|w|+ 1)

)
. (A40)

And for (∂LF/∂b)
⊤, we have∣∣∣∣(∂LF

∂b

)⊤∣∣∣∣ = 1

2π

∣∣∣∣∣
∫ 2π

0

2
(d2û
dx2

+ a2 sin(ax)
)
·
(
∂
(d2û
dx2

)/
∂b

)
dx

∣∣∣∣∣
=

2

π

∣∣∣∣∣
∫ 2π

0

(
− 2c⊤

[
σ ◦ (1− σ2) ◦w2

]
+ a2 sin(ax)

)
·
[
c ◦ (1− 3σ2) ◦ (1− σ2) ◦w2

]
dx

∣∣∣∣∣
≤ 2

π

(∫ 2π

0

(
− 2c⊤

[
σ ◦ (1− σ2) ◦w2

]
+ a2 sin(ax)

)2
dx

) 1
2

·

(∫ 2π

0

[
c ◦ (1− 3σ2) ◦ (1− σ2) ◦w2

]2
dx

) 1
2

≤ 2

π

(∫ 2π

0

(
2|c|⊤w2 + a2

)2
dx

) 1
2

·

(∫ 2π

0

c2 ◦w4 dx

) 1
2

= 4
(
2|c|⊤w2 + a2

)
· |c| ◦w2

≤ 8
(
|c|⊤w2 + a2

)
· |c| ◦w2.

(A41)

Thus, the bound for (∂LF/∂b)
⊤ is given by∣∣∣∣(∂LF

∂b

)⊤∣∣∣∣ = O
(
|c|⊤w2 + a2

)
·
(
|c| ◦w2

)
. (A42)

8

Recalling that θ = (c,w, b), from Eq. (A38), Eq. (A40), and Eq. (A42), we have

∣∣∣(∇θLF
)⊤∣∣∣ = ∣∣∣∣(∂LF

∂θ

)⊤∣∣∣∣ = O
(
|c|⊤w2 + a2

)
·
(
w2, |c| ◦ |w| ◦ (|w|+ 1), |c| ◦w2

)
. (A43)

In contrast, for the transformed PDE, we first derive the derivatives of the ansatz (i.e., û = c⊤σ(wx+
b), p̂ = c⊤p σ(wx+ b))

dû

dx
= c⊤

[
(1− σ2(wx+ b)) ◦w

]
, (A44a)

dp̂

dx
= c⊤p

[
(1− σ2(wx+ b)) ◦w

]
. (A44b)

We again abbreviate σ(wx+ b) as σ to obtain

dû

dx
= c⊤

[
(1− σ2) ◦w

]
, (A45a)

dp̂

dx
= c⊤p

[
(1− σ2) ◦w

]
. (A45b)

We now compute a bound for (∂L̃F/∂c)
⊤

∣∣∣∣(∂L̃F

∂c

)⊤∣∣∣∣ = 1

2π

∣∣∣∣∣
∫ 2π

0

2
(
p̂− dû

dx

)
·
(
∂
(dû
dx

)/
∂c

)
dx

∣∣∣∣∣
=

1

π

∣∣∣∣∣
∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])
·
[
(1− σ2) ◦w

]
dx

∣∣∣∣∣
≤ 1

π

(∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])2
dx

) 1
2

·

(∫ 2π

0

[
(1− σ2) ◦w

]2
dx

) 1
2

≤ 1

π

(∫ 2π

0

(
∥cp∥1 + |c|⊤|w|

)2
dx

) 1
2

·

(∫ 2π

0

w2 dx

) 1
2

= 2
(
∥cp∥1 + |c|⊤|w|

)
|w|,

(A46)
Thus, the bound for (∂L̃F/∂c)

⊤ is given by

∣∣∣∣(∂L̃F

∂c

)⊤∣∣∣∣ = O
(
∥cp∥1 + |c|⊤|w|

)
· |w|. (A47)

9

As for (∂L̃F/∂w)⊤, we have

∣∣∣∣(∂L̃F

∂w

)⊤∣∣∣∣
=

1

2π

∣∣∣∣∣
∫ 2π

0

2
(dp̂
dx

+ a2 sin(ax)
)
·
(
∂
(dp̂
dx

)/
∂w

)
dx+

∫ 2π

0

2
(
p̂− dû

dx

)
·
(

∂p̂

∂w
− ∂

(dû
dx

)/
∂w

)
dx

∣∣∣∣∣
=
1

π

∣∣∣∣∣
∫ 2π

0

(
c⊤p
[
(1− σ2) ◦w

]
+ a2 sin(ax)

)
·
[
cp ◦ (1− σ2) ◦ (1− 2xσ ◦w)

]
dx

+

∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])
·
[
xcp ◦ (1− σ2)− c ◦ (1− σ2) ◦ (1− 2xσ ◦w)

]
dx

∣∣∣∣∣
≤ 1

π

((∫ 2π

0

(
c⊤p
[
(1− σ2) ◦w

]
+ a2 sin(ax)

)2
dx

) 1
2

·
(∫ 2π

0

[
cp ◦ (1− σ2) ◦ (1− 2xσ ◦w)

]2
dx

) 1
2

+

(∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])2
dx

) 1
2

·
(∫ 2π

0

[
xcp ◦ (1− σ2)− c ◦ (1− σ2) ◦ (1− 2xσ ◦w)

]2
dx

) 1
2

)

≤ 4

((∫ 2π

0

(
|cp|⊤|w|+ a2

)2
dx

) 1
2

·
(∫ 2π

0

c2p ◦ (1+ |w|)2 dx
) 1

2

+

(∫ 2π

0

(
∥cp∥1 + |c|⊤|w|)2 dx

) 1
2

·
(∫ 2π

0

[
|cp|+ |c| ◦ (1+ |w|)

]2
dx

) 1
2

)
= 8π

((
|cp|⊤|w|+ a2

)
·
[
|cp| ◦ (1+ |w|)

]
+
(
∥cp∥1 + |c|⊤|w|

)
·
[
|cp|+ |c| ◦ (1+ |w|)

])
≤ 40π

(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
[
max(|c|, |cp|) ◦max(|w|,1)

]
.

(A48)
Thus, we can bound (∂L̃F/∂w)⊤ by

∣∣∣∣(∂L̃F

∂w

)⊤∣∣∣∣ ≤ 40π
(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
[
max(|c|, |cp|) ◦max(|w|,1)

]
= O

(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
[
max(|c|, |cp|) ◦max(|w|,1)

]
.

(A49)

10

And for (∂L̃F/∂b)
⊤, we have

∣∣∣∣(∂L̃F

∂b

)⊤∣∣∣∣
=

1

2π

∣∣∣∣∣
∫ 2π

0

2
(dp̂
dx

+ a2 sin(ax)
)
·
(
∂
(dp̂
dx

)/
∂b

)
dx

+

∫ 2π

0

2
(
p̂− dû

dx

)
·
(
∂p̂

∂b
− ∂

(dû
dx

)/
∂b

)
dx

∣∣∣∣∣
=
1

π

∣∣∣∣∣
∫ 2π

0

(
c⊤p
[
(1− σ2) ◦w

]
+ a2 sin(ax)

)
·
[
− 2cp ◦ (1− σ2) ◦ σ ◦w

]
dx

+

∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])
·
[
cp ◦ (1− σ2) + 2c ◦ (1− σ2) ◦ σ ◦w

]
dx

∣∣∣∣∣
≤ 1

π

((∫ 2π

0

(
c⊤p
[
(1− σ2) ◦w

]
+ a2 sin(ax)

)2
dx

) 1
2

·
(∫ 2π

0

[
− 2cp ◦ (1− σ2) ◦ σ ◦w

]2
dx

) 1
2

+

(∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])2
dx

) 1
2

·
(∫ 2π

0

[
cp ◦ (1− σ2) + 2c ◦ (1− σ2) ◦ σ ◦w]2 dx

) 1
2

)

≤ 2

π

((∫ 2π

0

(
|cp|⊤|w|+ a2

)2
dx

) 1
2

·
(∫ 2π

0

c2p ◦w2 dx

) 1
2

+

(∫ 2π

0

(
∥cp∥1 + |c|⊤|w|)2 dx

) 1
2

·
(∫ 2π

0

[
|cp|+ |c| ◦ |w|

]2
dx

) 1
2

)
=4
((

|cp|⊤|w|+ a2
)
·
[
|cp| ◦ |w|

]
+
(
∥cp∥1 + |c|⊤|w|

)
·
[
|cp|+ |c| ◦ |w|

])
≤12

(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
[
max(|c|, |cp|) ◦max(|w|,1)

]
.

(A50)

Thus, we can bound (∂L̃F/∂b)
⊤ by

∣∣∣∣(∂L̃F

∂b

)⊤∣∣∣∣ ≤12
(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
[
max(|c|, |cp|) ◦max(|w|,1)

]
=O

(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
[
max(|c|, |cp|) ◦max(|w|,1)

]
.

(A51)

11

For (∂L̃F/∂cp)
⊤, we have∣∣∣∣(∂L̃F

∂cp

)⊤∣∣∣∣
=

1

2π

∣∣∣∣∣
∫ 2π

0

2
(dp̂
dx

+ a2 sin(ax)
)
·
(
∂
(dp̂
dx

)/
∂cp

)
dx+

∫ 2π

0

2
(
p̂− dû

dx

)
·
(

∂p̂

∂cp

)
dx

∣∣∣∣∣
=
1

π

∣∣∣∣∣
∫ 2π

0

(
c⊤p
[
(1− σ2) ◦w

]
+ a2 sin(ax)

)
·
[
(1− σ2) ◦w

]
dx

+

∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])
· σ dx

∣∣∣∣∣
≤ 1

π

((∫ 2π

0

(
c⊤p
[
(1− σ2) ◦w

]
+ a2 sin(ax)

)2
dx

) 1
2

·
(∫ 2π

0

[
(1− σ2) ◦w)

]2
dx

) 1
2

+

(∫ 2π

0

(
c⊤p σ − c⊤

[
(1− σ2) ◦w

])2
dx

) 1
2

·
(∫ 2π

0

σ2 dx

) 1
2

)

≤ 1

π

((∫ 2π

0

(
|cp|⊤|w|+ a2

)2
dx

) 1
2

·
(∫ 2π

0

w2 dx

) 1
2

+

(∫ 2π

0

(
∥cp∥1 + |c|⊤|w|)2 dx

) 1
2

·
(∫ 2π

0

1dx

) 1
2

)
=2
((

|cp|⊤|w|+ a2
)
· |w|+

(
∥cp∥1 + |c|⊤|w|

)
· 1
)

≤4
(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·max(|w|,1).

(A52)
Thus, we can bound (∂L̃F/∂cp)

⊤ by∣∣∣∣∣(∂L̃F

∂cp

)⊤∣∣∣∣∣ ≤4
(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·max(|w|,1)

=O
(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·max(|w|,1).

(A53)

Recalling that θ̃ = (c,w, b, cp), from Eq. (A47), Eq. (A49), Eq. (A51), and Eq. (A53), noting that
∥cp∥1 + |c|⊤|w| ≤ ∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2, we have∣∣∣(∇θ̃L̃F

)⊤∣∣∣ = ∣∣∣∣(∂L̃F

∂θ̃

)⊤∣∣∣∣ = O
(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
(
|w|,

max(|c|, |cp|) ◦max(|w|,1),max(|c|, |cp|) ◦max(|w|,1),max(|w|,1)
)
.

(A54)

A.7.3 Analysis via the Condition Number

In addition to providing bounds for the gradients of LF and L̃F , we can also use the condition
number to characterize the sensitivity of their gradients with respect to the parameters of the neural
network. Let θ(t) = (c(t),w(t), b(t)) and θ̃(t) = (c(t),w(t), b(t), c

(t)
p) are the parameters of the

neural network in the tth step (before and after the reformulation). For simplicity, we introduce the
following notations

∆θ = θ(t+1) − θ(t), (A55a)

∆θ̃ = θ̃(t+1) − θ̃(t), (A55b)

∆LF = LF (θ
(t+1))− LF (θ

(t)), (A55c)

∆L̃F = L̃F (θ̃
(t+1))− L̃F (θ̃

(t)). (A55d)

12

The condition numbers of LF and L̃F are defined as

cond =
|∆LF |
∥∆θ∥2

, ˜cond =
|∆L̃F |
∥∆θ̃∥2

. (A56)

Next we derive the bounds for cond and ˜cond, respectively. We first consider cond

cond =
|∆LF |
∥∆θ∥2

≈
∣∣∣∣(∂LF

∂θ

)⊤
·∆θ

∣∣∣∣/∥∆θ∥2 ≤
∥∥∥∥(∂LF

∂θ

)⊤∥∥∥∥
2

= O
((

|c|⊤w2 + a2
)
·
∥∥w2, |c| ◦ |w| ◦ (|w|+ 1), |c| ◦w2

∥∥
2

)
(Eq. (A43))

= O
((

|c|⊤w2 + a2
)
·
∥∥w2, |c| ◦ |w| ◦ (|w|+ 1), |c| ◦w2

∥∥
1

)
(Equivalence of norms)

= O
((

|c|⊤w2 + a2
)
·
(
∥w2∥1 + ∥|c| ◦ |w| ◦ (|w|+ 1)∥1 + ∥|c| ◦w2∥1

))
= O

((
|c|⊤w2 + a2

)
·
∥∥max(|c|,1) ◦ |w| ◦max(|w|,1)

∥∥
1

)
.

(A57)
Similarly, for ˜cond, we have

˜cond =
|∆L̃F |
∥∆θ̃∥2

≈
∣∣∣∣(∂L̃F

∂θ̃

)⊤
·∆θ̃

∣∣∣∣/∥∆θ̃∥2 ≤
∥∥∥∥(∂L̃F

∂θ̃

)⊤∥∥∥∥
2

= O
((

∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2
)
·
∥∥|w|,max(|c|, |cp|) ◦max(|w|,1),

max(|c|, |cp|) ◦max(|w|,1),max(|w|,1)
∥∥
2

)
(Eq. (A54))

= O
((

∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2
)
·
∥∥|w|,max(|c|, |cp|) ◦max(|w|,1),

max(|c|, |cp|) ◦max(|w|,1),max(|w|,1)
∥∥
1

)
(Equivalence of norms)

= O
((

∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2
)
·
(
∥w∥1

+ ∥max(|c|, |cp|) ◦max(|w|,1)∥1 + ∥max(|c|, |cp|) ◦max(|w|,1)∥1

+ ∥max(|w|,1)∥1
))

= O
((

∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2
)
·
∥∥max(|c|, |cp|,1) ◦max(|w|,1)

∥∥
1

)
.

(A58)

From Eq. (A57) and Eq. (A58), we find that for the original PDEs, the condition number has a higher
order relationship with respect to θ. If θ is large, the condition number can be very large, leading to
oscillations in training. However, if θ is small, the condition number will also be very small, resulting
in smaller changes of θ between adjacent iterations and therefore slower convergence. In contrast,
after the reformulation, the condition number has a lower order relationship with respect to θ̃, which
keeps the condition number more stable during training and alleviates this problem.

A.8 Experimental details

In the following, we will briefly introduce some essential details of our experiments, including the
experimental environment, hyper-parameters, construction of the ansatz, and details of the governing
PDEs in each experiment. We first introduce the experimental environment, while other details are
put into the subsections corresponding to the experiments.

Experimental environment We use PyTorch [4] as our deep learning library. And our codes for
the physics-informed learning are based on DeepXDE [3]. We train all the models except domain
decomposition based baselines (i.e., xPINN, FBPINN, and PFNN-2) on one NVIDIA TITAN Xp
12GB GPU, while the other three are trained on eight NVIDIA GeForce RTX 3090 24GB GPUs (since
domain decomposition based models consist of several sub-networks and require more memory to be
stored). The operating system is Ubuntu 18.04.5 LTS. If the analytical solution is unavailable, the
ground truth solutions to the PDEs (i.e., the testing data) will be generated by COMSOL Multiphysics,
a FEM commercial software. And we have put the generated testing data into the zip file.

13

A.8.1 Simulation of a 2D battery pack (Heat Equation)

Governing PDEs The governing PDEs (along with boundary/initial conditions) are given by

∂T

∂t
= k∆T (x, t), x ∈ Ω, t ∈ (0, 1], (A59a)

k
(
n(x) · ∇T (x, t)

)
= h

(
Ta − T (x, t)

)
, x ∈ γouter, t ∈ (0, 1], (A59b)

k
(
n(x) · ∇T (x, t)

)
= h

(
Tc − T (x, t)

)
, x ∈ γcell,i, t ∈ (0, 1], i = 1, . . . , nc, (A59c)

k
(
n(x) · ∇T (x, t)

)
= h

(
Tw − T (x, t)

)
, x ∈ γpipe,i, t ∈ (0, 1], i = 1, . . . , nw, (A59d)

T (x, 0) = T0, x ∈ Ω, (A59e)

where x = (x1, x2), t are the spatial and temporal coordinates, respectively, T (x, t) is the temperature
over time, k = 1 is the thermal conductivity, ∆T = ∂2T/∂x2

1 + ∂2T/∂x2
2, h = 1 is the heat transfer

coefficient, ∇T = (∂T/∂x1, ∂T/∂x2), Ta = 0.1, Tc = 5, Tw = 1 are, respectively, the temperature
of the air, the cells (nc = 11 cells of radius rc = 1), the cooling pipes (nw = 6 pipes of radius
rw = 0.4), T0 = 0.1 is the initial temperature, and the geometry (i.e., Ω, γouter, etc) is shown in
Figure 3(a).

And the reformulated PDEs are (which is used by the proposed model, HC)

∂T

∂t
= k

(
∇ · p(x, t)

)
, x ∈ Ω, t ∈ (0, 1], (A60a)

p(x, t) = ∇T, x ∈ Ω ∪ ∂Ω, t ∈ (0, 1], (A60b)

k
(
n(x) · p(x, t)

)
= h

(
Ta − T (x, t)

)
, x ∈ γouter, t ∈ (0, 1], (A60c)

k
(
n(x) · p(x, t)

)
= h

(
Tc − T (x, t)

)
, x ∈ γcell,i, t ∈ (0, 1], i = 1, . . . , nc, (A60d)

k
(
n(x) · p(x, t)

)
= h

(
Tw − T (x, t)

)
, x ∈ γpipe,i, t ∈ (0, 1], i = 1, . . . , nw, (A60e)

T (x, 0) = T0, x ∈ Ω, (A60f)

where p(x, t) is the introduced extra field.

Construction of the Ansatz Since the solution is a scalar function (i.e., T (x, t)), we directly
denote the solution by u(x, t) = T (x, t). Let p̃ denote (u,p). We first derive the general solutions at
γouter, γcell,i, γpipe,i, respectively.

For x ∈ γouter, we have a(x) = h, b(x) = k, g(x) = hTa. According to Eq. (10), the general
solution p̃γouter is given by

p̃γouter = B(x)NNγouter(x, t) +
(h, kn)√
h2 + k2

hTa√
h2 + k2

, (A61)

where B(x) is computed in Eq. (A7) (with ñ = (ñ1, ñ2, ñ3) = (h, kn)/
√
h2 + k2). And for

x ∈ γcell,i and γpipe,i, the derivation is similar, where we only need to change Ta to Tc and Tw,
respectively.

Then, we gather all the general solutions computed to form our ansatz (û, p̂) according to Eq. (A30),
where {γouter, γcell,1, . . . , γcell,nc , γpipe,1, . . . , γpipe,nw} are reordered as {γi}1+nc+nw

i=1 and f(x) =
T0.

Choices of Extended Distance Functions For γcell,i and γpipe,i, since they are 2D circles, we can
directly choose the extended distance functions lγcell,i(x) and lγpipe,i(x) as the distance between x
and the center minus the radius. For the rectangular γouter, supposing that it is given by [a1, a2]×
[b1, b2], we construct the extended distance function lγouter as follows

lγouter(x) = SoftMin(x1 − a1, a2 − x1, x2 − b1, b2 − x2), (A62)

where x = (x1, x2), SoftMin is a differentiable version of min function which is implemented by
LogSumExp in PyTorch, i.e., SoftMin(y) = LogSumExp(−βy)/(−β), β = 4. And the extended
function l∂Ω(x) is computed by taking the SoftMin of the distances to all the boundaries

l∂Ω(x) = SoftMin(lγouter(x), lγcell,1(x), . . . , lγcell,nc (x), lγpipe,1(x), . . . , lγpipe,nw (x)). (A63)

14

Implementation All the models are trained for 5000 Adam iterations (with a learning rate scheduler
of ReduceLROnPlateau from PyTorch and an initial learning rate of 0.01), followed by a L-BFGS
optimization until convergence. Unless otherwise specified, the mean squared error (MSE) is used
for the loss function and tanh is used for the activation function. And the hyper-parameters of each
model are listed as follow

• HC: The main neural network is a multilayer perceptron (MLP) of size [3] + 4× [50] + [3]
(which means 3 inputs, 4 hidden layers of width 50, and 3 outputs). The sub-networks
(corresponding to Eq. (A60c), Eq. (A60d), and Eq. (A60e)) are all MLPs of size [3] + 3×
[20] + [3]. And the hyper-parameters of “hardness” are βs = 5 and βt = 10.

• PINN: The ansatz is an MLP of size [3] + 4× [50] + [1].

• PINN-LA: The weights of the loss terms corresponding to the BCs are approximated by
λ̂i = maxθn{|∇θLr(θn)|}

/
|∇θλiLi(θn)|. And the parameter of the moving average is

α = 0.1, which is recommended by the paper [7]. Besides, the parameters of the PINN are
the same as above.

• PINN-LA-2: In our modified version, we approximate the weights of the loss terms as
λ̂i = |∇θLr(θn)|

/
|∇θλiLi(θn)|. And the parameter of the moving average is also α = 0.1.

Here we replace the maximum with the mean to make the weights of the loss terms more
stable during the training process.

• FBPINN: The domain of the problem is divided into 4×6 = 24 subdomains by a regular grid.
The size of the sub-network, an MLP, corresponding to each subdomain is [3]+3× [30]+[1].
And the scale factor is σ = 0.4, chosen so that the window function is close to zero outside
the overlapping region of the subdomains.

• xPINN: The domain of the problem is divided into 4 × 6 = 24 subdomains by a regular
grid. The size of the sub-network corresponding to each subdomain is [3] + 3× [30] + [1].
And the loss terms of the interface condition include average solution as well as residual
continuity conditions.

• PFNN: The PFNN considers the variational formulation of the Eq. (A59) (i.e., Ritz formula-
tion), and embed the initial condition (IC) into its ansatz (similar to Eq. (5)). And the size of
the neural network (an MLP) is [3] + 4× [50] + [1].

• PFNN-2: The PFNN-2 replaces a single neural network with a domain decomposition
based neural network on the basis of PFNN. In the original literature [6], the domain is
decomposed in a hard way (like xPINN). However, in our experiments (see Table 1), we
find that the performance of hard decomposition is relatively poor, which is because new
loss terms are needed to maintain the continuity of the ansatz at the interfaces between the
sub-domains, which further aggravates the unbalanced competition. To overcome this, we
instead employ a soft domain decomposition, as in FBPINN. See the parts of PFNN and
FBPINN for the values of hyper-parameters.

A.8.2 Simulation of an Airfoil (Navier-Stokes Equations)

Governing PDEs The governing PDEs are given by

u(x) · ∇u(x) = −∇p(x) + v∇2u(x), x ∈ Ω, (A64a)
∇ · u(x) = 0, x ∈ Ω, (A64b)

u(x) = u0(x), x ∈ γinlet ∪ γtop ∪ γbottom, (A64c)
p(x) = 1, x ∈ γoutlet, (A64d)

n(x) · u(x) = 0, x ∈ γairfoil, (A64e)

where u(x) = (u1(x), u2(x)), p(x), v = 1/50 are the velocity, pressure, and viscosity of the
fluid, respectively, u0(x) = (1, 0), and the geometry of the problem (i.e., Ω, γinlet, etc) is shown in
Figure 3(b).

15

And the reformulated PDEs are (which is used by the proposed model, HC)(
u(x)− v∇

)
·
(
p1(x),p2(x)

)
= −∇p(x), x ∈ Ω, (A65a)

∇ · u(x) = 0, x ∈ Ω, (A65b)
p1(x) = ∇u1, x ∈ Ω ∪ ∂Ω, (A65c)
p2(x) = ∇u2, x ∈ Ω ∪ ∂Ω, (A65d)
u(x) = u0(x), x ∈ γinlet ∪ γtop ∪ γbottom, (A65e)
p(x) = 1, x ∈ γoutlet, (A65f)

n(x) · u(x) = 0, x ∈ γairfoil, (A65g)

where p1(x) and p2(x) are the introduced extra fields.

Construction of the Ansatz Here, the solution is (u(x), p(x)). For p(x), the general solution in
γoutlet is exactly pγoutlet(x) = 1. And the ansatz for p is given by

p̂ = pγoutlet(x) + lγoutlet(x)NNmain(x)[3], (A66)

where [3] means taking the third elements of the output of NNmain(x).

For u(x), the general solution in γinlet∪γtop∪γbottom is exactly uγ∗(x) = u0(x), where we define
an alias γ∗ for γinlet ∪ γtop ∪ γbottom. In γairfoil, the general solution is given by

uγairfoil = B(x)NNγ∗(x), (A67)

where B(x) = [n2(x),−n1(x)]
⊤ according to Eq. (A5) and the output of NNγ∗(x) is a scalar.

Gathering uγ∗ and uγairfoil , we then follow Eq. (11) to obtain the ansatz for û

û = l∂Ω(x)NNmain(x)[1 : 2]+exp
[
−αγ∗ l

γ∗(x)
]
uγ∗(x)+exp

[
−αγairfoil

lγairfoil(x)
]
uγairfoil(x),

(A68)
where [1 : 2] means taking the first two elements of the output of NNmain(x) and αγ∗ as well as
αγairfoil

are similarly defined as in Eq. (12).

Choices of Extended Distance Functions For lγairfoil(x), a direct way is to calculate the distance
between x and the airfoil γairfoil. However, it may be very time consuming since the γairfoil is highly
complicated. So we prefer to approximate the true distance with an MLP with 3 hidden layers of
width 30. We train the neural network before training our main model with 1024× 6 points sampled
in Ω (5/6 of them are sampled in the bounding box of the airfoil, and the rest are sampled in Ω) along
with their truth distances (which are computed by using the formula of the distance to a polygon) for
10, 000 Adam epochs (with a learning rate scheduler of ReduceLROnPlateau from PyTorch and an
initial learning rate of 0.001). The loss function is a ℓ1 loss. A polar coordinate transformation trick
is utilized as in Appendix A.5.

And for γoutlet, since it is a vertical line, for example, x1 = a, we can compute the extended distance
function as lγoutlet(x) = a − x1, where x = (x1, x2). And γ∗ is an open rectangle, so we can
compute lγ∗(x) similarly to the case of the rectangle (see Eq. (A62)) while ignoring the right side.
Besides, l∂Ω(x) is still computed by taking the SoftMin of the distances to all the boundaries.

Implementation All the models are trained for 5000 Adam iterations (with a learning rate scheduler
of ReduceLROnPlateau from PyTorch and an initial learning rate of 0.001), followed by a L-BFGS
optimization until convergence. And the hyper-parameters of each model are listed as follow

• HC: The main neural network is an MLP of size [2] + 6 × [50] + [7]. The sub-network
(corresponding to Eq. (A65g)) is an MLP of size [2]+4×[40]+[1]. And the hyper-parameters
of “hardness” is βs = 5.

• PINN: The ansatz is an MLP of size [2] + 6× [50] + [3].
• PINN-LA: The parameter of the moving average is α = 0.1.
• PINN-LA-2: The parameter of the moving average is α = 0.1.
• FBPINN: The domain of the problem is divided into 3×6 = 18 subdomains by a regular grid.

The size of the sub-network, an MLP, corresponding to each subdomain is [2]+4× [30]+[3].
And the scale factor is σ = 0.2, chosen so that the window function is close to zero outside
the overlapping region of the subdomains.

16

• xPINN: The domain of the problem is divided into 3 × 6 = 18 subdomains by a regular
grid. The size of the sub-network corresponding to each subdomain is [2] + 4× [30] + [3].
And the loss terms of the interface condition include average solution as well as residual
continuity conditions.

A.8.3 High-dimensional Heat Equation

Governing PDEs The governing PDEs are given by

∂u

∂t
= k∆u(x, t) + f(x, t), x ∈ Ω ⊂ Rd, t ∈ (0, 1], (A69a)

n(x) · ∇u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ (0, 1], (A69b)
u(x, 0) = g(x, 0), x ∈ Ω, (A69c)

where u is the quantity of interest, k = 1/d, f(x, t) = −k|x|2 exp (0.5|x|2 + t), d = 10, Ω is a unit
ball (i.e., Ω = {|x| ≤ 1}), and g(x, t) = exp (0.5|x|2 + t) which is also the analytical solution to
above PDEs.

And the reformulated PDEs are (which is used by the proposed model, HC)

∂u

∂t
= k

(
∇ · p(x, t)

)
+ f(x, t), x ∈ Ω ⊂ Rd, t ∈ (0, 1], (A70a)

p(x, t) = ∇u, x ∈ Ω, t ∈ (0, 1], (A70b)
n(x) · p(x, t) = g(x, t), x ∈ ∂Ω, t ∈ (0, 1], (A70c)

u(x, 0) = g(x, 0), x ∈ Ω, (A70d)

where p(x, t) is the introduced extra field.

Construction of the Ansatz The solution to the PDEs is a scalar function u and there is only one
boundary ∂Ω = {|x| = 1}. We now derive the general solution p∂Ω with respect to Eq. (A70c)

p∂Ω = B(x)NN∂Ω + n(x)g(x, t), (A71)

where B(x) = Id − n(x)n(x)⊤. And the ansatz (û, p̂) is given by

p̂ = l∂Ω(x)NNmain(x, t)[1 : d] + p∂Ω(x, t), (A72a)

û = NNmain(x, t)[d+ 1]
(
1− exp [−βtt]

)
+ g(x, 0) exp [−βtt], (A72b)

where [1 : d] means taking the first d elements of the output of NNmain(x, t) while [d+1] means the
last element.

Choices of Extended Distance Functions Since ∂Ω is a ND sphere, we can compute l∂Ω(x) by
subtracting the distance between x and the center from the radius (the symbol is different from the
previous 2D circles, since ∂Ω is the outer boundary).

Implementation All the models are trained for 5000 Adam iterations (with a learning rate scheduler
of ReduceLROnPlateau from PyTorch and an initial learning rate of 0.01), followed by a L-BFGS
optimization until convergence. And the hyper-parameters of each model are listed as follow

• HC: The main neural network is an MLP of size [11] + 4× [50] + [11]. The sub-network
(corresponding to Eq. (A70c)) is an MLP of size [11] + 3 × [20] + [10]. And the hyper-
parameters of “hardness” is βt = 10 (here we only have one boundary, so we can construct
our ansatz (in the spatial domain) as in Eq. (3) instead of Eq. (A30a) and βs is no longer
needed).

• PINN: The ansatz is an MLP of size [11] + 4× [50] + [1].

• PINN-LA: The parameter of the moving average is α = 0.1.

• PINN-LA-2: The parameter of the moving average is α = 0.1.

• PFNN: The size of the neural network (an MLP) is [11] + 4× [50] + [1].

17

3 × 50 3 × 100 5 × 50 5 × 100
Network Architecture

0.0

0.5

1.0

1.5

2.0

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Original
Extra Fields

(a) Poisson’s equation

3 × 50 3 × 100 5 × 50 5 × 100
Network Architecture

0.0

0.2

0.4

0.6

0.8

1.0

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Original
Extra Fields

(b) Schrödinger equation

Figure A2: The CV of all the values of |∇θLF | and |∇θ̃L̃F | during training.

A.8.4 Ablation Study: Extra fields

Here, our experiment is divided into two parts where we consider the Poisson’s equation and the
nonlinear Schrödinger equation, respectively. The relevant details are as follows

Poisson’s Equation The governing PDEs are described as
∆u(x) = −a2 sin ax, x ∈ (0, 2π), (A73a)
u(x) = 0, x = 0 ∨ x = 2π, (A73b)

where a = 2 and u(x) is the physical quantity of interest.

And the reformulated PDEs are (corresponding to the extra fields)
∇p(x) = −a2 sin ax, x ∈ (0, 2π), (A74a)
p(x) = ∇u(x), x ∈ (0, 2π), (A74b)
u(x) = 0, x = 0 ∨ x = 2π. (A74c)

where p(x) is the introduced extra field.

The two models (PINNs with and without the extra fields) are trained with Nf = 128 collocation
points and Nb = 2 boundary points for 10,000 Adam iterations (with a learning rate of 0.001). And
we have tested different network architectures, including [1] + 3× [50] + [·], [1] + 3× [100] + [·],
[1] + 5× [50] + [·], [1] + 5× [100] + [·], where for the PINN without the extra fields, the number of
outputs is 1, and for the PINN with the extra fields, the number of outputs is 2.

Schrödinger Equation The governing PDEs are described as

i
∂h

∂t
+

1

2

∂2h

∂x2
+ |h(x, t)|2h(x, t) = 0, x ∈ (−5, 5), t ∈ (0, π/2], (A75a)

h(t,−5) = h(t, 5), t ∈ (0, π/2], (A75b)
∂h

∂x
(t,−5) =

∂h

∂x
(t, 5), t ∈ (0, π/2], (A75c)

h(0, x) = 2 sech(x), x ∈ (−5, 5), (A75d)
where h(x, t) is the physical quantity of interest.

And the reformulated PDEs are (corresponding to the extra fields)

i
∂h

∂t
+

1

2

∂p

∂x
+ |h(x, t)|2h(x, t) = 0, x ∈ (−5, 5), t ∈ (0, π/2], (A76a)

p(x, t) =
∂h

∂x
, x ∈ [−5, 5], t ∈ (0, π/2], (A76b)

h(t,−5) = h(t, 5), t ∈ (0, π/2], (A76c)
∂h

∂x
(t,−5) =

∂h

∂x
(t, 5), t ∈ (0, π/2], (A76d)

h(0, x) = 2 sech(x), x ∈ (−5, 5), (A76e)

18

5000 10000 15000 20000
Iterations

100

10 1

10 2
PI

N
N

 L
os

s
10 2

10 1

100

101

H
C

 L
os

s

PINN
PINN-LA
PINN-LA-2
HC

Figure A3: The convergence history of the simulation of a 2D battery pack.

where p(x) is the introduced extra field.

The two models (PINNs with and without the extra fields) are trained with Nf = 1000 collocation
points, Nb = 20 boundary points, and Ni = 200 initial points for 10,000 Adam iterations (with a
learning rate of 0.001). And we have tested different network architectures, including [1]+3×[50]+[·],
[1] + 3× [100] + [·], [1] + 5× [50] + [·], [1] + 5× [100] + [·], where for the PINN without the extra
fields, the number of outputs is 2, and for the PINN with the extra fields, the number of outputs is 4.

Experimental Results We report the ratio of the the moving variance (MovVar) of |∇θLF | to that
of |∇θ̃L̃F | at each iteration during training, where the window size of the MovVar is 500 and after
the MovVar, a moving average filter with a window size of 500 is applied. The results are shown in
Figure 4. Besides, we also calculate the coefficient of variation (CV) of all the values of |∇θLF | and
|∇θ̃L̃F |, respectively. And we give the results in Figure A2. Using the CV as a criterion, we also
find that the extra fields significantly reduces the gradient oscillations during training, especially for
the complex nonlinear PDEs.

A.9 Empirical Analysis of Convergence

In this subsection, we will empirically analyze the convergence of our method as well as some
representative baselines in the context of the simulation of a 2D battery pack (see Section 5.2). We
now report the training history with respect to iterations in Figure A3. The left axis shows the loss
of PINNs (including PINN, PINN-LA, and PINN-LA-2) while the right axis shows the loss of our
method, HC. The PINN loss is computed by adding up all the loss terms (including the losses of
PDEs and BCs), where the loss weights are ignored for PINN-LA and PINN-LA-2. The first 5000
iterations are trained with Adam (separated by the gray dotted line), and the last 15000 are trained
with L-BFGS.

From the results in Figure A3, we can see that the loss functions of all models drop significantly after
switching to L-BFGS. This shows that L-BFGS can further promote convergence through utilizing

Table 1: Parallel experimental results of the simulation of a 2D battery pack (MAE of T)

t = 0 t = 0.5 t = 1 average

PINN 0.1232± 0.0219 0.0417± 0.0141 0.0263± 0.0078 0.0499± 0.0135
PINN-LA 0.1083± 0.0266 0.0927± 0.0372 0.1168± 0.0739 0.0969± 0.0385
PINN-LA-2 0.1065± 0.0059 0.0322± 0.0031 0.0200 ± 0.0020 0.0400± 0.0031
FBPINN 0.0763± 0.0071 0.0258± 0.0037 0.0205± 0.0041 0.0318± 0.0027
xPINN 0.2085± 0.0252 0.1144± 0.0194 0.1352± 0.0241 0.1310± 0.0194
PFNN 0.0000 ± 0.0000 0.3769± 0.0974 0.6012± 0.2274 0.3522± 0.1019
PFNN-2 0.0000 ± 0.0000 0.3814± 0.0381 0.5247± 0.0394 0.3365± 0.0236

HC 0.0000 ± 0.0000 0.0244 ± 0.0010 0.0226± 0.0012 0.0219 ± 0.0007

19

Table 2: Parallel experimental results of the simulation of a 2D battery pack (MAPE of T)

t = 0 t = 0.5 t = 1 average

PINN 123.16± 21.91% 10.97± 3.57% 4.52± 0.98% 23.58± 5.61%
PINN-LA 108.14± 26.57% 24.15± 8.07% 17.98± 8.97% 33.64± 8.89%
PINN-LA-2 106.39± 5.86% 8.70± 0.57% 3.86 ± 0.36% 19.56± 1.00%
FBPINN 76.25± 7.06% 7.69± 0.68% 5.26± 0.71% 15.07± 0.57%
xPINN 208.36± 25.21% 26.25± 4.99% 18.15± 3.05% 49.60± 7.37%
PFNN 0.02 ± 0.00% 94.63± 17.68% 105.38± 27.16% 80.92± 15.08%
PFNN-2 0.02 ± 0.00% 71.39± 6.98% 82.04± 8.90% 61.65± 4.64%

HC 0.02 ± 0.00% 5.29 ± 0.16% 3.87± 0.14% 5.22 ± 0.17%

Table 3: Parallel experimental results of the simulation of an airfoil (MAE)

u1 u2 p

PINN 0.4234± 0.0809 0.0681± 0.0162 0.3204± 0.1404
PINN-LA 0.4467± 0.0450 0.0630± 0.0061 0.3028± 0.0480
PINN-LA-2 0.4542± 0.0875 0.0679± 0.0111 0.3230± 0.1115
FBPINN 0.3975± 0.0221 0.0544± 0.0030 0.2650± 0.0059
xPINN 0.6942± 0.0432 0.0581± 0.0013 1.1587± 0.1251

HC 0.2824 ± 0.0215 0.0435 ± 0.0024 0.2144 ± 0.0114

the information of the second derivatives of the loss function. However, we may not start with
L-BFGS because it can easily lead to divergence. We consider Adam+L-BFGS to be a practical
choice. Furthermore, we find that the convergence of PINNs is negatively affected by the tricks of
learning rate annealing algorithm, especially the PINN-LA without our modification. The HC has the
fastest convergence rate among all models. This means that the hard-constraint method or extra fields
may be helpful in accelerating convergence.

A.10 Parallel Experiments

In this subsection, we revisit the three experiments in Section 5.2∼5.4 and perform parallel tests
in 5 runs to assess the significance of the results. We report the testing results (along with the 95%
confidence intervals) in Table 1∼6. From the results, we can see that our method, HC still outperforms
all the other baselines. Besides, HC has the least variation, which shows that the hard-constraint
methods can improve the stability of training.

A.11 Ethics Statement

PDEs have important applications in many fields, including applied physics, automobile manufactur-
ing, economics, and the aerospace industry. Solving PDE via neural networks has attracted much
attention in recent years, and it may be applied to the above fields in the future. Our method also be-
longs to this kind. However, the method for solving PDE based on neural networks has no theoretical
explanation and safety guarantee for the time being. Applying such methods to security-sensitive
domains may lead to unexpected incidents and the cause of the accident may be hard to diagnose.
Possible solutions include developing alternatives with theoretical interpretability or using safeguards.

Table 4: Parallel experimental results of the simulation of an airfoil (WMAPE)

u1 u2 p

PINN 0.5358± 0.1024 1.1709± 0.2778 0.2921± 0.1279
PINN-LA 0.5653± 0.0570 1.0819± 0.1048 0.2760± 0.0437
PINN-LA-2 0.5747± 0.1106 1.1670± 0.1920 0.2944± 0.1016
FBPINN 0.5030± 0.0279 0.9347± 0.0517 0.2416± 0.0054
xPINN 0.8784± 0.0546 0.9986± 0.0225 1.0562± 0.1140

HC 0.3573 ± 0.0272 0.7472 ± 0.0418 0.1954 ± 0.0104

20

Table 5: Parallel experimental results of the high-dimensional heat equation (MAE of u)

t = 0 t = 0.5 t = 1 average

PINN 0.0204± 0.0148 0.0357± 0.0104 0.1600± 0.0600 0.0525± 0.0173
PINN-LA 0.0430± 0.0751 0.3039± 0.6691 0.8011± 1.7228 0.3464± 0.7531
PINN-LA-2 0.0287± 0.0670 0.2071± 0.6524 0.5933± 1.7225 0.2455± 0.7433
PFNN 0.0000 ± 0.0000 0.0895± 0.0727 0.2130± 0.1790 0.0963± 0.0788

HC 0.0000 ± 0.0000 0.0028 ± 0.0006 0.0046 ± 0.0008 0.0027 ± 0.0006

Table 6: Parallel experimental results of the high-dimensional heat equation (MAPE of u)

t = 0 t = 0.5 t = 1 average

PINN 1.15± 0.51% 1.41± 0.41% 3.83± 1.45% 1.75± 0.58%
PINN-LA 2.86± 5.07% 12.06± 26.54% 19.35± 41.65% 11.46± 24.75%
PINN-LA-2 1.92± 4.55% 8.19± 25.80% 14.29± 41.54% 8.00± 24.25%
PFNN 0.00 ± 0.00% 3.59± 2.93% 5.19± 4.36% 3.20± 2.60%

HC 0.00 ± 0.00% 0.11 ± 0.03% 0.11 ± 0.02% 0.10 ± 0.02%

References
[1] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural

networks with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, 1995.

[2] Bernardo Llanas, Sagrario Lantarón, and Francisco J Sáinz. Constructive approximation of
discontinuous functions by neural networks. Neural Processing Letters, 27(3):209–226, 2008.

[3] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[5] Hailong Sheng and Chao Yang. Pfnn: A penalty-free neural network method for solving a class
of second-order boundary-value problems on complex geometries. Journal of Computational
Physics, 428:110085, 2021.

[6] Hailong Sheng and Chao Yang. Pfnn-2: A domain decomposed penalty-free neural network
method for solving partial differential equations. arXiv preprint arXiv:2205.00593, 2022.

[7] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

21

	Appendix
	A Counter Example of a Basis of the Null Space
	A Basis of the Null Space in Low Dimensions
	Explanation for the General Solution
	Theoretical Guarantee of the Constructed Ansatz
	Extension of the Parameter Functions in the BCs
	The Hard-Constraint Framework for Time-dependent PDEs
	Supplements to the Theoretical Analysis
	Supplements to the Problem Setting
	Proof of Theorem 4.1
	Analysis via the Condition Number

	Experimental details
	Simulation of a 2D battery pack (Heat Equation)
	Simulation of an Airfoil (Navier-Stokes Equations)
	High-dimensional Heat Equation
	Ablation Study: Extra fields

	Empirical Analysis of Convergence
	Parallel Experiments
	Ethics Statement

