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A Details of MA-DAC

A.1 Details of MOEA/D

First, we give a brief introduction to multi-objective optimization problems (MOPs), which can be
defined as

min F(x) = (fi(x),..., fm(x)) st. x €, (1
where = (x1,...,zp) is a solution, F' : @ — R™ constitutes m objective functions, 2 =
[zF,2V]P C RP is the solution space, and R™ is the objective space.

Definition A.1. A solution * is Pareto-optimal with respect to Eq. (), if Az € € such that Vi :
file) < fi(x*) and 30 : fi(x) < fi(x*). The set of all Pareto-optimal solutions is called Pareto-
optimal set (PS). The set of the corresponding objective vectors of PS, i.e., {F(x) | € PS}, is
called Pareto front (PF).

Instead of focusing on a single optimal solution in single-objective optimization, the goal of MOP
is to find at least one Pareto-optimal solution for each objective vector in the PF. However, as the
size of PF can be prohibitively large or even infinite, it is often to find a set of solutions that can
approximate the PS well, i.e., the set of their objective vectors can approximate the PF well.

Evolutionary algorithms have demonstrated their effectiveness in solving MOPs. Their population-
based nature can approximate the Pareto optimal solutions within one execution, with each solution
in the population representing a unique trade-off between the objectives. MOEA/D [I]] is a rep-
resentative multi-objective evolutionary algorithm. MOEA/D converts an MOP into a number of
single-objective sub-problems through a number of weights, where neighboring solutions work co-
operatively for the optimal solutions for the single-objective sub-problems. Note that an optimal
solution for a single-objective sub-problem must be Pareto optimal for the MOP.

MOEA/D consists of two major processes, i.e., decomposition and collaboration [[’], 4, §]. In de-
composition, MOEA/D transforms the task of approximating the PF into a number of sub-problems
through a number of weights and an aggregation function. There have been several aggregation
functions for MOEA/D. Here, we introduce the common Tchebycheff approach (TCH) that is also
used in this paper. Given a weight vector w = (wy, ..., w,,) where w; > 0,Vi € {1,...,m} and
>, w; = 1, the sub-problem by TCH is formulated as

min g(x |w,z") = max {w; - |fi(x) — 2] 2
min g(@ | w,z*) = max {w;-|fi(®) - =]}, @
where z* = (27, ..., z},) is the ideal point consisting of the best objective values obtained so far.

The basic idea of collaboration is that neighboring sub-problems are more likely to share similar
properties, e.g., similar objective functions and/or optimal solutions [S]. In particular, the neighbor-
hood of a sub-problem is determined by the Euclidean distance of its corresponding weight vector
with respect to the others and the hyperparameter neighborhood size: if the distance between two
sub-problems is smaller than the neighborhood size, they are the neighborhood of each other. In the
mating selection of a sub-problem, the parent solutions are randomly selected from its neighborhood,
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Algorithm 1: MOEA/D

Parameters: Population size N, number T of iterations

Initialize a population {&("}¥ | of solutions, and a corresponding set W = {w} N, of
weight vectors ;

t=0;
while t < T" do
fori=1:Ndo
Randomly select parent solutions from the neighborhood of w(?) | denoted as ow"” ;
Use crossover and mutation operators to generate an offspring solution z'(");
Evaluate the offspring solution to obtain F(z'());
Update the ideal point z*. That is, for any j € {1,2,...,m}, if f;(z'®¥)) < 27, then
zj = [0
Update the corresponding solution of each sub-problem within ow"” by /"), That is,
for each w() € @, if g(z'® | w), z*) < g(x) | w), 2*), then 21) = /(%)
end
t=t+1
end

and the newly generated offspring solution is used to update the solutions of sub-problems within
the same neighborhood.

The procedure of MOEA/D used in this paper is described in Algorithm [. Firstly, it generates a
population {9} | of solutions with size N, associated with N weight vectors {w "}~ inline 1.
A weight vector w(?) corresponds to a single-objective sub-problem, and (%) is the current best so-
lution associated with this sub-problem. Then, in each iteration (i.e., lines 4-9) of MOEA/D, for
each sub-problem, it selects parent solutions from the neighborhood, generates an offspring solution
by reproduction operators, and updates the solutions of the sub-problem and its neighboring sub-
problem(s). After obtaining parent solutions in line 5, it uses reproduction operators (e.g., simulated
binary crossover (SBX) operator or differential evolution (DE) operator) and polynomial mutation
(PM) operator [[7], to generate an offspring solution &’(*) in line 6. Then, it evaluates the offspring
solution and obtain the objective vector F'(x’ (i)) in line 7. Finally, it uses the offspring solution to
update the ideal point z* in line 8 and the solutions of the sub-problems within the neighborhood

0% of the current sub-problem w(* in line 9. For each j € {1,2,...,m}, z; 1s the best found
value of the j-th objective f;, and thus if f;(x'®) is better, i.e., f;('(V) < z7, then 2} will be ud-

pated accordingly. For each sub-problem w () within G)“’(z), if /(") is better than its corresponding
solution 4, i.e., g(x'® | w), z*) < g(x) | w9, 2*), then ) will be udpated accordingly.

A.2 State formulation
The state of our proposed benchmark, i.e., MaMo, can be divided into three parts.

1. The first part (i.e., indexes 0—1 in Table Kl) contains the features of the problem instance,
i.e., the numbers of objectives and variables.

2. The second part (i.e., indexes 2-3 in Table KT) contains the features of the optimization
process, i.e., how much computational budget has been used and how many steps of the
algorithm have not made any progress, i.e., stagnant count.

3. In the third part (i.e., indexes 4-21 in Table K1), we use several indicators, i.e., hypervol-
ume [[8], the ratio of non-dominated solutions in the population, and the average distance
of the solutions [[7], to reflect the state of the current population. For each indicator, we also
use the gap between the current value and the value corresponding to the last population
to reflect the immediate evolutionary progress. Besides, we use statistic metrics (i.e., the
mean and variance) of these indicators in the last five steps and all steps from the beginning
to characterize the short and long histories of the optimization, respectively.
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The values of all features (except the number of objectives and the number of variables) in a state are
in [0, 1] to ensure the generalization of the learned MA-DAC policy. The detailed state features at
step t are shown in Table 1. We use List (7, ¢,1) to denote a list of indicator values from step ¢ —1+1
to t,i.e., [l—i4+1,-..,1¢], where I denotes a specific indicator and I; denotes the indicator value at
step ¢. Note that Vi < 0, I; = 0 as default. For the considered three indicators, i.e., hypervolume,
the ratio of non-dominated solutions in the population and the average distance of the solutions, they
are denoted as HV, NDRatio and Dist, respectively.

Table S1: State at step ¢t in MaMo.

Index  Parts of state Feature Notes
0 1 m Number of objectives
1 1 D Number of variables
2 2 t/T The computational budget has been used
3 2 Nytag /T Stagnant count ratio
4 3 HV; Hypervolume value
5 3 NDRatio; Ratio of non-dominated solutions
6 3 Dist: Average distance
7 3 HV,—-HV,;_1 Change of HV between steps t and ¢t — 1
8 3 NDRatio; — NDRatio;—1  Change of NDRatio between steps t and ¢ — 1
9 3 Disty — Disty—1 Change of Dist between steps ¢ and ¢ — 1
10 3 Mean(List(HV, ¢, 5)) Mean of HV in the last 5 steps
11 3 Mean(List(NDRatio, ¢, 5)) Mean of NDRatio in the last 5 steps
12 3 Mean(List(Dist, ¢, 5)) Mean of Dist in the last 5 steps
13 3 Var(List(HV, ¢, 5)) Variance of HV in the last 5 steps
14 3 Var(List(NDRatio, ¢, 5)) Variance of NDRatio in the last 5 steps
15 3 Var(List(Dist, ¢, 5)) Variance of Dist in the last 5 steps
16 3 Mean(List(HV, t,t)) Mean of HV in all the steps so far
17 3 Mean(List(NDRatio, ¢, t)) Mean of NDRatio in all the steps so far
18 3 Mean(List(Dist, ¢, t)) Mean of Dist in all the steps so far
19 3 Var(List(HV, ¢,t)) Variance of HV in all the steps so far
20 3 Var(List(NDRatio, ¢, t)) Variance of NDRatio in all the steps so far
21 3 Var(List(Dist, ¢,t)) Variance of Dist in all the steps so far

A.3 Action formulation

We consider four heterogeneous types of configuration hyperparameters in MOEA/D as the actions
of four different agents of MA-DAC.

Weights. In MOEA/D, weights are used to transform an MOP into multiple single-objective sub-
problems, which should be as diverse as possible [[Z]. Inspired by MOEA/D-AWA [U], the action
space for weights is discrete with two dimensions, i.e., adjusting (T) and not adjusting (N) the
weights. Furthermore, we limit the frequency of adjustment because too frequent adjustment will
lead to drastic changes in the sub-problems and is detrimental to the optimization process [U]. If the
action is T, weights will be updated before selecting the parent solutions. The weights adaptation
mechanism is as follows.

We first calculate the sparsity level of each solution () based on vicinity distance [4]:

m

SL (2", (@}, ) = [Tua", ). &)
j=1

where [(z(, ) is the Euclidean distance between x(*) and its j-th nearest neighbor in the popu-
lation {ax(®) }117\’:1. The m closest neighbors in the population are used for calculation, where m is
the number of objectives. After calculating the sparsity level of each solution, the sub-problems
corresponding to the solutions whose sparsity levels are ranked bottom 5%, i.e., the overcrowded
solutions, will be removed.

To ensure that there are still NV sub-problems in total, we should add 0.05/N new sub-problems and
their corresponding solutions. The newly added solutions are from an elite population, which stores
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all historical non-dominated solutions with a capacity of 1.5N. If the size of the elite population
exceeds the capacity, the solutions with the lowest sparsity level will be removed. For each solution
x’ in the elite population, we calculate its sparsity level with respect to the current population, i.e.,
SL(x', Pop), where Pop denotes the set of 0.95N solutions in the current population after removing
the overcrowded solutions. Then, we select the solution from the elite population, which has the
highest sparsity level with respect to the current population, and add it to the current population; this
process is repeated for 0.05N times. For each newly added solution, the corresponding sub-problem
(i.e., weight vector) is generated in a specific way, whose details can refer to Algorithm 3 in [9].

Neighborhood size. The neighborhood size is to control the distance between solutions in mating
selection. A small size helps the search exploit the local area, while a large size helps the search
explore a wide objective space [[5]. We discretize the action space into four dimensions, i.e., 15, 20,
25, and 30, where 20 is the default value.

Types of the reproduction operators. We consider four types of DE operators with different
search abilities introduced in [B]. Assuming that we are reproducing an offspring solution for the
i-th sub-problem. Let (") and 2’(¥) denote its current solution and the generated offspring solution,
respectively. The equations of four types of DE operators are shown as follows:

e OPl: 2’ = 2 + F x ( (r1) _ w(rz))

¢ OP2: ') = 2 + F x (2(") — 2(2)) + F x (2(r) — g(r)),

« OP3: 2') =20 + K x (2 —2(™)) + F x (2" —2(™)) 4 F x (M) — 2(19)),
« OP4: ') =2 + K x (z— 2(™)) + F x (2(m2) — (™).

Here, ("), (") £(3) 2("4) and 2("s) are different parent solutions randomly selected from the

neighborhood of ("), The scaling factor F' > 0 controls the impact of the vector differences on the
mutant vector, and K € [0, 1] plays a similar role to F'.

Parameters of the reproduction operators. The parameters (e.g., scaling factor) of the reproduc-
tion operators in MOEA/D significantly affect the algorithm’s performance [T1]. We set the scaling
factor K to a fixed value of 0.5 as recommended [£], and dynamically adjust the scaling factor F.
The action space has four discrete dimensions, i.e., 0.4, 0.5, 0.6 and 0.7, where 0.5 is the default
value.

B Additional results

B.1 Details of experimental settings

Common settings of MOEA/D We implement MOEA/D with P1atypus.” All algorithms men-
tioned in this paper use the same common settings[["Z, T3], as shown in Table 2.

DQN We implement DQN with t ianshou® [I6] framework and adjust some of the hyperparam-
eters to fit this new task. The network structure is:

state — MLP(128) — relu — MLP(128) — relu — MLP(128)
— relu — MLP(number of actions)

where MLP(n) means a fully-connected layer with output size of n, and relu means Rectified Linear
Units. Here, the action apace is the concatenation of the four types of configuration hyperparameters,
with a dimension of 128 (i.e., 4 x 4 x 4 x 2). Some key hyperparameters of DQN are as follows:

* The learning rate is 3e-4.

* The discounting factor y is 0.99.

¢ The buffer size is 50000 (unit is transition).

* The number of training steps is 400000.

lhttps ://github.com/Project-Platypus/Platypus
2https ://github.com/thu-ml/tianshou
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Table S2: Common Settings of MOEA/D
General settings

Population size N 210
Number 7' of iterations 100 x m

Reproduction operators

Crossover operator Simulated binary crossover (SBX)
Distribution index of SBX 20

Mutation operator Polynomial mutation (PM)

Probability of PM 1/D
Distribution index of PM 20

Aggregation function
Aggregation function Tchebycheff approach
Neighborhood size 20

MA-UCB MA-UCB uses four upper confidence bound (UCB) [1]] agents to adjust the four types
of hyperparameters [B]. Each agent follows the UCB action selection rule, i.e., the action taken by

agent ¢ at step t is
ay arga(rir)lax th(a )ty No@®) |’ “4)

where Q;(a() denotes the estimated value of a() at step ¢, N;(a()) denotes the number of times

that action a(?) has been selected at step ¢, and the number ¢ > 0 (the value is 1.0 here) controls the
degree of exploration.

MOEA/D-FRRMAB We modify the implementation FRRMAB from P1latEMO® [I2] frame-
work to make a fair comparison (i.e., the original adaptive operator selection mechanism and re-
lated hyperparameters are retained, except that it uses the same MOEA/D processes and settings
as MA-DAC). MOEA/D-FRRMAB adjusts the four types of DE operators by MAB. In particular,
we searched for some sensitive hyperparameters according to the suggestions in [f], and the best
performing combination is shown as follows:

* Scaling factor is 2.0.
¢ Size of the sliding window is 0.5 x .
* Decaying factor is 0.3.

MOEA/D-AWA  We modify the implementation MOEA/D-AWA from P1atEMO framework to
make a fair comparison (i.e., the original adaptive weight vector adjustment strategy and related
hyperparameters are retained, except that it uses the same MOEA/D processes and settings as MA-
DAC).

MA-DAC We use default VDN policy network without parameter sharing in EPyMARL? [B] frame-
work. MA-DAC and all its other variants use the same hyperparameters. Some key hyperparameters
are as follows:

* The learning rate is le-4.

* The discounting factor -y is 0.99.

* The buffer size is 5000 (unit is episode).

* The number of training steps is 400000.

All hyperparameters of the above algorithms can be found in the code.

*Https://github.com/BIMK/PLatEMO
4https ://github.com/uce—-agents/epymarl
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Table S3: IGD values obtained by MA-DAC-R1, MA-DAC-R2, MA-DAC-R3, and MA-DAC on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value of each
problem is highlighted in bold. The symbols ‘4-’, ‘=’ and ‘~’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to the MA-DAC, respectively, according to the Wilcoxon rank-sum test
with confidence level 0.05.

Problem M \ MA-DAC-R1 MA-DAC-R2 MA-DAC-R3 MA-DAC
3 4.223E-02 (2.50E-03) — 3.853E-02 (5.58E-04) — 3.809E-02 (4.64E-04) =~  3.807E-02 (5.05E-04)
DTLZ2 5 2.401E-01 (8.27E-03) — 2.726E-01 (1.51E-02) ~  2.364E-01 (1.04E-02) +  2.442E-01 (1.26E-02)
7 4.142E-01 (1.12E-02) — 4.248E-01 (1.30E-02) — 4.215E-01 (9.03E-03) —  3.944E-01 (1.17E-02)
3 5.567E-02 (7.33E-03) — 7.236E-02 (6.19E-02) — 6.144E-02 (5.10E-02) ~  6.700E-02 (6.14E-02)
DTLZ4 5 3.119E-01 (1.91E-02) — 3.221E-01 (2.12E-02) — 3.119E-01 (1.58E-02) —  2.995E-01 (2.10E-02)
7 4.354E-01 (1.29E-02) — 4.385E-01 (1.23E-02) — 4.275E-01 (1.60E-02) — 4.182E-01 (1.21E-02)
3 5.989E-02 (5.60E-03) ~ 5.255E-02 (1.14E-03) — 5.309E-02 (8.02E-04) — 5.200E-02 (1.19E-03)
WFG4 5 1.848E-01 (2.61E-03) + 1.851E-01 (2.43E-03) + 1.846E-01 (2.20E-03) + 1.868E-01 (2.81E-03)
7 3.028E-01 (3.19E-03) +  3.008E-01 (3.51E-03) =~  3.029E-01 (3.36E-03) ~ 3.033E-01 (3.66E-03)
3 4.841E-02 (7.78E-04) — 4.763E-02 (7.73E-04) — 4.773E-02 (6.58E-04) —  4.730E-02 (7.89E-04)
WEFG5 5 1.823E-01 (2.49E-03) ~ 1.818E-01 (2.90E-03) — 1.812E-01 (3.06E-03) ~ 1.811E-01 (3.02E-03)
7 3.212E-01 (6.60E-03) ~  3.174E-01 (6.43E-03) ~  3.196E-01 (5.99E-03) ~ 3.206E-01 (8.04E-03)
3 7.920E-02 (1.81E-02) +  4.909E-02 (1.50E-02) —  4.814E-02 (1.22E-02) =~  4.831E-02 (8.95E-03)
WFG6 5 1.977E-01 (6.17E-03) — 2.037E-01 (4.49E-03) — 1.975E-01 (5.78E-03) — 1.942E-01 (6.90E-03)
7 3.110E-01 (4.86E-03) — 3.151E-01 (5.01E-03) ~ 3.148E-01 (4.05E-03) — 3.112E-01 (4.93E-03)
3 4.555E-02 (1.26E-03) ~  4.076E-02 (5.41E-04) — 4.168E-02 (6.40E-04) —  4.066E-02 (5.31E-04)
WFG7 5 1.842E-01 (3.28E-03) ~ 1.865E-01 (2.93E-03) + 1.841E-01 (3.95E-03) + 1.858E-01 (2.12E-03)
7 3.335E-01 (1.09E-02) +  3.199E-01 (9.86E-03) — 3.271E-01 (9.65E-03) ~ 3.258E-01 (1.25E-02)
3 8.914E-02 (2.96E-03) ~ 7.911E-02 (1.06E-03) — 8.199E-02 (1.96E-03) — 7.901E-02 (1.19E-03)
WFGS 5 2.551E-01 (1.02E-02) — 2.628E-01 (1.22E-02) — 2.541E-01 (9.08E-03) —  2.479E-01 (7.20E-03)
7 4.163E-01 (9.54E-03) =~  4.115E-01 (9.80E-03) ~  4.197E-01 (7.52E-03) — 4.127E-01 (5.93E-03)
3 5.003E-02 (9.00E-03) — 4.208E-02 (6.56E-04) — 4.428E-02 (9.97E-03) —  4.159E-02 (6.10E-04)
WFG9 5 1.929E-01 (8.84E-03) ~ 1.819E-01 (5.73E-03) — 1.951E-01 (9.83E-03) — 1.832E-01 (7.10E-03)
7 3.342E-01 (8.56E-03) — 3.322E-01 (8.89E-03) — 3.327E-01 (8.02E-03) —  3.278E-01 (7.21E-03)
+/—I=~ | 4/12/8 2/1715 3/14/7
average rank \ 3.04 2.71 246 1.79

Computing Resources

16-Core Processor and an NVIDIA GeForce RTX 3090 GPU.

B.2 Analysis of the reward function

The experiments are conducted on six PCs with an AMD Ryzen 9 3950X

In this subsection, we compare our proposed reward function with the three types of reward functions
proposed by [[[{], as shown in the following:

ry =max{f(s;) = f(st11),0}, ©)
10 lf f(5t+1) < ft*
ry = else if f(si11) < f(st) 6)
otherwise
Ty —Inax{ F(si1) — fom 00, @)

where f(s;) is the metric value at step ¢, f;* is the minimum metric value achieved until step ¢, and
fopt is the optimal metric value, i.e., the global minimum value. Here, we use IGD [2] as the metric
f(-), and thus fo, = 0. We train MA-DAC policy with these three reward functions r/, 7 and r},
which are denoted as MA-DAC-R1, MA-DAC-R2 and MA-DAC-R3, respectively.

The experimental results are shown in Table 83. We can see that MA-DAC has the best average rank,
indicating the effectiveness of our proposed reward function. For the other three methods, MA-DAC-
R2 and MA-DAC-R3 are better than MA-DAC-R1, which is consistent with the observation in [[I0].
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B.3 Analysis of the reproduction operators

In this subsection, we give a detailed analysis of the reproduction operators, including the four types
of DE operators introduced in Appendix B73, and also further compare MA-DAC with MOEA/D-
FRRMAB, which applies the MAB-based adaptive tuning method FRRMAB [B] to dynamically
adjust the types of DE operators used in MOEA/D.

First, we examine the performance of MOEA/D equipped with each type of DE operator, where the
DE operator is used as the crossover operator with a default scaling factor ' = 0.5. The results are
shown in Table 84. Compared with the original MOEA/D using the SBX operator, these methods
using the DE operator achieve a similar performance, as the numbers of ‘+” and *-” are close. Among
the methods using the DE operator, MOEA/D-OP?2 has the best average rank, which has thus also
been used as the default DE operator in MA-DAC (M) w/o 3. Note that MA-DAC (M) w/o 3
denotes MA-DAC (M) without tuning the types of reproduction operators, which is used to validate
the effectiveness of adjusting all configuration hyper-parameters simultaneously in RQ3 of the main

paper.

Table S4: IGD values obtained by MOEA/D-OP1, MOEA/D-OP2, MOEA/D-OP3, and MOEA/D-OP4 on
different problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value
of each problem is highlighted in bold. The symbols ‘4’, ‘=" and ‘~’ indicate that the result is significantly
superior to, inferior to, and almost equivalent to the original MOEA/D (i.e., the column MOEA/D in Table 2 of
the main paper or Table §3), respectively, according to the Wilcoxon rank-sum test with confidence level 0.05.

Problem M \ MOEA/D-OP1 MOEA/D-OP2 MOEA/D-OP3 MOEA/D-OP4
3 4.681E-02 (2.95E-04) —  4.691E-02 (3.97E-04) —  6.050E-02 (2.64E-03) —  5.033E-02 (1.07E-03) —
DTLZ2 5 3.037E-01 (9.85E-04) —  3.012E-01 (1.51E-03) ~  3.391E-01 (1.06E-02) —  3.083E-01 (2.69E-03) —
7 4.735E-01 (9.68E-03) —  4.551E-01 (4.43E-03) —  4.988E-01 (1.01E-02) —  4.887E-01 (9.51E-03) —
3 7.897E-02 (6.36E-02) —  6.226E-02 (4.05E-03) — 1.296E-01 (1.23E-02) —  7.890E-02 (9.62E-03) —
DTLZ4 5 3.504E-01 (2.77E-02) —  3.413E-01 (1.48E-02) —  3.631E-01 (7.24E-03) —  3.521E-01 (1.23E-02) —
7 4.923E-01 (1.89E-02) —  4.519E-01 (1.15E-02) —  4.766E-01 (1.35E-02) —  4.975E-01 (2.23E-02) —
3 6.934E-02 (1.54E-03) —  7.293E-02 (1.43E-03) —  9.046E-02 (4.01E-03) —  7.998E-02 (2.25E-03) —
WFG4 5 2.930E-01 (1.03E-02) +  2.761E-01 (6.39E-03) +  2.762E-01 (5.86E-03) +  2.761E-01 (7.63E-03) +
7 4.057E-01 (1.45E-02) +  3.711E-01 (9.79E-03) +  3.617E-01 (6.46E-03) -  3.696E-01 (1.06E-02) +
3 6.181E-02 (5.85E-04) +  6.177E-02 (8.01E-04) +  6.128E-02 (5.59E-04) +  6.113E-02 (5.30E-04) +
WFG5 5 3.138E-01 (6.20E-03) 4  3.052E-01 (7.19E-03) +  3.031E-01 (7.37E-03) 4  3.116E-01 (8.26E-03) +
7 4.945E-01 (1.24E-02) —  4.988E-01 (1.04E-02) — 5.197E-01 (1.01E-02) —  5.189E-01 (1.22E-02) —
3 7.470E-02 (2.22E-02) +  6.714E-02 (1.59E-02) +  7.665E-02 (9.41E-03) —  9.557E-02 (1.71E-02) —
WFG6 5 3.513E-01 (1.46E-02) +  3.285E-01 (2.33E-02) +  3.254E-01 (1.39E-02) +  3.421E-01 (1.30E-02) +
7 4918E-01 (3.31E-02) =~  4.797E-01 (3.04E-02) ~  4.328E-01 (2.81E-02) +  4.478E-01 (3.08E-02) +
3 5.929E-02 (6.35E-04) —  6.033E-02 (8.84E-04) — 8.382E-02 (4.86E-03) —  6.699E-02 (1.75E-03) —
WFG7 5 3.286E-01 (1.55E-02) +  2.941E-01 (9.66E-03) +  2.924E-01 (1.12E-02) +  3.148E-01 (1.58E-02) +
7 5.062E-01 (2.46E-02) +  4.739E-01 (2.51E-02) +  4.479E-01 (2.28E-02) +  4.859E-01 (2.72E-02) +
3 9.314E-02 (9.12E-04) —  9.598E-02 (1.22E-03) — 1.213E-01 (3.36E-03) — 1.070E-01 (2.16E-03) —
WFG8 5 4.112E-01 (1.14E-02) +  3.884E-01 (1.19E-02) +  3.808E-01 (7.26E-03) +  3.925E-01 (1.33E-02) +
7 5.743E-01 (1.09E-02) +  5.587E-01 (1.56E-02) +  5.564E-01 (1.13E-02) +  5.570E-01 (1.22E-02) +
3 5.993E-02 (1.32E-02) +  8.122E-02 (2.54E-02) — 8.912E-02 (1.83E-02) — 8.652E-02 (2.15E-02) —
WFG9 5 3.246E-01 (1.54E-02) +  3.300E-01 (1.47E-02) +  3.325E-01 (1.63E-02) +  3.389E-01 (1.18E-02) +
7 5.179E-01 (2.68E-02) +  5.001E-01 (2.59E-02) +  5.252E-01 (2.03E-02) +  5.472E-01 (2.12E-02) =~
+/—I= | 13/10/1 12/10/2 12/12/0 11/12/1
average rank \ 2.62 1.88 2.67 2.83

Then, we examine the performance of MOEA/D, MOEA/D-OP2, MOEA/D-FRRMAB, and MA-
DAC on different problems. The operator pool of FRRMAB is just the four types of DE operators.
The results in Table 83 show that MOEA/D-FRRMAB is better than MOEA/D and MOEA/D-OP2,
disclosing the effectiveness of adjusting the type of reproduction operators. We can also observe
that the proposed MA-DAC clearly performs the best.

B.4 Analysis of the adaptive weights

In this subsection, we compare MA-DAC with MOEA/D-AWA [9], which dynamically adjusts the
weights of MOEA/D based on predefined heuristic intervals. The concrete way of adjusting the
weights of MOEA/D-AWA and MA-DAC are the same, as described in Appendix BAT3. Table
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Table S5: IGD values obtained by MOEA/D, MOEA/D-OP2, MOEA/D-FRRMAB, and MA-DAC on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value of each
problem is highlighted in bold. The symbols ‘4-’, ‘=’ and ‘~’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with
confidence level 0.05.

Problem M | MOEA/D MOEA/D-OP2 MOEA/D-FRRMAB MA-DAC
3 4.605E-02 (3.54E-04) —  4.691E-02 (3.97E-04) —  4.668E-02 (2.50E-04) —  3.807E-02 (5.05E-04)
DTLZ2 5 3.006E-01 (1.55E-03) —  3.012E-01 (1.51E-03) —  3.031E-01 (1.29E-03) —  2.442E-01 (1.26E-02)
7 4.455E-01 (1.41E-02) —  4.551E-01 (4.43E-03) —  4.724E-01 (7.80E-03) —  3.944E-01 (1.17E-02)
3 6.231E-02 (8.85E-02) ~  6.226E-02 (4.05E-03) —  5.782E-02 (3.48E-03) —  6.700E-02 (6.14E-02)
DTLZ4 5 3.133E-01 (4.45E-02) ~  3.413E-01 (1.48E-02) —  3.373E-01 (1.70E-02) —  2.995E-01 (2.10E-02)
7 4.374E-01 (2.57E-02) —  4.519E-01 (1.15E-02) —  4.681E-01 (1.87E-02) —  4.182E-01 (1.21E-02)
3 5.761E-02 (5.41E-04) —  7.293E-02 (1.43E-03) —  7.097E-02 (1.63E-03) —  5.200E-02 (1.19E-03)
WFG4 5 3.442E-01 (1.21E-02) —  2.761E-01 (6.39E-03) —  2.799E-01 (9.44E-03) —  1.868E-01 (2.81E-03)
7 4.529E-01 (1.79E-02) —  3.711E-01 (9.79E-03) —  3.778E-01 (1.01E-02) —  3.033E-01 (3.66E-03)
3 6.327E-02 (1.10E-03) —  6.177E-02 (8.01E-04) —  6.120E-02 (7.38E-04) —  4.730E-02 (7.89E-04)
WFG5 5 3.350E-01 (9.77E-03) —  3.052E-01 (7.19E-03) —  3.033E-01 (8.69E-03) —  1.811E-01 (3.02E-03)
7 4.101E-01 (2.08E-02) —  4.988E-01 (1.04E-02) —  5.045E-01 (9.70E-03) —  3.206E-01 (8.04E-03)
3 6.938E-02 (5.50E-03) —  6.714E-02 (1.59E-02) —  6.266E-02 (8.47E-03) —  4.831E-02 (8.95E-03)
WFG6 5 3.518E-01 (2.82E-03) —  3.285E-01 (2.33E-02) —  3.272E-01 (1.61E-02) —  1.942E-01 (6.90E-03)
7 4.869E-01 (3.03E-02) —  4.797E-01 (3.04E-02) —  4.417E-01 (3.29E-02) —  3.112E-01 (4.93E-03)
3 5.811E-02 (6.31E-04) —  6.033E-02 (8.84E-04) —  5.976E-02 (7.44E-04) —  4.066E-02 (5.31E-04)
WFG7 5 3.572E-01 (5.47E-03) —  2.941E-01 (9.66E-03) —  3.042E-01 (1.52E-02) —  1.858E-01 (2.12E-03)
7 5.236E-01 (2.19E-02) —  4.739E-01 (2.51E-02) —  4.762E-01 (2.74E-02) —  3.258E-01 (1.25E-02)
3 8.646E-02 (3.44E-03) —  9.598E-02 (1.22E-03) —  9.536E-02 (1.14E-03) —  7.901E-02 (1.19E-03)
WFG8 5 4.258E-01 (8.42E-03) —  3.884E-01 (1.19E-02) —  3.917E-01 (9.00E-03) —  2.479E-01 (7.20E-03)
7 5.816E-01 (1.30E-02) —  5.587E-01 (1.56E-02) —  5.570E-01 (1.60E-02) —  4.127E-01 (5.93E-03)
3 5.817E-02 (1.24E-03) —  8.122E-02 (2.54E-02) —  6.445E-02 (1.72E-02) —  4.159E-02 (6.10E-04)
WFG9 5 3.633E-01 (1.20E-02) —  3.300E-01 (1.47E-02) —  3.312E-01 (1.70E-02) —  1.832E-01 (7.10E-03)
7 5.538E-01 (2.63E-02) —  5.001E-01 (2.59E-02) —  5.145E-01 (2.82E-02) —  3.278E-01 (7.21E-03)
+/—I=~ | 0/22/2 0/24/0 0/24/0
average rank ‘ 3.12 2.92 2.83 1.12

shows the results, where MOEA/D-OP2-AWA refers to MOEA/D-AWA using the DE operator OP2
(which has been shown to be the best among the four investigated DE operators in the last subsection)
instead of the SBX operator. We can observe that MA-DAC performs the best in all problems except
DTLZ4, where MOEA/D-AWA is better. Note that DTLZA4 is not used for training MA-DAC, and
the worse performance than MOEA/D-AWA on this problem also implies that MA-DAC can be
further improved in the future.

B.5 1IGD values during the optimization process

Finally, we plot the curves of IGD value of all the compared methods (i.e., MOEA/D, MOEA/D-
FRRMAB, MOEA/D-AWA, DQN, MA-UCB, and MA-DAC), on the problems with 3, 5 and 7
objectives, as shown in Figures K1, §2 and K3, respectively. We can observe that MA-DAC performs
the best in general, and the superiority is more clear on the problems with 5 and 7 objectives. As the
number of objectives increases, the problems become more difficult, thus requiring a powerful policy
of adjusting the configuration hyperparameters. This also implies the applicability of MA-DAC in
solving difficult problems.



Table S6: IGD values obtained by MOEA/D, MOEA/D-AWA, MOEA/D-OP2-AWA, and MA-DAC on differ-
ent problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value of each
problem is highlighted in bold. The symbols ‘+’, ‘—’ and ‘~’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with

confidence level 0.05.

Problem M ‘ MOEA/D MOEA/D-AWA MOEA/D-OP2-AWA MA-DAC
3 4.605E-02 (3.54E-04) —  4.596E-02 (3.54E-04) —  4.670E-02 (3.30E-04) —  3.807E-02 (5.05E-04)
DTLZ2 5 3.006E-01 (1.55E-03) — 2.900E-01 (2.73E-03) — 2.764E-01 (3.40E-03) — 2.442E-01 (1.26E-02)
7 4.455E-01 (1.41E-02) — 4.167E-01 (2.37E-02) — 4.436E-01 (8.67E-03) — 3.944E-01 (1.17E-02)
3 | 6.231E-02(8.85E-02)~  4.597E-02 (3.66E-04) ~  6.219E-02 (3.90E-03) —  6.700E-02 (6.14E-02)
DTLZ4 5 3.133E-01 (4.45E-02) =~  2.816E-01 (3.24E-03) + 3.283E-01 (1.08E-02) — 2.995E-01 (2.10E-02)
7 4.374E-01 (2.57E-02) — 3.696E-01 (1.32E-02) +  4.437E-01 (9.46E-03) — 4.182E-01 (1.21E-02)
3 5.761E-02 (5.41E-04) — 5.748E-02 (7.11E-04) — 7.280E-02 (1.33E-03) — 5.200E-02 (1.19E-03)
WFG4 5 3.442E-01 (1.21E-02) — 3.168E-01 (5.37E-03) — 2.648E-01 (8.15E-03) — 1.868E-01 (2.81E-03)
7 4.529E-01 (1.79E-02) — 4.285E-01 (1.55E-02) — 3.676E-01 (1.06E-02) — 3.033E-01 (3.66E-03)
3 6.327E-02 (1.10E-03) — 6.376E-02 (9.85E-04) — 6.168E-02 (4.61E-04) — 4.730E-02 (7.89E-04)
WFG5 5 3.350E-01 (9.77E-03) — 3.173E-01 (5.33E-03) — 3.024E-01 (6.02E-03) — 1.811E-01 (3.02E-03)
7 4.101E-01 (2.08E-02) — 4.095E-01 (1.94E-02) — 4.865E-01 (1.28E-02) — 3.206E-01 (8.04E-03)
3 6.938E-02 (5.50E-03) — 6.846E-02 (4.70E-03) — 6.078E-02 (1.16E-03) — 4.831E-02 (8.95E-03)
WFG6 5 3.518E-01 (2.82E-03) — 3.190E-01 (3.93E-03) — 3.143E-01 (2.52E-02) — 1.942E-01 (6.90E-03)
7 4.869E-01 (3.03E-02) — 4.727E-01 (3.05E-02) — 4.770E-01 (3.24E-02) — 3.112E-01 (4.93E-03)
3 5.811E-02 (6.31E-04) — 5.837E-02 (6.25E-04) — 6.017E-02 (6.74E-04) — 4.066E-02 (5.31E-04)
WFG7 5 3.572E-01 (5.47E-03) — 3.227E-01 (4.19E-03) — 2.885E-01 (1.25E-02) — 1.858E-01 (2.12E-03)
7 5.236E-01 (2.19E-02) — 5.004E-01 (3.80E-02) — 4.560E-01 (2.56E-02) — 3.258E-01 (1.25E-02)
3 8.646E-02 (3.44E-03) — 8.742E-02 (6.36E-04) — 9.572E-02 (8.39E-04) — 7.901E-02 (1.19E-03)
WFG8 5 4.258E-01 (8.42E-03) — 4.216E-01 (1.18E-02) — 3.824E-01 (9.74E-03) — 2.479E-01 (7.20E-03)
7 5.816E-01 (1.30E-02) — 5.790E-01 (1.06E-02) — 5.632E-01 (1.27E-02) — 4.127E-01 (5.93E-03)
3 5.817E-02 (1.24E-03) — 5.809E-02 (1.45E-03) — 6.470E-02 (1.75E-02) — 4.159E-02 (6.10E-04)
WFG9 5 3.633E-01 (1.20E-02) — 3.517E-01 (2.19E-02) — 3.024E-01 (1.36E-02) — 1.832E-01 (7.10E-03)
7 | 5.538E-01 (2.63E-02) —  5.108E-01 (2.65E-02) —  4.861E-01 (2.78E-02) —  3.278E-01 (7.21E-03)
+/—I~ ‘ 0/22/2 2/21/1 0/24/0
average rank ‘ 3.50 2.54 2.75 1.21
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Figure S1: Curves of IGD value obtained by the compared methods on the 3-objective problems.
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Figure S2: Curves of IGD value obtained by the compared methods on the 5-objective problems.
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Figure S3: Curves of IGD value obtained by the compared methods on the 7-objective problems.
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