A Proofs of Theorem 1 and Corollary 1

A. 1 Proofs

Proof of Theorem 1 . Recall the differential inequality 28 below from Proposition 2

$$
-\frac{d}{d t} W_{2}\left(p_{t}, q_{t}\right) \leq\left(L_{f}+L_{s} g^{2}\right) W_{2}\left(p_{t}, q_{t}\right)+g^{2} b^{\frac{1}{2}}
$$

It can be solved by introducing the integrating factor,

$$
\begin{equation*}
I(t):=\exp \left(\int_{0}^{t} L_{f}(r)+L_{s}(r) g(r)^{2} d r\right) \text { where } b(t):=\mathbb{E}_{p_{t}}\left[\left\|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right\|^{2}\right] \tag{29}
\end{equation*}
$$

As $\frac{d}{d t} I(t)=\left(L_{f}(t)+L_{s}(t) g(t)^{2}\right) I(t)$, the above inequality 28 can be written as

$$
-\frac{d}{d t}\left\{I(t) W_{2}\left(p_{t}, q_{t}\right)\right\} \leq g(t)^{2} I(t) b(t)^{\frac{1}{2}}
$$

Integrating both sides from 0 to T, we obtain that

$$
I(0) W_{2}\left(p_{0}, q_{0}\right)-I(T) W_{2}\left(p_{T}, q_{T}\right) \leq \int_{0}^{T} g(t)^{2} I(t) b(t)^{\frac{1}{2}} d t
$$

As $I(0)=1$, we conclude that

$$
\begin{equation*}
W_{2}\left(p_{0}, q_{0}\right) \leq \int_{0}^{T} g(t)^{2} I(t) b(t)^{\frac{1}{2}} d t+I(T) W_{2}\left(p_{T}, q_{T}\right) \tag{30}
\end{equation*}
$$

Proof of Corollary 1 Let

$$
\begin{equation*}
J_{I}(\theta)=\int_{0}^{T} g(t)^{2} I(t) b(t)^{\frac{1}{2}} d t \tag{31}
\end{equation*}
$$

Here, $I(t)$ and $b(t)=\mathbb{E}_{p_{t}}\left[\left\|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right\|^{2}\right]$ are given in 29). The Cauchy-Schwarz inequality yields

$$
\begin{equation*}
J_{I}(\theta) \leq\left(\int_{0}^{T} 2 g(t)^{4} I(t)^{2} \lambda(t)^{-1} d t\right)^{\frac{1}{2}}\left(\frac{1}{2} \int_{0}^{T} \lambda(t) b(t) d t\right)^{\frac{1}{2}} \tag{32}
\end{equation*}
$$

Since $\lambda=g^{2}$ and $J_{S M}$ given in (5) satisfies

$$
\begin{equation*}
J_{S M}(\theta ; \lambda)=\frac{1}{2} \int_{0}^{T} \lambda(t) \mathbb{E}_{p_{t}}\left[\left\|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right\|_{2}^{2}\right] d t=\frac{1}{2} \int_{0}^{T} \lambda(t) b(t) d t \tag{33}
\end{equation*}
$$

we conclude (34):

$$
W_{2}\left(p_{0}, q_{0}\right) \leq \sqrt{2\left(\int_{0}^{T} g(t)^{2} I(t)^{2} d t\right) J_{S M}}+I(T) W_{2}\left(p_{T}, q_{T}\right)
$$

Remark 7. It is expected that the parallel results hold for weak solutions to (2) and (4) by using suitable approximations. This approach has been studied for the Wasserstein contraction property in [8] Section 6.2].

From (32) and (33) in the proof of Corollary 1, we obtain the following result for other choices of λ.
Corollary 4. Let p_{0} and q_{0} be given in Theorem 11 Suppose that $g^{4} I^{2} \lambda^{-1}$ is integrable in $[0, T]$. Then the following inequality holds:

$$
\begin{equation*}
W_{2}\left(p_{0}, q_{0}\right) \leq \sqrt{2\left(\int_{0}^{T} g(t)^{4} I(t)^{2} \lambda(t)^{-1} d t\right) J_{S M}}+I(T) W_{2}\left(p_{T}, q_{T}\right) \tag{34}
\end{equation*}
$$

A. 2 Technical lemmas

Lemma 1. Let π_{t} be an optimal transport plan between p_{t} and q_{t}. Then, we have

$$
\begin{equation*}
\mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(v\left[q_{t}\right](y)-v\left[p_{t}\right](x)\right)\right] \leq W_{2}\left(p_{t}, q_{t}\right)\left\{\left(L_{f}+L_{s} g^{2}\right) W_{2}\left(p_{t}, q_{t}\right)+g^{2} b^{\frac{1}{2}}\right\} \tag{35}
\end{equation*}
$$

where $b(t):=\mathbb{E}_{p_{t}}\left[\left\|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right\|^{2}\right]$.
Proof. The left-hand side of (35) is given by

$$
\begin{aligned}
\mathbb{E}_{\pi_{t}} & {\left[(x-y) \cdot\left(v\left[q_{t}\right](y)-v\left[p_{t}\right](x)\right)\right]=\mathbb{E}_{\pi_{t}}[(x-y) \cdot(f(y, t)-f(x, t))] } \\
& +g^{2} \mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(\nabla \log p_{t}(x)-s_{\theta}(y, t)\right)\right] \\
& +\frac{g^{2}}{2} \mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(\nabla \log q_{t}(y)-\nabla \log p_{t}(x)\right)\right]
\end{aligned}
$$

In Lemma 2 below, we prove that the last term is less than or equal to zero.
In what follows, we estimate the first two terms. First, using the Lipschitzness of f in space, we get

$$
\mathbb{E}_{\pi_{t}}[(x-y) \cdot(f(y, t)-f(x, t))] \leq L_{f} \mathbb{E}_{\pi_{t}}\left[\|x-y\|^{2}\right]=L_{f} W_{2}^{2}\left(p_{t}, q_{t}\right)
$$

The last equality follows from the fact that π_{t} is an optimal plan between p_{t} and q_{t}.
Next, the second term $g^{2} \mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(\nabla \log p_{t}(x)-s_{\theta}(y, t)\right)\right]$ is the sum of the following two terms:

$$
I_{1}:=g^{2} \mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(s_{\theta}(x, t)-s_{\theta}(y, t)\right)\right]
$$

and

$$
I_{2}:=g^{2} \mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(\nabla \log p_{t}(x)-s_{\theta}(x, t)\right)\right]
$$

As shown above, the former one I_{1} is bounded from above by $g^{2} L_{s} W_{2}^{2}\left(p_{t}, q_{t}\right)$.
It suffices to find an upper bound on the latter one I_{2}. By the Cauchy-Schwarz inequality, we have

$$
I_{2} \leq g^{2} \mathbb{E}_{\pi_{t}}\left[\|x-y\|^{2}\right]^{\frac{1}{2}} \mathbb{E}_{\pi_{t}}\left[\left|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right|^{2}\right]^{\frac{1}{2}}
$$

As the marginals of π_{t} are p_{t} and q_{t}, it holds that

$$
\mathbb{E}_{\pi_{t}}\left[\left\|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right\|^{2}\right]=\mathbb{E}_{p_{t}}\left[\left\|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right\|^{2}\right] .
$$

As a consequence, we conclude that

$$
I_{1}+I_{2} \leq g(t)^{2} W_{2}\left(p_{t}, q_{t}\right)\left\{L_{s} W_{2}\left(p_{t}, q_{t}\right)+b(t)^{\frac{1}{2}}\right\}
$$

where $b(t)=\mathbb{E}_{p_{t}}\left[\left\|\nabla \log p_{t}(x)-s_{\theta}(x, t)\right\|^{2}\right]$.
Before proving the lemma below, let us recall some basic definitions from the theory of optimal transport. The Wasserstein distance defined in (7) has an equivalent formulation:

$$
\begin{equation*}
W_{2}(\mu, \nu)=\inf \left\{\int_{\mathbb{R}^{d}}\|x-T(x)\|^{2} d \mu: T_{\#} \mu=\nu\right\}^{\frac{1}{2}} \tag{36}
\end{equation*}
$$

The optimizer of the above problem is called the optimal map from μ to ν. It is well known that there exists a convex function ϕ such that $T=\nabla \phi$.
Lemma 2. $\mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(\nabla \log q_{t}(y)-\nabla \log p_{t}(x)\right)\right]$ is nonpositive.
Proof. Let T_{t} be an optimal transport map from p_{t} to q_{t} and a convex function ϕ_{t} satisfy $\nabla \phi_{t}=T_{t}$ for all $t \in[0, T]$. As in the proof of [7] Theorem 1], we have

$$
\begin{equation*}
\mathbb{E}_{\pi_{t}}\left[(x-y) \cdot\left(\nabla \log q_{t}(y)-\nabla \log p_{t}(x)\right)\right]=-\mathbb{E}_{p_{t}}\left[\Delta \phi_{t}+\Delta \phi_{t}^{*}\left(\nabla \phi_{t}\right)-2 d\right] \tag{37}
\end{equation*}
$$

where ϕ_{t}^{*} is a convex conjugate of ϕ_{t}. The convexity of ϕ_{t} yields that $\Delta \phi_{t}+\Delta \phi_{t}^{*}\left(\nabla \phi_{t}\right)-2 d$ and we conclude.

B Further analysis of the upper bound

Proof of Corollary 2 Recall from Corollary 1] that

$$
\begin{equation*}
W_{2}\left(p_{0}, q_{0}\right) \leq \sqrt{2\left(\int_{0}^{T} g(t)^{2} I(t)^{2} d t\right) J_{S M}}+I(T) W_{2}\left(p_{T}, q_{T}\right) \tag{38}
\end{equation*}
$$

Based on the contraction property [8], we quantify the Wasserstein distance between p_{T} and ϕ.

$$
\begin{equation*}
W_{2}\left(p_{T}, \phi\right) \leq \exp \left(-\int_{0}^{T} \frac{\beta(t)}{2} d t\right) W_{2}\left(p_{0}, \phi\right) \tag{39}
\end{equation*}
$$

Using the above, the definition of $I(t)$, and $q_{T}=\phi$, we conclude (19).
It worth noting that as a consequence of (39), $W_{2}\left(p_{T}, \phi\right)$ is small for an appropriate choice of T and $\beta(t)$.

B. 1 Exponential convergence of h_{t}

For simplicity of notations, we define the norm in $L^{2}(\phi)$ as follows,

$$
\begin{equation*}
\|f\|_{L^{2}(\phi)}:=\left(\int_{\mathbb{R}^{d}} f^{2} d \phi\right)^{\frac{1}{2}} \tag{40}
\end{equation*}
$$

where ϕ is given in 18. In addition, assume that

$$
\begin{equation*}
\beta(t)>c>0 \text { for all } t \geq 0 \tag{41}
\end{equation*}
$$

Lemma 3. Under the same setting as in Corollary 2 we have

$$
\begin{equation*}
\left\|h_{t}-1\right\|_{L^{2}(\phi)} \leq \exp \left(-\frac{\sigma^{2} \lambda}{2} \int_{0}^{T} \beta(t) d t\right)\left\|h_{0}-1\right\|_{L^{2}(\phi)} \tag{42}
\end{equation*}
$$

where $h_{t}=p_{t} / \phi$ for some constant $\lambda>0$. In particular, h_{t} exponentially converges to 1 in $L^{2}(\phi)$ for β satisfying (41).

For a constant function β, Lemma 3 is proven in [23]. For the sake of completeness, we provide the proof, which is a small modification of [23, Section 2].

Proof of Lemma 3. In our case, the equation (2) of p_{t} is given by

$$
\begin{equation*}
\partial_{t} p-\frac{\beta}{2}\left(\nabla \cdot(p x)+\sigma^{2} \Delta p\right)=0, p(\cdot, 0)=p_{0} \tag{43}
\end{equation*}
$$

By direct computations, we obtain the equation of $h(x, t)=h_{t}(x)$ as follows:

$$
\begin{equation*}
\partial_{t} h-\frac{\beta}{2}\left(-\nabla h \cdot x+\sigma^{2} \Delta h\right)=0, \quad h(\cdot, 0)=h_{0} \tag{44}
\end{equation*}
$$

We estimate $\|h-1\|_{L^{2}(\phi)}^{2}$ by differentiating it with respect to time. Using the integration by parts and Poincaré inequality, we obtain that

$$
\begin{equation*}
\frac{d}{d t}\|h-1\|_{L^{2}(\phi)}^{2}=-\sigma^{2} \beta(t)\|\nabla h\|_{L^{2}(\phi)}^{2} \leq-\sigma^{2} \lambda \beta(t)\|h-1\|_{L^{2}(\phi)}^{2} \tag{45}
\end{equation*}
$$

This yields (42). Lastly, for β satisfying (41), $\left\|h_{t}-1\right\|_{L^{2}(\phi)}^{2} \leq \exp \left(-\sigma^{2} \lambda c t\right)\left\|h_{0}-1\right\|_{L^{2}(\phi)}^{2}$. Thus, we conclude the exponential convergence of h to 1 .
Remark 8. The convergence of h_{t} to 1 can be shown under more general assumption: $\beta>0$ satisfying

$$
\lim _{T \rightarrow \infty} \int_{0}^{T} \beta(t) d t=\infty
$$

Further analysis is plausible based on the techniques in the study of partial differential equations.
Remark 9. As p_{t} is given as the convolution between p_{0} and the Gaussian distribution, it is smooth for $t>0$. Therefore, h_{t} is also smooth, and the higher-order derivatives of h_{t} are all bounded. As a consequence, the above result combined with Gagliardo-Nirenberg interpolation inequality yield that the gradient of $h, D h$, and the Hessian of $h, D^{2} h$, also converge to zero in $L^{2}(\phi)$.
Remark 10. Proving the uniform convergence of $h, D h$, or $D^{2} h$ requires an additional technical assumption that the support of h is bounded. Under the assumption, another interpolation inequality, Agmon's inequality, yields the desired uniform convergence result.

B. 2 Estimation of L_{s}

In this subsection, we investigate the estimation of L_{s}. If $J_{S M}$ is sufficiently small, then s_{θ} is close to $\nabla \log p_{t}$. We first investigate the one-sided Lipschitz constant of $\nabla \log p_{t}$.
Lemma 4. Under the same setting as in Corollary $2 \nabla \log p_{t}$ satisfies the one-sided Lipschitz condition with a constant $\left(-\sigma^{-2}+\left\|D^{2}(\log h)\right\|_{\infty}\right)$ i.e.,

$$
\begin{equation*}
\left(\nabla \log p_{t}(x)-\nabla \log p_{t}(y)\right) \cdot(x-y) \leq\left(-\sigma^{-2}+\left\|D^{2}(\log h)\right\|_{\infty}\right)\|x-y\|^{2} \tag{46}
\end{equation*}
$$

where $\|\cdot\|_{\infty}$ denotes the supremum of the matrix norm,

$$
\begin{equation*}
\left\|D^{2}(\log h)\right\|_{\infty}:=\sup _{x \in \mathbb{R}^{d}}\left\|D^{2}(\log h(x))\right\|=\sup _{x, y \in \mathbb{R}^{d},\|y\| \leq 1}\left\|D^{2}(\log h(x)) y\right\| \tag{47}
\end{equation*}
$$

Proof. From the definition of h_{t}, we have

$$
\begin{equation*}
\log p_{t}(x)=\log h_{t}(x)+\log \phi(x)=\log h_{t}(x)-\frac{x^{2}}{2 \sigma^{2}}-c \tag{48}
\end{equation*}
$$

for some constant c. As a consequence,

$$
\begin{equation*}
\left(\nabla \log p_{t}(x)-\nabla \log p_{t}(y)\right) \cdot(x-y)=\left(\nabla \log h_{t}(x)-\nabla \log h_{t}(y)\right) \cdot(x-y)-\sigma^{-2}\|x-y\|^{2} \tag{49}
\end{equation*}
$$

To prove (46), it suffices to estimate $\left(\nabla \log h_{t}(x)-\nabla \log h_{t}(y)\right) \cdot(x-y)$. From the fundamental theorem of calculus, we have

$$
\begin{equation*}
\left(\nabla \log h_{t}(x)-\nabla \log h_{t}(y)\right)=\int_{0}^{1} D^{2}\left(\log h_{t}\right)(s x+(1-s) y) d s \cdot(x-y) \tag{50}
\end{equation*}
$$

Using $\left|z^{\top} D^{2}\left(\log h_{t}(w)\right) z\right| \leq\left\|D^{2}(\log h)\right\|_{\infty}\|z\|^{2}$ for all $w, z \in \mathbb{R}^{d}$, we have

$$
\begin{equation*}
\left(\nabla \log h_{t}(x)-\nabla \log h_{t}(y)\right) \cdot(x-y) \leq\left\|D^{2}\left(\log h_{t}\right)\right\|_{\infty}\|x-y\|^{2} \tag{51}
\end{equation*}
$$

and conclude (46).
Remark 11. Based on the similar relation as in (50), the difference between L_{s} and $-\sigma^{-2}+$ $\left\|D^{2}(\log h)\right\|_{\infty}$ can be estimated. More precisely, we have $L_{s}(t)=\left(-\sigma^{-2}+\left\|D^{2}(\log h)\right\|_{\infty}\right)+\epsilon(t)$. Here, $\epsilon(t)$ depends on the difference between s_{θ} and $\nabla \log p_{t}$. Therefore, it is expected that the upper bound of $\int_{0}^{T} \epsilon(t) d t$ is given by $J_{S M}$ under suitable regularity assumptions.

C Proofs of Theorem 2 and Corollary 3

For a given t, let

$$
\begin{equation*}
J_{S M}(\theta, t):=\frac{1}{2} \mathbb{E}_{p_{t}(x)}\left[\left\|s_{\theta}(x, t)-\nabla_{x} \log p_{t}(x)\right\|^{2}\right] \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{D S M}(\theta, t):=\frac{1}{2} \mathbb{E}_{p_{0}(x(0)) p_{0 t}(x \mid x(0))}\left[\left\|s_{\theta}(x, t)-\nabla_{x} \log p_{0 t}(x \mid x(0))\right\|^{2}\right] \tag{53}
\end{equation*}
$$

Lemma 5. (Appendix in 36])

$$
\begin{equation*}
\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]=\mathbb{E}_{p_{0}(x(0)) p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0))\right] \tag{54}
\end{equation*}
$$

Proof of Theorem 2. From Lemma[5in [36], we have

$$
\begin{align*}
J_{S M}(\theta, t)= & J_{D S M}(\theta, t) \\
& +\frac{1}{2}\left(\mathbb{E}_{p_{t}(x)}\left[\left\|\nabla_{x} \log p_{t}(x)\right\|^{2}\right]-\mathbb{E}_{p_{0}(x(0)) p_{0 t}(x \mid x(0))}\left[\left\|\nabla_{x} \log p_{0 t}(x \mid x(0))\right\|^{2}\right]\right) \tag{55}
\end{align*}
$$

Note that

$$
\begin{align*}
& \mathbb{E}_{p_{t}(x)}\left[\left\|\nabla_{x} \log p_{t}(x)\right\|^{2}\right]-\mathbb{E}_{p_{0}(x(0)) p_{0 t}(x \mid x(0))}\left[\left\|\nabla_{x} \log p_{0 t}(x \mid x(0))\right\|^{2}\right] \\
= & \mathbb{E}_{p_{t}(x)}\left[\left(\nabla_{x} \log p_{t}(x)\right)^{\top}\left(\nabla_{x} \log p_{t}(x)\right)\right] \\
& -\mathbb{E}_{p_{0}(x(0))}\left[\mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right)^{\top}\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right) \mid x(0)\right]\right] \\
= & \operatorname{Var}\left[\left(\nabla_{x} \log p_{t}(x)\right)^{\top}\right]-\mathbb{E}\left[\operatorname{Var}\left[\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right)^{\top}\right] \mid x(0)\right] \\
& +\left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right)^{\top}\left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right) \\
& -\mathbb{E}_{p_{0}(x(0))}\left[\left(\mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)^{\top}\left(\mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)\right] \\
\leq & \left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right)^{\top}\left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right) \\
& -\mathbb{E}_{p_{0}(x(0))}\left[\left(\mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)^{\top}\left(\mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)\right] \tag{56}
\end{align*}
$$

where the inequality comes from the law of total variance and our condition:

$$
\begin{align*}
& \operatorname{Var}\left[\left(\nabla_{x} \log p_{t}(x)\right)^{\top}\right]-\mathbb{E}\left[\operatorname{Var}\left[\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right)^{\top} \mid x(0)\right]\right] \\
= & \operatorname{Var}\left[\mathbb{E}\left[\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right)^{\top} \mid x(0)\right]\right] \tag{57}\\
= & 0
\end{align*}
$$

Then, we have

$$
\begin{align*}
& \left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right)^{\top}\left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right) \\
& -\mathbb{E}_{p_{0}(x(0))}\left[\left(\mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)^{\top}\left(\mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)\right] \\
\leq & \left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right)^{\top}\left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]\right) \\
& \left.-\left(\mathbb{E}_{\left.p_{0}(x(0))\right)} \mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)^{\top}\left(\mathbb{E}_{p_{0}(x(0))} \mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)\right] \\
= & \left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]-\mathbb{E}_{p_{0}(x(0))} \mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right)^{\top} \\
& \left(\mathbb{E}_{p_{t}(x)}\left[\nabla_{x} \log p_{t}(x)\right]+\mathbb{E}_{p_{0}(x(0))} \mathbb{E}_{p_{0 t}(x \mid x(0))}\left[\nabla_{x} \log p_{0 t}(x \mid x(0)) \mid x(0)\right]\right) \\
= & 0, \tag{58}
\end{align*}
$$

where first inequality comes from Jensen's inequality, and the last equality comes from eq. (54).
Recall that $J_{S M}(\theta, \lambda)=\int_{0}^{T} \lambda(t) J_{S M}(\theta, t) d t$ and $J_{D S M}(\theta, \lambda)=\int_{0}^{T} \lambda(t) J_{D S M}(\theta, t) d t, \lambda(t)>0$, we have that $J_{D S M} \geq J_{S M}$. Plugging it in eq. 34), we can get eq. (22).

Proof of Corollary 3 We have $p_{0 t}(x \mid x(0))=\mathcal{N}\left(\sqrt{\bar{\alpha}_{t}} x(0),\left(1-\bar{\alpha}_{t}\right) I\right)$ where $\bar{\alpha}_{t}=\prod_{r=1}^{t}\left(1-\beta_{t}\right)$, which can be inferred from $p(x(t) \mid x(t-1))=\mathcal{N}\left(\sqrt{1-\beta_{t}} x(t-1), \beta_{t} I\right)$.
Thus we can show that $\mathbb{E}\left[\nabla_{x} \log p_{0 t}(x \mid x(0))^{\top} \mid x(0)\right]$ is constant with respect to $x(0)$: recall $p_{0 t}(x \mid x(0))=\mathcal{N}\left(\sqrt{\bar{\alpha}_{t}} x(0),\left(1-\bar{\alpha}_{t}\right) I\right)$, we have $\nabla_{x} \log p_{0 t}(x \mid x(0))=-\left(\left(1-\bar{\alpha}_{t}\right) I\right)^{-1}(x(t)-$ $\left.\sqrt{\bar{\alpha}_{t}} x(0)\right)$, which is a linear function of $x(t)-\sqrt{\bar{\alpha}_{t}} x(0)$. Using the Gaussian density function, we have:

$$
\begin{equation*}
\int p_{0 t}(x \mid x(0)) \nabla_{x} \log p_{0 t}(x \mid x(0)) d x=0 \tag{59}
\end{equation*}
$$

As a result, $\operatorname{Var}\left[\mathbb{E}\left[\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right)^{\top} \mid x(0)\right]\right]=0$, which satisfies the condition of eq. 21) in Theorem 2
Note that here the assumption of f and g is only a sufficient condition for $\operatorname{Var}\left[\mathbb{E}\left[\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right)^{\top} \mid x(0)\right]\right]=0$. In fact, any conditional distribution $p_{0 t}$ that satisfies $\operatorname{Var}\left[\mathbb{E}\left[\left(\nabla_{x} \log p_{0 t}(x \mid x(0))\right)^{\top} \mid x(0)\right]\right]=0$ can lead to the same conclusion.

Figure 5: Two-sided and one-sided Lipschitzness.

D One-sided Lipschitzness

For an arbitrary Lipschitz function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, the Cauchy-Schwarz inequality yields that

$$
\begin{equation*}
(F(x)-F(y)) \cdot(x-y) \leq\|F(x)-F(y)\|\|x-y\| \leq L\|x-y\|^{2} \tag{60}
\end{equation*}
$$

where L is the Lipschitz constant of F. Therefore, all Lipschitz function satisfies the one-sided Lipschitz condition:

$$
\begin{equation*}
(F(x)-F(y)) \cdot(x-y) \leq L\|x-y\|^{2} . \tag{61}
\end{equation*}
$$

As pointed out earlier in Section 3.2, the one-sided Lipschitz constant is not necessarily to be positive. For instance, if $F(x)=-a x+b$ for $a>0$ and $b \in \mathbb{R}^{d}$, then $-a<0$ can be the one-sided Lipschitz constant of F while its Lipschitz constant is $a>0$. Figure 5 visualizes this.
Note that two-sided Lipschitzness is a subset of one-sided Lipscthizness. See Figure 6as an example.

Figure 6: A function could be one-sided Lipschitz but not two-sided.

E Full plot of $L_{s}(t)$ when $T=100$

See Fig. 7b

Figure 7: Plots of $L_{s}(t), T=100$.

F Numerical results on $J_{D S M}$ upper-bounding $J_{S M}$ in DDPM

To verify $J_{S M} \leq J_{D S M}$ in 22) for DDPM, we adopt the same datasets as in Fig 1 , and the same training and evaluation settings in Section 4.1

Moreover, to estimate $J_{S M}$ numerically, we estimate $p_{t}(x)$ by performing Gaussian kernel density estimation with bandwidth $=0.05$ on sampled data. $\nabla_{x} p_{t}(x)$ is estimated by central difference approximation with interval $=0.01$. The resulting plots of $J_{D S M}$ and $J_{S M}$ are shown in Fig 8 which shows that $J_{D S M}$ is an upper bound of $J_{S M}$ in DDPM during training, where p_{0} is the dataset, and q_{0} is the generated data distribution at the convergence of training.

Figure 8: $J_{S M}$ and $J_{D S M}$ during training. The datasets are the same as 2D datasets in Fig 1 . The training curves are obtained via training DDPM with modification of $J_{D S M}$ loss.

G Log-log plots with weight decay

See Fig. 9

Figure 9: Log-log plots for different weight decay coefficients. As the weight decay coefficient increases, the theoretical upper bound is approaching the empirical one.

