
A Proofs of Theorem 1 and Corollary 1

A.1 Proofs

Proof of Theorem 1. Recall the differential inequality (28) below from Proposition 2:

− d

dt
W2(pt, qt) ≤ (Lf + Lsg

2)W2(pt, qt) + g2b
1
2 .

It can be solved by introducing the integrating factor,

I(t) := exp

(∫ t

0

Lf (r) + Ls(r)g(r)
2dr

)
where b(t) := Ept

[
∥∇ log pt(x)− sθ(x, t)∥2

]
. (29)

As d
dtI(t) = (Lf (t) + Ls(t)g(t)

2)I(t), the above inequality (28) can be written as

− d

dt
{I(t)W2(pt, qt)} ≤ g(t)2I(t)b(t)

1
2 .

Integrating both sides from 0 to T , we obtain that

I(0)W2(p0, q0)− I(T )W2(pT , qT ) ≤
∫ T

0

g(t)2I(t)b(t)
1
2 dt.

As I(0) = 1, we conclude that

W2(p0, q0) ≤
∫ T

0

g(t)2I(t)b(t)
1
2 dt+ I(T )W2(pT , qT ). (30)

Proof of Corollary 1. Let

JI(θ) =

∫ T

0

g(t)2I(t)b(t)
1
2 dt. (31)

Here, I(t) and b(t) = Ept

[
∥∇ log pt(x)− sθ(x, t)∥2

]
are given in (29). The Cauchy-Schwarz

inequality yields

JI(θ) ≤

(∫ T

0

2g(t)4I(t)2λ(t)−1dt

) 1
2
(
1

2

∫ T

0

λ(t)b(t)dt

) 1
2

. (32)

Since λ = g2 and JSM given in (5) satisfies

JSM (θ;λ) =
1

2

∫ T

0

λ(t)Ept

[
∥∇ log pt(x)− sθ(x, t)∥22

]
dt =

1

2

∫ T

0

λ(t)b(t)dt, (33)

we conclude (34):

W2(p0, q0) ≤

√√√√2

(∫ T

0

g(t)2I(t)2dt

)
JSM + I(T )W2(pT , qT ).

Remark 7. It is expected that the parallel results hold for weak solutions to (2) and (4) by using
suitable approximations. This approach has been studied for the Wasserstein contraction property in
[8, Section 6.2].

From (32) and (33) in the proof of Corollary 1, we obtain the following result for other choices of λ.
Corollary 4. Let p0 and q0 be given in Theorem 1. Suppose that g4I2λ−1 is integrable in [0, T ].
Then the following inequality holds:

W2(p0, q0) ≤

√√√√2

(∫ T

0

g(t)4I(t)2λ(t)−1dt

)
JSM + I(T )W2(pT , qT ). (34)
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A.2 Technical lemmas

Lemma 1. Let πt be an optimal transport plan between pt and qt. Then, we have

Eπt
[(x− y) · (v[qt](y)− v[pt](x))] ≤ W2(pt, qt)

{
(Lf + Lsg

2)W2(pt, qt) + g2b
1
2

}
(35)

where b(t) := Ept

[
∥∇ log pt(x)− sθ(x, t)∥2

]
.

Proof. The left-hand side of (35) is given by

Eπt
[(x− y) · (v[qt](y)− v[pt](x))] = Eπt

[(x− y) · (f(y, t)− f(x, t))]

+ g2Eπt
[(x− y) · (∇ log pt(x)− sθ(y, t))]

+
g2

2
Eπt

[(x− y) · (∇ log qt(y)−∇ log pt(x))] .

In Lemma 2 below, we prove that the last term is less than or equal to zero.

In what follows, we estimate the first two terms. First, using the Lipschitzness of f in space, we get

Eπt
[(x− y) · (f(y, t)− f(x, t))] ≤ LfEπt

[
∥x− y∥2

]
= LfW

2
2 (pt, qt).

The last equality follows from the fact that πt is an optimal plan between pt and qt.

Next, the second term g2Eπt [(x− y) · (∇ log pt(x)− sθ(y, t))] is the sum of the following two
terms:

I1 := g2Eπt [(x− y) · (sθ(x, t)− sθ(y, t))]

and
I2 := g2Eπt

[(x− y) · (∇ log pt(x)− sθ(x, t))] .

As shown above, the former one I1 is bounded from above by g2LsW
2
2 (pt, qt).

It suffices to find an upper bound on the latter one I2. By the Cauchy-Schwarz inequality, we have

I2 ≤ g2Eπt

[
∥x− y∥2

] 1
2 Eπt

[
|∇ log pt(x)− sθ(x, t)|2

] 1
2 .

As the marginals of πt are pt and qt, it holds that

Eπt

[
∥∇ log pt(x)− sθ(x, t)∥2

]
= Ept

[
∥∇ log pt(x)− sθ(x, t)∥2

]
.

As a consequence, we conclude that

I1 + I2 ≤ g(t)2W2(pt, qt)
{
LsW2(pt, qt) + b(t)

1
2

}
where b(t) = Ept

[
∥∇ log pt(x)− sθ(x, t)∥2

]
.

Before proving the lemma below, let us recall some basic definitions from the theory of optimal
transport. The Wasserstein distance defined in (7) has an equivalent formulation:

W2(µ, ν) = inf

{∫
Rd

∥x− T (x)∥2dµ : T#µ = ν

} 1
2

. (36)

The optimizer of the above problem is called the optimal map from µ to ν. It is well known that there
exists a convex function ϕ such that T = ∇ϕ.

Lemma 2. Eπt [(x− y) · (∇ log qt(y)−∇ log pt(x))] is nonpositive.

Proof. Let Tt be an optimal transport map from pt to qt and a convex function ϕt satisfy ∇ϕt = Tt

for all t ∈ [0, T ]. As in the proof of [7, Theorem 1], we have

Eπt [(x− y) · (∇ log qt(y)−∇ log pt(x))] = −Ept [∆ϕt +∆ϕ∗
t (∇ϕt)− 2d] (37)

where ϕ∗
t is a convex conjugate of ϕt. The convexity of ϕt yields that ∆ϕt +∆ϕ∗

t (∇ϕt)− 2d and
we conclude.
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B Further analysis of the upper bound

Proof of Corollary 2. Recall from Corollary 1 that

W2(p0, q0) ≤

√√√√2

(∫ T

0

g(t)2I(t)2dt

)
JSM + I(T )W2(pT , qT ). (38)

Based on the contraction property [8], we quantify the Wasserstein distance between pT and ϕ.

W2(pT , ϕ) ≤ exp

(
−
∫ T

0

β(t)

2
dt

)
W2(p0, ϕ). (39)

Using the above, the definition of I(t), and qT = ϕ, we conclude (19).

It worth noting that as a consequence of (39), W2(pT , ϕ) is small for an appropriate choice of T and
β(t).

B.1 Exponential convergence of ht

For simplicity of notations, we define the norm in L2(ϕ) as follows,

∥f∥L2(ϕ) :=

(∫
Rd

f2dϕ

) 1
2

, (40)

where ϕ is given in (18). In addition, assume that

β(t) > c > 0 for all t ≥ 0. (41)

Lemma 3. Under the same setting as in Corollary 2, we have

∥ht − 1∥L2(ϕ) ≤ exp

(
−σ2λ

2

∫ T

0

β(t)dt

)
∥h0 − 1∥L2(ϕ). (42)

where ht = pt/ϕ for some constant λ > 0. In particular, ht exponentially converges to 1 in L2(ϕ)
for β satisfying (41).

For a constant function β, Lemma 3 is proven in [23]. For the sake of completeness, we provide the
proof, which is a small modification of [23, Section 2].

Proof of Lemma 3. In our case, the equation (2) of pt is given by

∂tp−
β

2

(
∇ · (px) + σ2∆p

)
= 0, p(·, 0) = p0. (43)

By direct computations, we obtain the equation of h(x, t) = ht(x) as follows:

∂th− β

2

(
−∇h · x+ σ2∆h

)
= 0, h(·, 0) = h0. (44)

We estimate ∥h− 1∥2L2(ϕ) by differentiating it with respect to time. Using the integration by parts
and Poincaré inequality, we obtain that

d

dt
∥h− 1∥2L2(ϕ) = −σ2β(t)∥∇h∥2L2(ϕ) ≤ −σ2λβ(t)∥h− 1∥2L2(ϕ) (45)

This yields (42). Lastly, for β satisfying (41), ∥ht − 1∥2L2(ϕ) ≤ exp(−σ2λct)∥h0 − 1∥2L2(ϕ). Thus,
we conclude the exponential convergence of h to 1.

Remark 8. The convergence of ht to 1 can be shown under more general assumption: β > 0
satisfying

lim
T→∞

∫ T

0

β(t)dt = ∞.
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Further analysis is plausible based on the techniques in the study of partial differential equations.
Remark 9. As pt is given as the convolution between p0 and the Gaussian distribution, it is smooth
for t > 0. Therefore, ht is also smooth, and the higher-order derivatives of ht are all bounded. As a
consequence, the above result combined with Gagliardo–Nirenberg interpolation inequality yield
that the gradient of h, Dh, and the Hessian of h, D2h, also converge to zero in L2(ϕ).
Remark 10. Proving the uniform convergence of h, Dh, or D2h requires an additional technical
assumption that the support of h is bounded. Under the assumption, another interpolation inequality,
Agmon’s inequality, yields the desired uniform convergence result.

B.2 Estimation of Ls

In this subsection, we investigate the estimation of Ls. If JSM is sufficiently small, then sθ is close
to ∇ log pt. We first investigate the one-sided Lipschitz constant of ∇ log pt.
Lemma 4. Under the same setting as in Corollary 2, ∇ log pt satisfies the one-sided Lipschitz
condition with a constant (−σ−2 + ∥D2(log h)∥∞) i.e.,

(∇ log pt(x)−∇ log pt(y)) · (x− y) ≤ (−σ−2 + ∥D2(log h)∥∞)∥x− y∥2. (46)

where ∥ · ∥∞ denotes the supremum of the matrix norm,

∥D2(log h)∥∞ := sup
x∈Rd

∥D2(log h(x))∥ = sup
x,y∈Rd,∥y∥≤1

∥D2(log h(x))y∥. (47)

Proof. From the definition of ht, we have

log pt(x) = log ht(x) + log ϕ(x) = log ht(x)−
x2

2σ2
− c (48)

for some constant c. As a consequence,

(∇ log pt(x)−∇ log pt(y)) · (x− y) = (∇ log ht(x)−∇ log ht(y)) · (x− y)− σ−2∥x− y∥2.
(49)

To prove (46), it suffices to estimate (∇ log ht(x)−∇ log ht(y)) · (x− y). From the fundamental
theorem of calculus, we have

(∇ log ht(x)−∇ log ht(y)) =

∫ 1

0

D2(log ht)(sx+ (1− s)y)ds · (x− y). (50)

Using |z⊤D2(log ht(w))z| ≤ ∥D2(log h)∥∞∥z∥2 for all w, z ∈ Rd, we have

(∇ log ht(x)−∇ log ht(y)) · (x− y) ≤ ∥D2(log ht)∥∞∥x− y∥2 (51)

and conclude (46).

Remark 11. Based on the similar relation as in (50), the difference between Ls and −σ−2 +
∥D2(log h)∥∞ can be estimated. More precisely, we have Ls(t) = (−σ−2 + ∥D2(log h)∥∞) + ϵ(t).
Here, ϵ(t) depends on the difference between sθ and ∇ log pt. Therefore, it is expected that the upper
bound of

∫ T

0
ϵ(t)dt is given by JSM under suitable regularity assumptions.

C Proofs of Theorem 2 and Corollary 3

For a given t, let

JSM (θ, t) :=
1

2
Ept(x)[∥sθ(x, t)−∇x log pt(x)∥2], (52)

and
JDSM (θ, t) :=

1

2
Ep0(x(0))p0t(x|x(0))[∥sθ(x, t)−∇x log p0t(x|x(0))∥2]. (53)

Lemma 5. (Appendix in [36])

Ept(x)[∇x log pt(x)] = Ep0(x(0))p0t(x|x(0))[∇x log p0t(x|x(0))]. (54)
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Proof of Theorem 2. From Lemma 5 in [36], we have

JSM (θ, t) = JDSM (θ, t)

+
1

2
(Ept(x)

[
∥∇x log pt(x)∥2

]
− Ep0(x(0))p0t(x|x(0))[∥∇x log p0t(x|x(0))∥2])

(55)

Note that

Ept(x)

[
∥∇x log pt(x)∥2

]
− Ep0(x(0))p0t(x|x(0))[∥∇x log p0t(x|x(0))∥2]

= Ept(x)[(∇x log pt(x))
⊤(∇x log pt(x))]

−Ep0(x(0))[Ep0t(x|x(0))[(∇x log p0t(x|x(0)))⊤(∇x log p0t(x|x(0)))|x(0)]]
= Var[(∇x log pt(x))

⊤]− E[Var[(∇x log p0t(x|x(0)))⊤]|x(0)]
+(Ept(x)[∇x log pt(x)])

⊤(Ept(x)[∇x log pt(x)])

−Ep0(x(0))[(Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])⊤(Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])]
≤ (Ept(x)[∇x log pt(x)])

⊤(Ept(x)[∇x log pt(x)])

−Ep0(x(0))[(Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])⊤(Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])]
(56)

where the inequality comes from the law of total variance and our condition:

Var[(∇x log pt(x))
⊤]− E[Var[(∇x log p0t(x|x(0)))⊤|x(0)]]

= Var[E[(∇x log p0t(x|x(0)))⊤|x(0)]]
= 0.

(57)

Then, we have

(Ept(x)[∇x log pt(x)])
⊤(Ept(x)[∇x log pt(x)])

−Ep0(x(0))[(Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])⊤(Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])]
≤ (Ept(x)[∇x log pt(x)])

⊤(Ept(x)[∇x log pt(x)])

−(Ep0(x(0))Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])⊤(Ep0(x(0))Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])]
= (Ept(x)[∇x log pt(x)]− Ep0(x(0))Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])⊤

(Ept(x)[∇x log pt(x)] + Ep0(x(0))Ep0t(x|x(0))[∇x log p0t(x|x(0))|x(0)])
= 0,

(58)
where first inequality comes from Jensen’s inequality, and the last equality comes from eq. (54).

Recall that JSM (θ, λ) =
∫ T

0
λ(t)JSM (θ, t)dt and JDSM (θ, λ) =

∫ T

0
λ(t)JDSM (θ, t)dt, λ(t) > 0,

we have that JDSM ≥ JSM . Plugging it in eq. (34), we can get eq. (22).

Proof of Corollary 3. We have p0t(x|x(0)) = N (
√
ᾱtx(0), (1− ᾱt)I) where ᾱt =

∏t
r=1(1− βt),

which can be inferred from p(x(t)|x(t− 1)) = N (
√
1− βtx(t− 1), βtI).

Thus we can show that E[∇x log p0t(x|x(0))⊤|x(0)] is constant with respect to x(0): recall
p0t(x|x(0)) = N (

√
ᾱtx(0), (1 − ᾱt)I), we have ∇x log p0t(x|x(0)) = −((1 − ᾱt)I)

−1(x(t) −√
ᾱtx(0)), which is a linear function of x(t)−

√
ᾱtx(0). Using the Gaussian density function, we

have: ∫
p0t(x|x(0))∇x log p0t(x|x(0))dx = 0, (59)

As a result, Var[E[(∇x log p0t(x|x(0)))⊤|x(0)]] = 0, which satisfies the condition of eq. (21) in
Theorem 2.

Note that here the assumption of f and g is only a sufficient condition for
Var[E[(∇x log p0t(x|x(0)))⊤|x(0)]] = 0. In fact, any conditional distribution p0t that satis-
fies Var[E[(∇x log p0t(x|x(0)))⊤|x(0)]] = 0 can lead to the same conclusion.
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(a) Two-sided Lipschitz

2.2

(b) One-sided Lipschitz; L > 0

L1

f

(c) One-sided Lipschitz; L < 0

Figure 5: Two-sided and one-sided Lipschitzness.

D One-sided Lipschitzness

For an arbitrary Lipschitz function F : Rd → Rd, the Cauchy-Schwarz inequality yields that

(F (x)− F (y)) · (x− y) ≤ ∥F (x)− F (y)∥∥x− y∥ ≤ L∥x− y∥2 (60)

where L is the Lipschitz constant of F . Therefore, all Lipschitz function satisfies the one-sided
Lipschitz condition:

(F (x)− F (y)) · (x− y) ≤ L∥x− y∥2. (61)

As pointed out earlier in Section 3.2, the one-sided Lipschitz constant is not necessarily to be positive.
For instance, if F (x) = −ax+ b for a > 0 and b ∈ Rd, then −a < 0 can be the one-sided Lipschitz
constant of F while its Lipschitz constant is a > 0. Figure 5 visualizes this.

Note that two-sided Lipschitzness is a subset of one-sided Lipscthizness. See Figure 6 as an example.

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

Figure 6: A function could be one-sided Lipschitz but not two-sided.

E Full plot of Ls(t) when T = 100

See Fig. 7b.
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(a) Ls(t) when t ≥ 50, T = 100.
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(b) Full plot of Ls(t) when T = 100.

Figure 7: Plots of Ls(t), T = 100.

F Numerical results on JDSM upper-bounding JSM in DDPM

To verify JSM ≤ JDSM in (22) for DDPM, we adopt the same datasets as in Fig 1, and the same
training and evaluation settings in Section 4.1.

Moreover, to estimate JSM numerically, we estimate pt(x) by performing Gaussian kernel density
estimation with bandwidth = 0.05 on sampled data. ∇xpt(x) is estimated by central difference
approximation with interval = 0.01. The resulting plots of JDSM and JSM are shown in Fig 8, which
shows that JDSM is an upper bound of JSM in DDPM during training, where p0 is the dataset, and
q0 is the generated data distribution at the convergence of training.

(a) 1 cluster in 2D (b) 4 clusters in 2D

p_0
p_0

q_0q_0

Figure 8: JSM and JDSM during training. The datasets are the same as 2D datasets in Fig 1. The
training curves are obtained via training DDPM with modification of JDSM loss.

G Log-log plots with weight decay

See Fig. 9.
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(a) Coefficient=0.01 (b) Coefficient=0.1 (c) Coefficient=0.5 (d) Coefficient=1 (e) Coefficient=5

Figure 9: Log-log plots for different weight decay coefficients. As the weight decay coefficient
increases, the theoretical upper bound is approaching the empirical one.
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