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A Details of MA-DAC1

A.1 Details of MOEA/D2

First, we give a brief introduction to multi-objective optimization problems (MOPs), which can be3

defined as4

min F (x) = (f1(x), . . . , fm(x)) s.t. x ∈ Ω, (1)
where x = (x1, . . . , xD) is a solution, F : Ω → Rm constitutes m objective functions, Ω =5

[xL
i , x

U
i ]

D ⊆ RD is the solution space, and Rm is the objective space.6

Definition A.1. A solution x∗ is Pareto-optimal with respect to Eq. (1), if ∄x ∈ Ω such that ∀i :7

fi(x) ≤ fi(x
∗) and ∃i : fi(x) < fi(x

∗). The set of all Pareto-optimal solutions is called Pareto-8

optimal set (PS). The set of the corresponding objective vectors of PS, i.e., {F (x) | x ∈ PS}, is9

called Pareto front (PF).10

Instead of focusing on a single optimal solution in single-objective optimization, the goal of MOP11

is to find at least one Pareto-optimal solution for each objective vector in the PF. However, as the12

size of PF can be prohibitively large or even infinite, it is often to find a set of solutions that can13

approximate the PS well, i.e., the set of their objective vectors can approximate the PF well.14

Evolutionary algorithms have demonstrated their effectiveness in solving MOPs. Their population-15

based nature can approximate the Pareto optimal solutions within one execution, with each solution16

in the population representing a unique trade-off between the objectives. MOEA/D [17] is a rep-17

resentative multi-objective evolutionary algorithm. MOEA/D converts an MOP into a number of18

single-objective sub-problems through a number of weights, where neighboring solutions work co-19

operatively for the optimal solutions for the single-objective sub-problems. Note that an optimal20

solution for a single-objective sub-problem must be Pareto optimal for the MOP.21

MOEA/D consists of two major processes, i.e., decomposition and collaboration [17, 14, 5]. In de-22

composition, MOEA/D transforms the task of approximating the PF into a number of sub-problems23

through a number of weights and an aggregation function. There have been several aggregation24

functions for MOEA/D. Here, we introduce the common Tchebycheff approach (TCH) that is also25

used in this paper. Given a weight vector w = (w1, . . . , wm) where wi ≥ 0, ∀i ∈ {1, . . . ,m} and26 ∑m
i=1 wi = 1, the sub-problem by TCH is formulated as27

min
x∈Ω

g(x | w, z∗) = max
1≤i≤m

{wi · |fi(x)− z∗i |}, (2)

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal point consisting of the best objective values obtained so far.28

The basic idea of collaboration is that neighboring sub-problems are more likely to share similar29

properties, e.g., similar objective functions and/or optimal solutions [5]. In particular, the neighbor-30

hood of a sub-problem is determined by the Euclidean distance of its corresponding weight vector31

with respect to the others and the hyperparameter neighborhood size: if the distance between two32

sub-problems is smaller than the neighborhood size, they are the neighborhood of each other. In the33

mating selection of a sub-problem, the parent solutions are randomly selected from its neighborhood,34
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Algorithm 1: MOEA/D
Parameters: Population size N , number T of iterations

1 Initialize a population {x(i)}Ni=1 of solutions, and a corresponding set W = {w(i)}Ni=1 of
weight vectors ;

2 t = 0 ;
3 while t < T do
4 for i = 1 : N do
5 Randomly select parent solutions from the neighborhood of w(i) , denoted as Θw(i)

;
6 Use crossover and mutation operators to generate an offspring solution x′(i);
7 Evaluate the offspring solution to obtain F (x′(i));
8 Update the ideal point z∗. That is, for any j ∈ {1, 2, . . . ,m}, if fj(x′(i)) < z∗

j , then
z∗
j = fj(x

′(i));

9 Update the corresponding solution of each sub-problem within Θw(i)

by x′(i). That is,
for each w(j) ∈ Θw(i)

, if g(x′(i) | w(j), z∗) < g(x(j) | w(j), z∗), then x(j) = x′(i)

10 end
11 t = t+ 1
12 end

and the newly generated offspring solution is used to update the solutions of sub-problems within35

the same neighborhood.36

The procedure of MOEA/D used in this paper is described in Algorithm 1. Firstly, it generates a37

population {x(i)}Ni=1 of solutions with size N , associated with N weight vectors {w(i)}Ni=1 in line 1.38

A weight vector w(i) corresponds to a single-objective sub-problem, and x(i) is the current best so-39

lution associated with this sub-problem. Then, in each iteration (i.e., lines 4–9) of MOEA/D, for40

each sub-problem, it selects parent solutions from the neighborhood, generates an offspring solution41

by reproduction operators, and updates the solutions of the sub-problem and its neighboring sub-42

problem(s). After obtaining parent solutions in line 5, it uses reproduction operators (e.g., simulated43

binary crossover (SBX) operator or differential evolution (DE) operator) and polynomial mutation44

(PM) operator [17], to generate an offspring solution x′(i) in line 6. Then, it evaluates the offspring45

solution and obtain the objective vector F (x′(i)) in line 7. Finally, it uses the offspring solution to46

update the ideal point z∗ in line 8 and the solutions of the sub-problems within the neighborhood47

Θw(i)

of the current sub-problem w(i) in line 9. For each j ∈ {1, 2, . . . ,m}, z∗j is the best found48

value of the j-th objective fj , and thus if fj(x′(i)) is better, i.e., fj(x′(i)) < z∗j , then z∗j will be ud-49

pated accordingly. For each sub-problem w(j) within Θw(i)

, if x′(i) is better than its corresponding50

solution x(j), i.e., g(x′(i) | w(j), z∗) < g(x(j) | w(j), z∗), then x(j) will be udpated accordingly.51

A.2 State formulation52

The state of our proposed benchmark, i.e., MaMo, can be divided into three parts.53

1. The first part (i.e., indexes 0–1 in Table S1) contains the features of the problem instance,54

i.e., the numbers of objectives and variables.55

2. The second part (i.e., indexes 2–3 in Table S1) contains the features of the optimization56

process, i.e., how much computational budget has been used and how many steps of the57

algorithm have not made any progress, i.e., stagnant count.58

3. In the third part (i.e., indexes 4–21 in Table S1), we use several indicators, i.e., hypervol-59

ume [18], the ratio of non-dominated solutions in the population, and the average distance60

of the solutions [7], to reflect the state of the current population. For each indicator, we also61

use the gap between the current value and the value corresponding to the last population62

to reflect the immediate evolutionary progress. Besides, we use statistic metrics (i.e., the63

mean and variance) of these indicators in the last five steps and all steps from the beginning64

to characterize the short and long histories of the optimization, respectively.65
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The values of all features (except the number of objectives and the number of variables) in a state are66

in [0, 1] to ensure the generalization of the learned MA-DAC policy. The detailed state features at67

step t are shown in Table S1. We use List(I, t, l) to denote a list of indicator values from step t−l+168

to t, i.e., [It−l+1, . . . , It], where I denotes a specific indicator and Ii denotes the indicator value at69

step i. Note that ∀i < 0, Ii = 0 as default. For the considered three indicators, i.e., hypervolume,70

the ratio of non-dominated solutions in the population and the average distance of the solutions, they71

are denoted as HV, NDRatio and Dist, respectively.72

Table S1: State at step t in MaMo.

Index Parts of state Feature Notes

0 1 m Number of objectives
1 1 D Number of variables

2 2 t/T The computational budget has been used
3 2 Nstag/T Stagnant count ratio

4 3 HVt Hypervolume value
5 3 NDRatiot Ratio of non-dominated solutions
6 3 Distt Average distance

7 3 HVt −HVt−1 Change of HV between steps t and t− 1
8 3 NDRatiot −NDRatiot−1 Change of NDRatio between steps t and t− 1
9 3 Distt −Distt−1 Change of Dist between steps t and t− 1

10 3 Mean(List(HV, t, 5)) Mean of HV in the last 5 steps
11 3 Mean(List(NDRatio, t, 5)) Mean of NDRatio in the last 5 steps
12 3 Mean(List(Dist, t, 5)) Mean of Dist in the last 5 steps
13 3 Var(List(HV, t, 5)) Variance of HV in the last 5 steps
14 3 Var(List(NDRatio, t, 5)) Variance of NDRatio in the last 5 steps
15 3 Var(List(Dist, t, 5)) Variance of Dist in the last 5 steps

16 3 Mean(List(HV, t, t)) Mean of HV in all the steps so far
17 3 Mean(List(NDRatio, t, t)) Mean of NDRatio in all the steps so far
18 3 Mean(List(Dist, t, t)) Mean of Dist in all the steps so far
19 3 Var(List(HV, t, t)) Variance of HV in all the steps so far
20 3 Var(List(NDRatio, t, t)) Variance of NDRatio in all the steps so far
21 3 Var(List(Dist, t, t)) Variance of Dist in all the steps so far

A.3 Action formulation73

We consider four heterogeneous types of configuration hyperparameters in MOEA/D as the actions74

of four different agents of MA-DAC.75

Weights. In MOEA/D, weights are used to transform an MOP into multiple single-objective sub-76

problems, which should be as diverse as possible [17]. Inspired by MOEA/D-AWA [9], the action77

space for weights is discrete with two dimensions, i.e., adjusting (T) and not adjusting (N) the78

weights. Furthermore, we limit the frequency of adjustment because too frequent adjustment will79

lead to drastic changes in the sub-problems and is detrimental to the optimization process [9]. If the80

action is T, weights will be updated before selecting the parent solutions. The weights adaptation81

mechanism is as follows.82

We first calculate the sparsity level of each solution x(i) based on vicinity distance [4]:83

SL
(
x(i), {x(p)}Np=1

)
=

m∏
j=1

l(x(i), j), (3)

where l(x(i), j) is the Euclidean distance between x(i) and its j-th nearest neighbor in the popu-84

lation {x(p)}Np=1. The m closest neighbors in the population are used for calculation, where m is85

the number of objectives. After calculating the sparsity level of each solution, the sub-problems86

corresponding to the solutions whose sparsity levels are ranked bottom 5%, i.e., the overcrowded87

solutions, will be removed.88

To ensure that there are still N sub-problems in total, we should add 0.05N new sub-problems and89

their corresponding solutions. The newly added solutions are from an elite population, which stores90
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all historical non-dominated solutions with a capacity of 1.5N . If the size of the elite population91

exceeds the capacity, the solutions with the lowest sparsity level will be removed. For each solution92

x′ in the elite population, we calculate its sparsity level with respect to the current population, i.e.,93

SL(x′, Pop), where Pop denotes the set of 0.95N solutions in the current population after removing94

the overcrowded solutions. Then, we select the solution from the elite population, which has the95

highest sparsity level with respect to the current population, and add it to the current population; this96

process is repeated for 0.05N times. For each newly added solution, the corresponding sub-problem97

(i.e., weight vector) is generated in a specific way, whose details can refer to Algorithm 3 in [9].98

Neighborhood size. The neighborhood size is to control the distance between solutions in mating99

selection. A small size helps the search exploit the local area, while a large size helps the search100

explore a wide objective space [15]. We discretize the action space into four dimensions, i.e., 15, 20,101

25, and 30, where 20 is the default value.102

Types of the reproduction operators. We consider four types of DE operators with different103

search abilities introduced in [6]. Assuming that we are reproducing an offspring solution for the104

i-th sub-problem. Let x(i) and x′(i) denote its current solution and the generated offspring solution,105

respectively. The equations of four types of DE operators are shown as follows:106

• OP1: x′(i) = x(i) + F ×
(
x(r1) − x(r2)

)
,107

• OP2: x′(i) = x(i) + F ×
(
x(r1) − x(r2)

)
+ F ×

(
x(r3) − x(r4)

)
,108

• OP3: x′(i) = x(i) +K ×
(
x− x(r1)

)
+ F ×

(
x(r2) − x(r3)

)
+ F ×

(
x(r4) − x(r5)

)
,109

• OP4: x′(i) = x(i) +K ×
(
x− x(r1)

)
+ F ×

(
x(r2) − x(r3)

)
.110

Here, x(r1),x(r2),x(r3),x(r4), and x(r5) are different parent solutions randomly selected from the111

neighborhood of x(i). The scaling factor F > 0 controls the impact of the vector differences on the112

mutant vector, and K ∈ [0, 1] plays a similar role to F .113

Parameters of the reproduction operators. The parameters (e.g., scaling factor) of the reproduc-114

tion operators in MOEA/D significantly affect the algorithm’s performance [11]. We set the scaling115

factor K to a fixed value of 0.5 as recommended [6], and dynamically adjust the scaling factor F .116

The action space has four discrete dimensions, i.e., 0.4, 0.5, 0.6 and 0.7, where 0.5 is the default117

value.118

B Additional results119

B.1 Details of experimental settings120

Common settings of MOEA/D We implement MOEA/D with Platypus.1 All algorithms men-121

tioned in this paper use the same common settings[17, 13], as shown in Table S2.122

DQN We implement DQN with tianshou2 [16] framework and adjust some of the hyperparam-123

eters to fit this new task. The network structure is:124

state → MLP(128) → relu → MLP(128) → relu → MLP(128)
→ relu → MLP(number of actions)

where MLP(n) means a fully-connected layer with output size of n, and relu means Rectified Linear125

Units. Here, the action apace is the concatenation of the four types of configuration hyperparameters,126

with a dimension of 128 (i.e., 4× 4× 4× 2). Some key hyperparameters of DQN are as follows:127

• The learning rate is 3e-4.128

• The discounting factor γ is 0.99.129

• The buffer size is 50000 (unit is transition).130

• The number of training steps is 400000.131

1https://github.com/Project-Platypus/Platypus
2https://github.com/thu-ml/tianshou
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Table S2: Common Settings of MOEA/D

General settings

Population size N 210
Number T of iterations 100×m

Reproduction operators

Crossover operator Simulated binary crossover (SBX)
Distribution index of SBX 20

Mutation operator Polynomial mutation (PM)
Probability of PM 1/D

Distribution index of PM 20

Aggregation function

Aggregation function Tchebycheff approach
Neighborhood size 20

MA-UCB MA-UCB uses four upper confidence bound (UCB) [1] agents to adjust the four types132

of hyperparameters [3]. Each agent follows the UCB action selection rule, i.e., the action taken by133

agent i at step t is134

a
(i)
t

.
= argmax

a(i)

[
Qt(a

(i)) + c

√
ln t

Nt(a(i))

]
, (4)

where Qt(a
(i)) denotes the estimated value of a(i) at step t, Nt(a

(i)) denotes the number of times135

that action a(i) has been selected at step t, and the number c > 0 (the value is 1.0 here) controls the136

degree of exploration.137

MOEA/D-FRRMAB We modify the implementation FRRMAB from PlatEMO3 [12] frame-138

work to make a fair comparison (i.e., the original adaptive operator selection mechanism and re-139

lated hyperparameters are retained, except that it uses the same MOEA/D processes and settings140

as MA-DAC). MOEA/D-FRRMAB adjusts the four types of DE operators by MAB. In particular,141

we searched for some sensitive hyperparameters according to the suggestions in [6], and the best142

performing combination is shown as follows:143

• Scaling factor is 2.0.144

• Size of the sliding window is 0.5×N .145

• Decaying factor is 0.3.146

MOEA/D-AWA We modify the implementation MOEA/D-AWA from PlatEMO framework to147

make a fair comparison (i.e., the original adaptive weight vector adjustment strategy and related148

hyperparameters are retained, except that it uses the same MOEA/D processes and settings as MA-149

DAC).150

MA-DAC We use default VDN policy network without parameter sharing in EPyMARL4 [8] frame-151

work. MA-DAC and all its other variants use the same hyperparameters. Some key hyperparameters152

are as follows:153

• The learning rate is 1e-4.154

• The discounting factor γ is 0.99.155

• The buffer size is 5000 (unit is episode).156

• The number of training steps is 400000.157

All hyperparameters of the above algorithms can be found in the code.158

3https://github.com/BIMK/PlatEMO
4https://github.com/uoe-agents/epymarl
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Table S3: IGD values obtained by MA-DAC-R1, MA-DAC-R2, MA-DAC-R3, and MA-DAC on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value of each
problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to the MA-DAC, respectively, according to the Wilcoxon rank-sum test
with confidence level 0.05.

Problem M MA-DAC-R1 MA-DAC-R2 MA-DAC-R3 MA-DAC

DTLZ2
3 4.223E-02 (2.50E-03) − 3.853E-02 (5.58E-04) − 3.809E-02 (4.64E-04) ≈ 3.807E-02 (5.05E-04)
5 2.401E-01 (8.27E-03) − 2.726E-01 (1.51E-02) ≈ 2.364E-01 (1.04E-02) + 2.442E-01 (1.26E-02)
7 4.142E-01 (1.12E-02) − 4.248E-01 (1.30E-02) − 4.215E-01 (9.03E-03) − 3.944E-01 (1.17E-02)

DTLZ4
3 5.567E-02 (7.33E-03) − 7.236E-02 (6.19E-02) − 6.144E-02 (5.10E-02) ≈ 6.700E-02 (6.14E-02)
5 3.119E-01 (1.91E-02) − 3.221E-01 (2.12E-02) − 3.119E-01 (1.58E-02) − 2.995E-01 (2.10E-02)
7 4.354E-01 (1.29E-02) − 4.385E-01 (1.23E-02) − 4.275E-01 (1.60E-02) − 4.182E-01 (1.21E-02)

WFG4
3 5.989E-02 (5.60E-03) ≈ 5.255E-02 (1.14E-03) − 5.309E-02 (8.02E-04) − 5.200E-02 (1.19E-03)
5 1.848E-01 (2.61E-03) + 1.851E-01 (2.43E-03) + 1.846E-01 (2.20E-03) + 1.868E-01 (2.81E-03)
7 3.028E-01 (3.19E-03) + 3.008E-01 (3.51E-03) ≈ 3.029E-01 (3.36E-03) ≈ 3.033E-01 (3.66E-03)

WFG5
3 4.841E-02 (7.78E-04) − 4.763E-02 (7.73E-04) − 4.773E-02 (6.58E-04) − 4.730E-02 (7.89E-04)
5 1.823E-01 (2.49E-03) ≈ 1.818E-01 (2.90E-03) − 1.812E-01 (3.06E-03) ≈ 1.811E-01 (3.02E-03)
7 3.212E-01 (6.60E-03) ≈ 3.174E-01 (6.43E-03) ≈ 3.196E-01 (5.99E-03) ≈ 3.206E-01 (8.04E-03)

WFG6
3 7.920E-02 (1.81E-02) + 4.909E-02 (1.50E-02) − 4.814E-02 (1.22E-02) ≈ 4.831E-02 (8.95E-03)
5 1.977E-01 (6.17E-03) − 2.037E-01 (4.49E-03) − 1.975E-01 (5.78E-03) − 1.942E-01 (6.90E-03)
7 3.110E-01 (4.86E-03) − 3.151E-01 (5.01E-03) ≈ 3.148E-01 (4.05E-03) − 3.112E-01 (4.93E-03)

WFG7
3 4.555E-02 (1.26E-03) ≈ 4.076E-02 (5.41E-04) − 4.168E-02 (6.40E-04) − 4.066E-02 (5.31E-04)
5 1.842E-01 (3.28E-03) ≈ 1.865E-01 (2.93E-03) + 1.841E-01 (3.95E-03) + 1.858E-01 (2.12E-03)
7 3.335E-01 (1.09E-02) + 3.199E-01 (9.86E-03) − 3.271E-01 (9.65E-03) ≈ 3.258E-01 (1.25E-02)

WFG8
3 8.914E-02 (2.96E-03) ≈ 7.911E-02 (1.06E-03) − 8.199E-02 (1.96E-03) − 7.901E-02 (1.19E-03)
5 2.551E-01 (1.02E-02) − 2.628E-01 (1.22E-02) − 2.541E-01 (9.08E-03) − 2.479E-01 (7.20E-03)
7 4.163E-01 (9.54E-03) ≈ 4.115E-01 (9.80E-03) ≈ 4.197E-01 (7.52E-03) − 4.127E-01 (5.93E-03)

WFG9
3 5.003E-02 (9.00E-03) − 4.208E-02 (6.56E-04) − 4.428E-02 (9.97E-03) − 4.159E-02 (6.10E-04)
5 1.929E-01 (8.84E-03) ≈ 1.819E-01 (5.73E-03) − 1.951E-01 (9.83E-03) − 1.832E-01 (7.10E-03)
7 3.342E-01 (8.56E-03) − 3.322E-01 (8.89E-03) − 3.327E-01 (8.02E-03) − 3.278E-01 (7.21E-03)

+/−/≈ 4/12/8 2/17/5 3/14/7

average rank 3.04 2.71 2.46 1.79

Computing Resources The experiments are conducted on six PCs with an AMD Ryzen 9 3950X159

16-Core Processor and an NVIDIA GeForce RTX 3090 GPU.160

B.2 Analysis of the reward function161

In this subsection, we compare our proposed reward function with the three types of reward functions162

proposed by [10], as shown in the following:163

r1t =max{f(st)− f(st+1), 0}, (5)

r2t =


10 if f(st+1) < f∗

t

1 else if f(st+1) < f(st)

0 otherwise
, (6)

r3t =max

{
f(st)− f(st+1)

f(st+1)− fopt
, 0

}
, (7)

where f(st) is the metric value at step t, f∗
t is the minimum metric value achieved until step t, and164

fopt is the optimal metric value, i.e., the global minimum value. Here, we use IGD [2] as the metric165

f(·), and thus fopt = 0. We train MA-DAC policy with these three reward functions r1t , r2t and r3t ,166

which are denoted as MA-DAC-R1, MA-DAC-R2 and MA-DAC-R3, respectively.167

The experimental results are shown in Table S3. We can see that MA-DAC has the best average rank,168

indicating the effectiveness of our proposed reward function. For the other three methods, MA-DAC-169

R2 and MA-DAC-R3 are better than MA-DAC-R1, which is consistent with the observation in [10].170

6



B.3 Analysis of the reproduction operators171

In this subsection, we give a detailed analysis of the reproduction operators, including the four types172

of DE operators introduced in Appendix A.3, and also further compare MA-DAC with MOEA/D-173

FRRMAB, which applies the MAB-based adaptive tuning method FRRMAB [6] to dynamically174

adjust the types of DE operators used in MOEA/D.175

First, we examine the performance of MOEA/D equipped with each type of DE operator, where the176

DE operator is used as the crossover operator with a default scaling factor F = 0.5. The results are177

shown in Table S4. Compared with the original MOEA/D using the SBX operator, these methods178

using the DE operator achieve a similar performance, as the numbers of ‘+’ and ‘-’ are close. Among179

the methods using the DE operator, MOEA/D-OP2 has the best average rank, which has thus also180

been used as the default DE operator in MA-DAC (M) w/o 3. Note that MA-DAC (M) w/o 3181

denotes MA-DAC (M) without tuning the types of reproduction operators, which is used to validate182

the effectiveness of adjusting all configuration hyper-parameters simultaneously in RQ3 of the main183

paper.184

Table S4: IGD values obtained by MOEA/D-OP1, MOEA/D-OP2, MOEA/D-OP3, and MOEA/D-OP4 on
different problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value
of each problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly
superior to, inferior to, and almost equivalent to the original MOEA/D (i.e., the column MOEA/D in Table 2 of
the main paper or Table S5), respectively, according to the Wilcoxon rank-sum test with confidence level 0.05.

Problem M MOEA/D-OP1 MOEA/D-OP2 MOEA/D-OP3 MOEA/D-OP4

DTLZ2
3 4.681E-02 (2.95E-04) − 4.691E-02 (3.97E-04) − 6.050E-02 (2.64E-03) − 5.033E-02 (1.07E-03) −
5 3.037E-01 (9.85E-04) − 3.012E-01 (1.51E-03) ≈ 3.391E-01 (1.06E-02) − 3.083E-01 (2.69E-03) −
7 4.735E-01 (9.68E-03) − 4.551E-01 (4.43E-03) − 4.988E-01 (1.01E-02) − 4.887E-01 (9.51E-03) −

DTLZ4
3 7.897E-02 (6.36E-02) − 6.226E-02 (4.05E-03) − 1.296E-01 (1.23E-02) − 7.890E-02 (9.62E-03) −
5 3.504E-01 (2.77E-02) − 3.413E-01 (1.48E-02) − 3.631E-01 (7.24E-03) − 3.521E-01 (1.23E-02) −
7 4.923E-01 (1.89E-02) − 4.519E-01 (1.15E-02) − 4.766E-01 (1.35E-02) − 4.975E-01 (2.23E-02) −

WFG4
3 6.934E-02 (1.54E-03) − 7.293E-02 (1.43E-03) − 9.046E-02 (4.01E-03) − 7.998E-02 (2.25E-03) −
5 2.930E-01 (1.03E-02) + 2.761E-01 (6.39E-03) + 2.762E-01 (5.86E-03) + 2.761E-01 (7.63E-03) +
7 4.057E-01 (1.45E-02) + 3.711E-01 (9.79E-03) + 3.617E-01 (6.46E-03) + 3.696E-01 (1.06E-02) +

WFG5
3 6.181E-02 (5.85E-04) + 6.177E-02 (8.01E-04) + 6.128E-02 (5.59E-04) + 6.113E-02 (5.30E-04) +
5 3.138E-01 (6.20E-03) + 3.052E-01 (7.19E-03) + 3.031E-01 (7.37E-03) + 3.116E-01 (8.26E-03) +
7 4.945E-01 (1.24E-02) − 4.988E-01 (1.04E-02) − 5.197E-01 (1.01E-02) − 5.189E-01 (1.22E-02) −

WFG6
3 7.470E-02 (2.22E-02) + 6.714E-02 (1.59E-02) + 7.665E-02 (9.41E-03) − 9.557E-02 (1.71E-02) −
5 3.513E-01 (1.46E-02) + 3.285E-01 (2.33E-02) + 3.254E-01 (1.39E-02) + 3.421E-01 (1.30E-02) +
7 4.918E-01 (3.31E-02) ≈ 4.797E-01 (3.04E-02) ≈ 4.328E-01 (2.81E-02) + 4.478E-01 (3.08E-02) +

WFG7
3 5.929E-02 (6.35E-04) − 6.033E-02 (8.84E-04) − 8.382E-02 (4.86E-03) − 6.699E-02 (1.75E-03) −
5 3.286E-01 (1.55E-02) + 2.941E-01 (9.66E-03) + 2.924E-01 (1.12E-02) + 3.148E-01 (1.58E-02) +
7 5.062E-01 (2.46E-02) + 4.739E-01 (2.51E-02) + 4.479E-01 (2.28E-02) + 4.859E-01 (2.72E-02) +

WFG8
3 9.314E-02 (9.12E-04) − 9.598E-02 (1.22E-03) − 1.213E-01 (3.36E-03) − 1.070E-01 (2.16E-03) −
5 4.112E-01 (1.14E-02) + 3.884E-01 (1.19E-02) + 3.808E-01 (7.26E-03) + 3.925E-01 (1.33E-02) +
7 5.743E-01 (1.09E-02) + 5.587E-01 (1.56E-02) + 5.564E-01 (1.13E-02) + 5.570E-01 (1.22E-02) +

WFG9
3 5.993E-02 (1.32E-02) + 8.122E-02 (2.54E-02) − 8.912E-02 (1.83E-02) − 8.652E-02 (2.15E-02) −
5 3.246E-01 (1.54E-02) + 3.300E-01 (1.47E-02) + 3.325E-01 (1.63E-02) + 3.389E-01 (1.18E-02) +
7 5.179E-01 (2.68E-02) + 5.001E-01 (2.59E-02) + 5.252E-01 (2.03E-02) + 5.472E-01 (2.12E-02) ≈

+/−/≈ 13/10/1 12/10/2 12/12/0 11/12/1

average rank 2.62 1.88 2.67 2.83

Then, we examine the performance of MOEA/D, MOEA/D-OP2, MOEA/D-FRRMAB, and MA-185

DAC on different problems. The operator pool of FRRMAB is just the four types of DE operators.186

The results in Table S5 show that MOEA/D-FRRMAB is better than MOEA/D and MOEA/D-OP2,187

disclosing the effectiveness of adjusting the type of reproduction operators. We can also observe188

that the proposed MA-DAC clearly performs the best.189

B.4 Analysis of the adaptive weights190

In this subsection, we compare MA-DAC with MOEA/D-AWA [9], which dynamically adjusts the191

weights of MOEA/D based on predefined heuristic intervals. The concrete way of adjusting the192

weights of MOEA/D-AWA and MA-DAC are the same, as described in Appendix A.3. Table S6193
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Table S5: IGD values obtained by MOEA/D, MOEA/D-OP2, MOEA/D-FRRMAB, and MA-DAC on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value of each
problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with
confidence level 0.05.

Problem M MOEA/D MOEA/D-OP2 MOEA/D-FRRMAB MA-DAC

DTLZ2
3 4.605E-02 (3.54E-04) − 4.691E-02 (3.97E-04) − 4.668E-02 (2.50E-04) − 3.807E-02 (5.05E-04)
5 3.006E-01 (1.55E-03) − 3.012E-01 (1.51E-03) − 3.031E-01 (1.29E-03) − 2.442E-01 (1.26E-02)
7 4.455E-01 (1.41E-02) − 4.551E-01 (4.43E-03) − 4.724E-01 (7.80E-03) − 3.944E-01 (1.17E-02)

DTLZ4
3 6.231E-02 (8.85E-02) ≈ 6.226E-02 (4.05E-03) − 5.782E-02 (3.48E-03) − 6.700E-02 (6.14E-02)
5 3.133E-01 (4.45E-02) ≈ 3.413E-01 (1.48E-02) − 3.373E-01 (1.70E-02) − 2.995E-01 (2.10E-02)
7 4.374E-01 (2.57E-02) − 4.519E-01 (1.15E-02) − 4.681E-01 (1.87E-02) − 4.182E-01 (1.21E-02)

WFG4
3 5.761E-02 (5.41E-04) − 7.293E-02 (1.43E-03) − 7.097E-02 (1.63E-03) − 5.200E-02 (1.19E-03)
5 3.442E-01 (1.21E-02) − 2.761E-01 (6.39E-03) − 2.799E-01 (9.44E-03) − 1.868E-01 (2.81E-03)
7 4.529E-01 (1.79E-02) − 3.711E-01 (9.79E-03) − 3.778E-01 (1.01E-02) − 3.033E-01 (3.66E-03)

WFG5
3 6.327E-02 (1.10E-03) − 6.177E-02 (8.01E-04) − 6.120E-02 (7.38E-04) − 4.730E-02 (7.89E-04)
5 3.350E-01 (9.77E-03) − 3.052E-01 (7.19E-03) − 3.033E-01 (8.69E-03) − 1.811E-01 (3.02E-03)
7 4.101E-01 (2.08E-02) − 4.988E-01 (1.04E-02) − 5.045E-01 (9.70E-03) − 3.206E-01 (8.04E-03)

WFG6
3 6.938E-02 (5.50E-03) − 6.714E-02 (1.59E-02) − 6.266E-02 (8.47E-03) − 4.831E-02 (8.95E-03)
5 3.518E-01 (2.82E-03) − 3.285E-01 (2.33E-02) − 3.272E-01 (1.61E-02) − 1.942E-01 (6.90E-03)
7 4.869E-01 (3.03E-02) − 4.797E-01 (3.04E-02) − 4.417E-01 (3.29E-02) − 3.112E-01 (4.93E-03)

WFG7
3 5.811E-02 (6.31E-04) − 6.033E-02 (8.84E-04) − 5.976E-02 (7.44E-04) − 4.066E-02 (5.31E-04)
5 3.572E-01 (5.47E-03) − 2.941E-01 (9.66E-03) − 3.042E-01 (1.52E-02) − 1.858E-01 (2.12E-03)
7 5.236E-01 (2.19E-02) − 4.739E-01 (2.51E-02) − 4.762E-01 (2.74E-02) − 3.258E-01 (1.25E-02)

WFG8
3 8.646E-02 (3.44E-03) − 9.598E-02 (1.22E-03) − 9.536E-02 (1.14E-03) − 7.901E-02 (1.19E-03)
5 4.258E-01 (8.42E-03) − 3.884E-01 (1.19E-02) − 3.917E-01 (9.00E-03) − 2.479E-01 (7.20E-03)
7 5.816E-01 (1.30E-02) − 5.587E-01 (1.56E-02) − 5.570E-01 (1.60E-02) − 4.127E-01 (5.93E-03)

WFG9
3 5.817E-02 (1.24E-03) − 8.122E-02 (2.54E-02) − 6.445E-02 (1.72E-02) − 4.159E-02 (6.10E-04)
5 3.633E-01 (1.20E-02) − 3.300E-01 (1.47E-02) − 3.312E-01 (1.70E-02) − 1.832E-01 (7.10E-03)
7 5.538E-01 (2.63E-02) − 5.001E-01 (2.59E-02) − 5.145E-01 (2.82E-02) − 3.278E-01 (7.21E-03)

+/−/≈ 0/22/2 0/24/0 0/24/0

average rank 3.12 2.92 2.83 1.12

shows the results, where MOEA/D-OP2-AWA refers to MOEA/D-AWA using the DE operator OP2194

(which has been shown to be the best among the four investigated DE operators in the last subsection)195

instead of the SBX operator. We can observe that MA-DAC performs the best in all problems except196

DTLZ4, where MOEA/D-AWA is better. Note that DTLZ4 is not used for training MA-DAC, and197

the worse performance than MOEA/D-AWA on this problem also implies that MA-DAC can be198

further improved in the future.199

B.5 IGD values during the optimization process200

Finally, we plot the curves of IGD value of all the compared methods (i.e., MOEA/D, MOEA/D-201

FRRMAB, MOEA/D-AWA, DQN, MA-UCB, and MA-DAC), on the problems with 3, 5 and 7202

objectives, as shown in Figures S1, S2 and S3, respectively. We can observe that MA-DAC performs203

the best in general, and the superiority is more clear on the problems with 5 and 7 objectives. As the204

number of objectives increases, the problems become more difficult, thus requiring a powerful policy205

of adjusting the configuration hyperparameters. This also implies the applicability of MA-DAC in206

solving difficult problems.207
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Table S6: IGD values obtained by MOEA/D, MOEA/D-AWA, MOEA/D-OP2-AWA, and MA-DAC on differ-
ent problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value of each
problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with
confidence level 0.05.

Problem M MOEA/D MOEA/D-AWA MOEA/D-OP2-AWA MA-DAC

DTLZ2
3 4.605E-02 (3.54E-04) − 4.596E-02 (3.54E-04) − 4.670E-02 (3.30E-04) − 3.807E-02 (5.05E-04)
5 3.006E-01 (1.55E-03) − 2.900E-01 (2.73E-03) − 2.764E-01 (3.40E-03) − 2.442E-01 (1.26E-02)
7 4.455E-01 (1.41E-02) − 4.167E-01 (2.37E-02) − 4.436E-01 (8.67E-03) − 3.944E-01 (1.17E-02)

DTLZ4
3 6.231E-02 (8.85E-02) ≈ 4.597E-02 (3.66E-04) ≈ 6.219E-02 (3.90E-03) − 6.700E-02 (6.14E-02)
5 3.133E-01 (4.45E-02) ≈ 2.816E-01 (3.24E-03) + 3.283E-01 (1.08E-02) − 2.995E-01 (2.10E-02)
7 4.374E-01 (2.57E-02) − 3.696E-01 (1.32E-02) + 4.437E-01 (9.46E-03) − 4.182E-01 (1.21E-02)

WFG4
3 5.761E-02 (5.41E-04) − 5.748E-02 (7.11E-04) − 7.280E-02 (1.33E-03) − 5.200E-02 (1.19E-03)
5 3.442E-01 (1.21E-02) − 3.168E-01 (5.37E-03) − 2.648E-01 (8.15E-03) − 1.868E-01 (2.81E-03)
7 4.529E-01 (1.79E-02) − 4.285E-01 (1.55E-02) − 3.676E-01 (1.06E-02) − 3.033E-01 (3.66E-03)

WFG5
3 6.327E-02 (1.10E-03) − 6.376E-02 (9.85E-04) − 6.168E-02 (4.61E-04) − 4.730E-02 (7.89E-04)
5 3.350E-01 (9.77E-03) − 3.173E-01 (5.33E-03) − 3.024E-01 (6.02E-03) − 1.811E-01 (3.02E-03)
7 4.101E-01 (2.08E-02) − 4.095E-01 (1.94E-02) − 4.865E-01 (1.28E-02) − 3.206E-01 (8.04E-03)

WFG6
3 6.938E-02 (5.50E-03) − 6.846E-02 (4.70E-03) − 6.078E-02 (1.16E-03) − 4.831E-02 (8.95E-03)
5 3.518E-01 (2.82E-03) − 3.190E-01 (3.93E-03) − 3.143E-01 (2.52E-02) − 1.942E-01 (6.90E-03)
7 4.869E-01 (3.03E-02) − 4.727E-01 (3.05E-02) − 4.770E-01 (3.24E-02) − 3.112E-01 (4.93E-03)

WFG7
3 5.811E-02 (6.31E-04) − 5.837E-02 (6.25E-04) − 6.017E-02 (6.74E-04) − 4.066E-02 (5.31E-04)
5 3.572E-01 (5.47E-03) − 3.227E-01 (4.19E-03) − 2.885E-01 (1.25E-02) − 1.858E-01 (2.12E-03)
7 5.236E-01 (2.19E-02) − 5.004E-01 (3.80E-02) − 4.560E-01 (2.56E-02) − 3.258E-01 (1.25E-02)

WFG8
3 8.646E-02 (3.44E-03) − 8.742E-02 (6.36E-04) − 9.572E-02 (8.39E-04) − 7.901E-02 (1.19E-03)
5 4.258E-01 (8.42E-03) − 4.216E-01 (1.18E-02) − 3.824E-01 (9.74E-03) − 2.479E-01 (7.20E-03)
7 5.816E-01 (1.30E-02) − 5.790E-01 (1.06E-02) − 5.632E-01 (1.27E-02) − 4.127E-01 (5.93E-03)

WFG9
3 5.817E-02 (1.24E-03) − 5.809E-02 (1.45E-03) − 6.470E-02 (1.75E-02) − 4.159E-02 (6.10E-04)
5 3.633E-01 (1.20E-02) − 3.517E-01 (2.19E-02) − 3.024E-01 (1.36E-02) − 1.832E-01 (7.10E-03)
7 5.538E-01 (2.63E-02) − 5.108E-01 (2.65E-02) − 4.861E-01 (2.78E-02) − 3.278E-01 (7.21E-03)

+/−/≈ 0/22/2 2/21/1 0/24/0

average rank 3.50 2.54 2.75 1.21
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Figure S1: Curves of IGD value obtained by the compared methods on the 3-objective problems.
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Figure S2: Curves of IGD value obtained by the compared methods on the 5-objective problems.
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Figure S3: Curves of IGD value obtained by the compared methods on the 7-objective problems.
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