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Abstract

As deep learning blooms with growing demand for computation and data resources,
outsourcing model training to a powerful cloud server becomes an attractive alterna-
tive to training at a low-power and cost-effective end device. Traditional outsourc-
ing requires uploading device data to the cloud server, which can be infeasible in
many real-world applications due to the often sensitive nature of the collected data
and the limited communication bandwidth. To tackle these challenges, we propose
to leverage widely available open-source data, which is a massive dataset collected
from public and heterogeneous sources (e.g., Internet images). We develop a novel
strategy called Efficient Collaborative Open-source Sampling (ECOS) to construct
a proximal proxy dataset from open-source data for cloud training, in lieu of client
data. ECOS probes open-source data on the cloud server to sense the distribution
of client data via a communication- and computation-efficient sampling process,
which only communicates a few compressed public features and client scalar re-
sponses. Extensive empirical studies show that the proposed ECOS improves the
quality of automated client labeling, model compression, and label outsourcing
when applied in various learning scenarios.

1 Introduction

Nowadays, powerful machine learning services are essential in many devices that supports our daily
routines. Delivering such services is typically done through client devices that are power-efficient
and thus very restricted in computing capacity. The client devices can collect data through built-in
sensors and make predictions by machine learning models. However, their stringent computing
power often makes the local training prohibitive, especially for high-capacity deep models. One
widely adopted solution is to outsource the cumbersome training to cloud servers equipped with mas-
sive computational power, using machine-learning-as-a-service (MLaaS). Amazon Sagemaker [29],
Google ML Engine [6], and Microsoft Azure ML Studio [4] are among the most successful industrial
adoptions, where users upload training data to designated cloud storage, and the optimized machine
learning engines then handle the training. One major challenge of the outsourcing solution in many
applications is that the local data collected are sensitive and protected by regulations, therefore
prohibiting data sharing. Notable examples include General Data Protection Regulation (GDPR) [1]
and Health Insurance Portability and Accountability Act (HIPPA) [2].
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Figure 1: Illustration of the proposed ECOS framework. Instead of uploading local data for cloud
training, ECOS downloads the centroids of clustered open-source features to efficiently sense the
client distribution, where the client counts the local neighbor samples of the centroids as the coverage
score. Based on the the scores of centroids, the server adaptively samples proximal and diverse data
for training a transferable model on the cloud.

On the other hand, recent years witnessed a surging amount of general-purpose and massive datasets
authorized for public use, such as ImageNet [15], CelebA [31], and MIMIC [26]. Moreover, many
task-specific datasets used by local clients can be well considered as biased subsets of these large
public datasets [41, 28]. Therefore, the availability of these datasets allows us to use them to model
confidential local data, facilitating training outsourcing without directly sharing the local data. One
approach is to use the private client dataset to craft pseudo labels for a public dataset in a confidential
manner [56, 40], assuming that the public and local data are identically-and-independently-distributed
(iid). In addition, Alon et al. showed that an iid public data can strongly supplement client learning,
which greatly reduces the private sample complexity [3]. However, the iid assumption can often be too
strong for general-purpose open-source datasets, since they are usually collected from heterogeneous
sources with distributional biases from varying environments. For example, a search of ‘digits’ online
yields digits images from handwriting scans, photos, to artwork of digits.

In this paper, we relax the iid assumption in training outsourcing and instead consider the availability
of an open-source dataset. We first study the gap between the iid data and the heterogeneous open-
source data in training outsourcing, and show the low sample efficiency of open-source data. We show
that in order to effectively train a model from open-source data that is transferable to the client data,
the open-source data needs to communicate more samples than those of iid data. The main reason
behind such low sample efficiency is that we accidentally included out-of-distribution (OoD) samples,
which poison the training and significantly degrade accuracy at the target (client) data distribution [5].
We propose a novel framework called Efficient Collaborative Open-source Sampling (ECOS) to
tackle this challenge, which filters the open-source dataset through an efficient collaboration between
the client and server and does not require client data to be shared. During the collaboration, the server
sends compressed representative features (centroids) of the open-source dataset to the client. The
client then identifies and excludes OoD centroids and returns their privately computed categorical
scores to the server. The server then adaptively and diversely decompresses the neighbors of the
selected centroids. The main idea is illustrated in Fig. 1.

Our major contributions are summarized as follows:
• New problem and insight: Motivated by the strong demands for efficient and confidential outsourc-
ing, using public data in place of the client data is an attractive solution. However, the impact of
heterogeneous sources of the public data, namely open-source data, is rarely studied in existing works.
Our empirical study shows the potential challenges due to such heterogeneity.
• New sampling paradigm: We propose a new unified sampling paradigm, where the server only
sends very few query data to the client and requests very few responses that efficiently and privately
guide the cloud for various learning settings on open-source data. To our best knowledge, our method
enables efficient cloud outsourcing under the most practical assumption of open-source public data,
and does not require accessing raw client data or executing cumbersome local training.
• Compelling results: In all three practical learning scenarios, our method improves the model
accuracy with pseudo, manual or pre-trained supervisions. Besides, our method shows competitive
efficiency in terms of both communication and computation.
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2 Related Work
There are a series of efforts studying how to leverage the data and computation resources on the
cloud to assist client model training, especially when client data cannot be shared [53, 48]. We
categorize them as follows: 1) Feature sharing: Methods like group knowledge transfer [21], split
learning [47] and domain adaptation [18, 17] transfer edge knowledge by communicating features
extracted by networks. To provide a theoretical guarantee of privacy protection, [37] proposed an
advanced information removal to disentangle sensitive attributes from shared features. In the notion of
rigorous privacy definition, Liu et al. leveraged public data to assist private information release [30].
Earlier, data encryption was used for outsourcing, which however is too computation-intensive for
a client and less applicable for large-scale data and deep networks [12, 27]. Federated Learning
(FL) [34] considers the same constraint on data sharing but allocates the burdens of training [23] and
communication [57] to clients and opens up a series of challenges on privacy [11], security [33, 10]
and knowledge transfer [24]. 2) Private labeling: PATE and its variants were proposed to generate
client-approximated labels for unlabeled public data, on which a model can be trained [39, 40].
Without training multiple models by clients, Private kNN was a more efficient alternative which
explored the private neighborhood of public images for labeling [56]. These approaches are based on
a strong assumption of the availability of public data that is iid as the local data. This paper considers
a more practical yet challenging setting where public data are from multiple agnostic sources with
heterogeneous features.

Sampling from public data has been explored in central settings. For example, Xu et al. [51] used a
few target-domain samples as a seed dataset to filter the open-domain datasets by positive-unlabeled
learning [32]. Yan et al. [52] used a model to find the proxy datasets from multiple candidate datasets.
In self-supervised contrastive learning, model-aware K-center (MAK) used a model pre-trained on
the seed dataset to find desired-class samples from open-world dataset [25]. Though these methods
provided effective sampling, they are less applicable when the seed dataset is placed at the low-energy
edge, because the private seed data at the edge cannot be shared with the cloud for filtering and the
edge device is incapable of computation-intensive training. To address these challenges, we develop
a new sampling strategy requiring only light-weight computation at the edge.

3 Outsourcing Model Training With Open-Source Data
3.1 Problem Setting and Challenges

Motivated in Section 1, we aim to outsource the training process from computation-constrained
devices to the powerful cloud server, where a proxy public dataset without privacy concerns is
used in place of the client dataset for cloud training. One solution is (private) client labeling by
k-nearest-neighbors (kNN) [56], where the client and cloud server communicate the pseudo-label of
a public dataset privately and the server trains a classifier by the labeled and unlabeled samples in a
semi-supervised manner. The success of this strategy depends on the key assumptions that public
data in the cloud and private data in the client are iid, which are rather strong in practice and thus
prevent it from many real-world applications. In this work, we make a more realistic assumption
that the public datasets are as accessible as open-source data. An open-source dataset consists of

Table 1: Test accuracy (%) with different client domains (columns). Cloud data are identically
distributed as the client data (ID) or including more data from 5 distinct domains (ID+OoD) without
overlapped samples. We first label a number of randomly selected cloud examples (i.e., sampling
budget) privately by client data [56], and then train a classifier to recognize digit images. The privacy
cost ϵ is accounted for in the notion of differential privacy. Larger budgets imply more privacy and
communication costs. More results on different settings are enclosed in Appendix B.3.

Cloud Sampling MNIST SVHN USPS SynthDigits MNIST-M Average
Data Budget Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓

ID 1000 84.3±2.4 4.48 51.6±1.4 4.08 87.1±0.5 4.51 73.2±1.5 4.57 55.5±1.0 4.46 70.4 4.42

ID+OoD

1000 78.0±3.5 4.30 40.6±1.6 3.75 82.2±2.7 4.32 62.1±1.6 4.41 49.1±1.0 4.27 62.4 4.21
8000 82.2±4.1 5.89 47.9±1.8 5.89 85.4±0.5 5.89 64.4±3.6 5.89 53.3±2.2 5.89 66.6 5.89

16000 82.6±1.4 7.17 48.5±1.7 7.17 86.7±1.9 7.17 67.5±2.3 7.17 52.0±3.0 7.17 67.4 7.17
32000 84.1±1.6 9.32 49.4±0.2 9.32 86.8±2.0 9.32 68.5±0.1 9.32 53.0±2.7 9.32 68.4 9.32
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biased features from multiple heterogeneous sources (feature domains), and therefore includes not
only in-distribution (ID) samples similar to the client data but also multi-domain OoD samples.

The immediate question is how the OoD samples affect the outsourced training. In Table 1, we
empirically study the problem by using a 5-domain dataset, Digits, where 50% of one domain is used
on the client and the remained 50% together with the other 4 domains serve as the public dataset on
the cloud. To conduct the cloud training, we leverage the client data to generate pseudo labels for the
unlabeled public samples, following [56]. It turns out that the presence of OoD samples in the cloud
greatly degrades the model accuracy. The inherent reason for the degradation is that the distributional
shift of data [43] compromised the transferability of the model to the client data [50].

Problem formulation by sampling principles. Given a client dataset Dp and an open-source dataset
Dq , the goal of open-source sampling is to find a proper subset S fromDq , whose distribution matches
Dp. In [25], Model-Aware K-center (MAK) formulated the sampling as a principled optimization:

minS⊆Dq ∆(S,Dp)−H(S ∪Dp;Dq), (1)

where ∆(S,Dp) := Ex′∈Dp [minx∈S ∥ϕ(x)− ϕ(x′)∥2] measures proximity as the set differ-
ence between S and Dp using a feature extractor ϕ, and the latter H(S ∪ Dp;Dq) :=

maxx′∈Dq minx∈S∪Dp ∥ϕ(x)− ϕ(x′)∥2 measures diversity by contradicting S ∪Dp and Dq (sup-
poseDq is the most diverse set)2. Solving Eq. (1) results in an NP-hard problem that is intractable [13],
and MAK provides an approximated solution by a coordinate-wise greedy strategy. It first pre-trains
the model representations on Dp and finds a large candidate set with the best proximity to extracted
features. Then, it incrementally selects the most diverse samples from the candidate set until the
sampling budget is used up.

Though MAK is successful in the central setting, it is not applicable when Dp is isolated from cloud
open-source data and is located at a resource-constrained client for two reasons: 1) Communication
inefficiency. Uploading client data may result in privacy leakage, sending public data to the client is a
direct alternative but the cost can be prohibitive. 2) Computation inefficiency. Pre-training a model
on Dp or proximal sampling (which computes the distances between paired samples from Dq and
Dp) induces unaffordable computation overheads for the low-energy client.

3.2 Proposed Solution: Efficient Collaborative Open-Source Sampling (ECOS)

To address the above challenges, we design a new strategy that 1) uses compressed queries to reduce
the communication and computation overhead and 2) uses a novel principled objective to effectively
sample from open-source data with the client responses of the compressed queries.

Construct communication-efficient and an informative query set Φ̂q at cloud. Let d be the
number of pixels of an image, the communication overhead of transmitting Dq to the client is given
by O(d|Dq|). For communication efficiency, we optimize the following two factors:
i) Data dimension d. First, we transmit extracted features Φq = {ϕ(x)|x ∈ Dq} instead of images to
reduce the communication overhead to O(de|Dq|), where de is a much smaller embedding dimension.
For accurate estimation of the distance ∆, a pre-defined discriminative feature space is essential
without extra training on the client. Depending on resources, one may consider hand-crafted features
such as HOG [14], or an off-the-shelf pre-trained model such as ResNet pre-trained on ImageNet.
ii) Data size |Dq|. Even with compression, sending all data for querying is inefficient due to the huge
size of open-source data |Dq|. Meanwhile, too many queries would cast unacceptable privacy costs
to the client. As querying on similar samples leads to redundant information in querying, we propose
to reduce such redundancy by selecting informative samples. We use the classic clustering method
KMeans [20] for compressing similar samples by clustering them, and collect the R mean vectors
or centroids into Φ̂q = {cr}Rr=1. We denote R as the compression size and D̂q as the set of original
samples corresponding to Φ̂q .

New sampling objective. We note that sending the compact set Φ̂q in place of Dq prohibits the client
from optimizing ∆(S,Dp) in Eq. (1) for S ∈ Dq . Instead, we sample a set of centroids Ŝ ∈ Φ̂q and
decompress them by the cluster assignment into corresponding original samples with rich features

2Note that we use L2-norm distance instead of normalized cosine similarity in ∆(S,Dp) in contrast to MAK,
since normalized cosine similarity is not essential if the feature space is not trained under the cosine metric. We
also omit the tailedness objective which is irrelevant in our context.

4



afterwards. In principle, we leverage the inequality ∆(S,Dp) ≤ ∆(Ŝ,Dp) + ∆(Ŝ, S) to attain a
communication-efficient surrogate objective as follows:

minŜ⊆D̂q,S⊆Dq ∆(Ŝ,Dp) + ∆(Ŝ, S)︸ ︷︷ ︸
proximity

−H(S;Dq)︸ ︷︷ ︸
diversity

, (2)

where Ŝ (or D̂q) is the compressed centroid substitute of S (or Dq). Different from Eq. (1), we
decompose the proximity term into two in order to facilitate communication efficiency leveraging an
informative subset D̂q. We solve the optimization problem in a greedy manner by two steps at the
client and the cloud, respectively:
i) At the client step, we optimize ∆(Ŝ,Dp) to find a subset of centroids (Ŝ ⊂ D̂q) that are proximal
to the client setDp. Noticing that D̂q contains the cluster centroids, we take advantage of the property
to define a novel proximity measure of the cluster r: Centroid Coverage (CC), denoted as vr. Upon
receiving centroids from the cloud, the client uses them to partition the local data into {Cp

r}Rr=1 where
Cp
r denotes the r-th cluster partition of local data. We compute the CC score by the cardinality of

the neighbor samples of the centroid r, i.e., vr = |Cp
r |. To augment the sensitivity to the proximal

clusters, we scale the CC score by a non-linear function v′r = ψs(|Cp
r |), where the scale function

ψs(x) = xs is parameterized by s.
ii) At the cloud step, we optimize the proximity of S w.r.t. the proxy set Ŝ, i.e., ∆(Ŝ, S), and remove
redundant and irrelevant samples from the candidate set to encourage diversity, i.e., −H(S;Dq). As
samples among clusters are already diversified by KMeans, we only need to promote the in-cluster
diversity. To this end, we reduce the sample redundancy per cluster at cloud by K-Center [44], which
heuristically finds the most diverse samples. Such design transfers the diversity operation to cloud
and thus reduces the local computation overhead. To maintain the proximity, the K-Center is applied
within each cloud cluster and the sampling budget per cluster is proportional to their vote numbers
and the original cluster sizes. With the normalized scores, we compute the sampling budget per
cluster which is upper bounded by the ratio of the cluster in the cloud set.

Algorithm 1 Efficient collaborative open-source sampling (ECOS)

Input: Client dataset Dp, cloud query dataset Dq , sampling budget B, compression size R, feature
extractor ϕ(·), distance function ∆(x, S) = miny∈S ∥ϕ(x)− ϕ(y)∥, initial sample set S = ∅,
score scale function ψs(x) = xs.

1: Extract features Φq = {ϕ(x)|x ∈ Dq};
2: Cloud creates a compressed dataset Φ̂q = KMeansR(Φq); ▷ Compress R Centroids
3: ▷ ▷ ▷ Client End ▷ ▷ ▷
4: Download the feature extractor ϕ and Φ̂q;
5: Use centroids Φ̂q to partition Φp = {ϕ(x)|x ∈ Dp} into clusters {Cp

r}Rr=1;
6: Compute the Centroid Coverage (CC) scores: vr = |Cp

r |, ∀r ∈ {1, . . . , R};
7: Upload scaled cluster scores {v′r = ψs(vr)}Rr=1; ▷ Proximity
8: ◁ ◁ ◁ Cloud End ◁ ◁ ◁
9: Partition Dq into clusters {Cq

r}Rr=1 by centroids Φ̂q;
10: Compute per-cluster sampling budget br = min

{
|Cq

r |∑
j |Cq

j |
,

v′
r∑
j v′

j

}
·B;

11: for r in {1, . . . , R} do ▷ Decompress Centroids
12: Initialize S′ = {x} by a sample randomly picked from Cr;
13: while |S′| < br do ▷ Diverse Sampling
14: u = argmaxx∈Cq

r
∆(x, S′);

15: S′ = {u} ∪ S′;
16: S = S′ ∪ S;
17: return S

We summarize our algorithm in Algorithm 1, which enables the clients to enjoy better computation
efficiency than local training and better communication efficiency than the centralized sampling (e.g.,
MAK). 1) Computation efficiency. Since our method only requires inference operations on the client
device, which should be efficiently designed for the standard predictive functions of the device, and is
training-free for the client, the major complexity of ECOS is on computing centroid coverage and is
much lower than gradient-based algorithms whose complexity scales with the model size and training
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iterations. As computing the CC scores only requires the nearest centroid estimation and ranking, the
filtering can be efficiently done. The total time complexity is O(Cϕ|Dp|+(de+1)R|Dp|), dominated
by the first term, where Cϕ is the complexity of extracting features depending on the specific method.
The second term (de + 1)R|Dp| is for computing the pair-wise distances between Φp and Φ̂q and
estimating the nearest centroids per sample (or partitioning client data). In a brief comparison,
the complexity of local T -iteration gradient-descent training could be approximately O(TCϕ|Dp|)
which is much more expensive since typically TCϕ ≫ de. To complete the analysis, the space
complexity is O(C ′

ϕ + (d + de)|Dp| + deR + |Dp|R) for the memory footprint of ϕ, the images
(d) or features (de) of client and cloud centroid data, and the distance matrix. 2) Communication
efficiency. The downloading complexity will be O(deR) for R de-dimensional centroid features
and the uploading complexity is O(R) including indexes of samples. Thus, the data that will be
communicated between the client and cloud is approximately of O(deR+R) complexity in total. In
comparison, downloading the whole open-source dataset by central sampling (e.g., MAK) requires
O(d|Dq| + B) complexity. As R < deR ≪ de|Dq| ≪ d|Dq|, our method can significantly scale
down the computation cost.

Privacy protection and accountant. When the cloud server is compromised by an attacker, uploading
CC scores leak private information of the local data samples, for example, the presence of an
identity [45]. To mitigate the privacy risk, we protect the uploaded scores by a Gaussian noise
mechanism, i.e., ṽr = vr +N (0, σ2), and account for the privacy cost in the notion of differential
privacy (DP) [19]. DP quantifies the numerical influence of the absence of a private sample on
[v1, · · · , vR], which is connected to the chance of exposing the sample to the attacker. To obtain a
tight bound on the privacy cost, we utilize the tool of Rényi Differential Privacy (RDP) [36] and
leverage the Poisson sampling to further amplify the privacy [55]. With the noise mechanism governed
by σ, the resultant privacy cost in the sense of (ϵ, δ)-DP can be accounted as ϵ = O(γ

√
log(1/δ)/σ)

where γ is the Poisson subsampling rate and δ is a user-specified parameter. A larger ϵ implies higher
risks of privacy leakage in the probability of δ. Formal proofs can be found in Appendix A.3.

Generalization error of models trained on cloud. Our work can be viewed as knowledge transfer
from the open-source domain to the private client domain. Therefore, we present Theorem 3.1 based
on prior domain-adaptation theoretical results [7, 18, 17].
Theorem 3.1. Assume that a open-source dataset S is induced from a mixture of cluster distributions,
i.e.,

∑R
r=1 αrDq

r with cluster distribution Dq
r , αr ∈ [0, 1] and

∑R
r=1 αr = 1. Suppose client data are

sampled from Dp. Let L(·, ·) be a loss function on a hypothesis and a dataset (for empirical error)
or a distribution (for generalization error). If f is governed by the parameter θ trained on S and
belongs to a hypothesis space H of V C-dimension d, then with probability at least 1− p over the
choice of samples, the inequality holds,

L(fθ,Dp) ≤ L(fθ, S) +
1

2

∑R

r=1
αrdH∆H(Dq

r ,Dp) + 4

√
2d log(2|S|) + log(4/p)

|S|
+ ξ, (3)

where ξ = minθ {L(fθ, S) + L(fθ, D
p)}, and dH∆H(D,D′) denotes the distribution divergence.

The proof of Theorem 3.1 is deferred to Appendix A.4. Theorem 3.1 shows that given a model trained
on cloud, its generalization error on client data hinges on the quality and size of the ECOS-sampled
subset. Informally, if the sampled set has enough samples (the 3rd term) and follows a similar
distribution as the client dataset (the 2nd term), then the model generalizes better via only training on
the proxy cloud dataset (the 1st term). In Theorem 3.1, the model fθ can be trained by any task-specific
optimization method. For example, minimizing a µ-strongly-convex and G-smooth loss function
L(fθ, S) w.r.t. θ via T -iteration gradient descent leads to L(fθ, S) = (1− µ/G)T |L(fθ0 , S)− L∗|
where L∗ is the optimal loss.

Given Eq. (3), it can be shown that minimizing the upper bound requires a dedicated trade-off between
sample size and quality. Consider a simple case, only minimizing

∑R
r=1 αrdH∆H(Dq

r ,Dp). The
solution is that αr equals 1 if dH∆H(Dq

r ,Dp) is smallest among all choices of clusters, otherwise
zero. However, the number of samples in the cluster r is limited as |Cq

r | which is much smaller than
the whole open-source dataset |Dq|, and therefore |S| will be too small to enlarge the third term in
Eq. (3). Thus, αr should be smoothed to increase sample size by trading in some quality (distribution
divergence). In our implementation, we approximate αr via the CC score vsr , where an s < ∞
smooths the αr to trade off sample size and quality. When s vanishes, all clusters will be selected at
the same chance and the divergence could be large.
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Figure 2: Our method is applicable to various cloud training cases, where ECOS filters the open-
source samples to improve the model performance trained on (a) manual, (b) pre-trained model
(teacher), and (c) pseudo supervisions.

4 Empirical Results

Datasets. We use datasets from two tasks: digit recognition and object recognition. Distinct from prior
work [56], in our work, the open-source data contains samples out of the client’s distribution. With
the same classes as the client dataset, we assume open-source data are from different environments
and therefore include different feature distributions, for example, DomainNet [41] and Digits [28].
DomainNet includes large-sized 244 × 244 everyday images on 6 domains and Digits consists of
28× 28 digit images on 5 domains. Instead of using an overly large volume of data from a single
domain like [56], we tailor each-domain subset to contain fewer images than standard digit datasets,
for instance, MNIST with 7438 images, which was previously adopted in the distributed learning
setting [28] and mitigates the hardness of collecting enormous data. In practice, collecting tens of
thousands of images by a single client, e.g., 50000 images from MNIST domain, will be unrealistic.
Similarly, DomainNet will be tailored to only include 10 classes with 2000-5000 images per domain.
Splits of client and cloud datasets. For Digits, we use one domain for the client and the rest domains
for the cloud as open-source set. For DomainNet, we randomly select 50% samples from one domain
for the client and leave the rest samples together with all other domains to the cloud. The difference
of configurations for the two datasets is caused by their different domain gaps. Even without ID data,
it is possible for Digits to transfer the knowledge across domains.
Baselines. For a fair comparison, we compare our method to baselines with the same sampling
budget. Each experiment case is repeated for three times with seeds {1, 2, 3}. We account for the
privacy cost by Poisson-subsampling RDP [55] and translate the cost to the general privacy notion,
(ϵ, δ)-DP when δ = 10−5. Here, we use the random sampling as a naive baseline. We also adopt
a coreset selection method, K-Center [44], to select informative samples within the limited budget.
Both baselines are perfectly private, because they do not access private information from clients.
Details of hyper-parameters are deferred to Appendix B.1.

4.1 Evaluations on Training Outsourcing

To demonstrate the general applicability of ECOS, we present three practical use cases of outsourcing,
categorized by the form of supervisions. The conceptual illustrations are in Fig. 2. Per use case, we
train a model on partially labeled cloud data (outsourced training) and accuracy on the client test set
is reported together with standard deviations. We present the results in Tables 2 to 4 case by case,
where we vary the domain of the client by columns. In each column, we highlight the best result
unless the difference is not statistically significant.

Case 1: Selective manual labeling. We assume that the cloud will label the filtered in-domain
samples by using a third-party label service, e.g., Amazon Mechanical Turk [38], or by asking the
end clients for manual labeling. As the selected samples are non-private, they can be freely shared
with a third parity. But the high cost of manual labeling or service is the pain point, which should be
carefully constrained within a finite budget of demanded labels.
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Table 2: Test accuracy by selective labeling on Digits (top) and DomainNet (bottom).
Sampling MNIST SVHN USPS SynthDigits MNIST-M Average

Budget Method Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑

2000
Ours 97.3±0.1 0.22 68.7±0.3 0.22 90.8±0.1 0.22 84.4±0.6 0.22 70.4±0.6 0.22 82.3

K-Center 96.7±0.3 0.00 65.1±1.3 0.00 90.1±0.7 0.00 80.2±1.1 0.00 70.1±0.3 0.00 80.4
Random 96.5±0.3 0.00 64.0±0.3 0.00 91.6±1.0 0.00 83.8±0.3 0.00 70.9±0.6 0.00 81.4

5000
Ours 98.1±0.2 0.22 74.6±1.0 0.22 93.5±0.3 0.22 91.2±0.4 0.22 74.5±0.5 0.22 86.4

K-Center 97.9±0.2 0.00 72.3±0.6 0.00 92.7±0.9 0.00 89.6±0.3 0.00 74.0±0.5 0.00 85.3
Random 97.6±0.3 0.00 70.0±0.3 0.00 93.0±0.6 0.00 89.7±0.4 0.00 73.9±0.7 0.00 84.8

- Local 99.1±0.1 0.00 88.8±0.2 0.00 98.9±0.1 0.00 96.4±0.2 0.00 88.8±0.2 0.00 94.4

Sampling Clipart Infograph Painting Quickdraw Real Sketch Average
Budget Method Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑

1000
Ours 88.4±1.5 0.58 52.6±0.9 0.58 90.4±1.7 0.58 84.3±1.6 0.58 92.1±1.2 0.58 87.2±0.5 0.58 82.5

K-Center 86.8±0.3 0.00 50.5±0.9 0.00 89.1±1.4 0.00 27.2±1.8 0.00 92.5±0.1 0.00 85.6±1.4 0.00 72.0
Random 86.9±0.8 0.00 47.4±2.7 0.00 88.6±0.1 0.00 77.9±2.4 0.00 91.4±0.3 0.00 86.9±0.5 0.00 79.9

3000
Ours 93.2±0.4 0.58 58.1±0.6 0.58 92.5±1.1 0.58 89.2±0.9 0.58 94.4±0.2 0.58 92.8±0.2 0.58 86.7

K-Center 93.5±1.1 0.00 56.3±0.3 0.00 92.9±0.3 0.00 60.5±8.7 0.00 94.1±0.2 0.00 92.1±0.7 0.00 81.6
Random 92.5±0.6 0.00 53.6±1.4 0.00 91.7±0.8 0.00 86.1±0.4 0.00 93.5±0.3 0.00 93.0±0.2 0.00 85.1

- Local 87.0±0.3 0.00 51.7±0.7 0.00 85.9±0.4 0.00 83.5±0.3 0.00 93.5±0.1 0.00 81.7±0.6 0.00 80.6

Given a specified sampling budget, we compare the test accuracy of semi-supervised learning
(FixMatch) on sampled data in Table 2. Since the ECOS tends to select in-distribution samples, it
eases the transfer of cloud-trained model to the client data. On the Digits dataset, we find that our
method attains more accuracy gains as budget increases, demonstrating that more effective labels
are selected. On the DomainNet dataset, our method outperforms baselines on 5 out of 6 domains
and is stable in most domains given a small budget (1000) and is superior on average. Given higher
budgets, the accuracy of all methods are improved, and our method is outstanding on Infograph and
Quickdraw domains and is comparable to the baselines on other domains.

Table 3: Test accuracy by adaptive model compression on DomainNet.
Sampling Clipart Infograph Painting Quickdraw Real Sketch Average

Budget Method Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑

1000
Ours 82.9±0.7 0.58 48.5±2.7 0.58 85.4±1.0 0.58 81.3±2.5 0.58 91.4±0.6 0.58 82.4±1.1 0.58 78.6

K-Center 81.2±0.9 0.00 44.6±0.9 0.00 84.5±2.2 0.00 41.7±1.9 0.00 92.4±0.5 0.00 80.1±2.1 0.00 70.8
Random 83.8±0.7 0.00 44.4±2.1 0.00 83.8±1.6 0.00 76.3±2.2 0.00 90.1±0.6 0.00 80.1±0.7 0.00 76.4

3000
Ours 90.6±0.6 0.58 51.4±1.9 0.58 89.6±1.2 0.58 87.6±0.3 0.58 93.6±0.7 0.58 88.4±1.5 0.58 83.5

K-Center 88.9±2.3 0.00 51.2±0.4 0.00 89.4±0.9 0.00 57.6±4.4 0.00 94.5±0.5 0.00 86.9±0.6 0.00 78.1
Random 88.4±0.8 0.00 47.6±1.9 0.00 89.4±1.0 0.00 84.7±0.2 0.00 93.0±1.0 0.00 86.3±1.2 0.00 81.6

Case 2: Adaptive model compression. Due to the large volume of the open-source dataset, a
larger model is desired for better capturing the various features, which however is so inefficient to
fit into the resource-constrained client devices or specialize for the data distribution of the client.
Confronting this challenge, model compression [9] is a conventional idea to forge a memory-efficient
model by transferring knowledge from large models to small ones. Specifically, we first pre-train a
large teacher model ft on all cloud data by the supervised learning, assuming labels are available
in advance. Still, we use an ImageNet-pre-trained model to initialize the feature extractor ϕ(·) of a
student model fs. Then the client will use the downloaded feature extractor ϕ to filter samples. Here,
we utilize knowledge distillation [22] to finetune the fs with an additional classifier head upon the ϕ.
On the selected samples, we train a linear classifier head for 30 epochs under the supervision of true
labels and the teacher model ft, and then fine-tune the full network fs for 500 epochs. The major
challenge comes from distributional biases between the multi-source open-source data and the client
data. Leveraging ECOS, we may sample data near the client distribution and reduce the bias in the
follow-up compression process.

We simulate the case on the large-sized image dataset, DomainNet, which is demanding for large-scale
networks, e.g., ResNet50, to effectively learn the complicated features. Here, we compress ResNet50
into a smaller network, ResNet18, by using an adaptively selected subset of the cloud dataset. We
omit the experiment for digit images where a large model may not be necessary for such a small
image size. In Table 3, we present the test accuracy of compressed ResNet18 using 3000 samples
from DomainNet in finetuning. With a small portion of privacy cost (ϵ < 0.6), our method improves
the accuracy on Clipart and Real domains against the baselines. Note that the model accuracy here is
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lower than label outsourcing in Table 2, and reason is that the supervisions from the larger models are
just an approximation of the full dataset. Without using the full dataset for compression, the training
can be completed fast and responsively on the demand of a client.

Table 4: Test accuracy of client labeling on two datasets: Digits (top) and DomainNet (bottom).
Sampling MNIST SVHN USPS SynthDigits MNIST-M Average

Budget Method Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑

5000
Ours 84.2±2.3 5.35 47.9±3.1 5.32 86.1±1.0 5.35 68.6±1.6 5.35 58.4±1.9 5.35 69.0

K-Center 81.9±3.4 5.34 48.4±1.2 5.33 82.1±1.2 5.34 69.4±1.9 5.34 55.4±2.0 5.34 67.4
Random 81.8±4.1 5.34 45.3±3.0 5.29 81.2±2.3 5.34 65.9±2.7 5.34 55.5±2.6 5.34 65.9

Sampling Clipart Infograph Painting Quickdraw Real Sketch Average
Budget Method Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑ ϵ ↓ Acc (%) ↑

3000
Ours 33.2±5.9 4.46 23.8±2.2 3.50 47.4±3.3 4.51 39.8±7.7 4.87 62.9±1.9 4.92 51.7±1.2 4.94 43.2

K-Center 39.3±3.6 4.57 18.2±2.7 3.61 46.6±2.5 4.52 36.1±2.9 4.94 63.8±1.9 4.96 47.7±2.8 4.96 42.0
Random 30.7±2.2 4.41 21.6±4.9 3.43 44.0±3.1 4.53 39.0±5.6 4.82 59.9±3.6 4.75 47.2±3.4 4.94 40.4

Case 3: Automated client labeling. When the client obtained labeled samples, for example, photos
labeled by phone users, the cloud only needs to collect an unlabeled public dataset. Therefore, we
may automate the labeling process leveraging the client supervision knowledge to reduce cost or
users’ efforts on manual labeling. To be specific, we let the client generate pseudo labels for the
cloud data based on their neighbor relation, as previously studied by [56] (private kNN). However,
the private kNN assumes that the client and the cloud follow the same distribution, which weakens its
applicability confronting the heterogeneity and the large scale of open-source data. Thus, we utilize
ECOS as a pre-processing of open-source data before being labeled by private kNN. Therefore, we
have two rounds of communication for transferring client knowledge: proximal-data sampling by the
ECOS and client labeling by the private kNN [56]. To compose the privacy costs from these two steps,
we utilize the analytical moment accountant technique to get a tight privacy bound [49]. Interested
readers can refer to Appendix A.1 for a brief introduction to private kNN and our implementations.

In experiments, we use the state-of-the-art private pseudo-labeling method, private kNN [56], to
label the subsampled open-source data with the assistance from the labeled client dataset. To reduce
the sensitivity of private kNN w.r.t. the threshold, we instead enforce the number of the selected
labels to be 600 and balance the sizes by selecting the top-60 samples with the highest confidence
per class. Then, we adopt the popular semi-supervised learning method, FixMatch [46], to train the
classifier. In Table 4, we report the results when cloud features are distributionally biased from the
client ones but they share the same class set. For each domain choice of client data, we will use
the other domains as the cloud dataset. Distinct from prior studies, e.g., in [56] or [40], we assume
80-90% of the cloud data are out of the client distribution and are heterogeneously aggregated from
different domains, casting greater challenges in learning. On the Digits, we eliminate all ID data from
the cloud set to harden the task. Both on Digits and DomainNet datasets, our method consistently
outperforms the two sampling baselines under the similar privacy costs. The variance of privacy costs
is mainly resulted from the actual sampling sizes. Though simply adopting K-Center outperforms
the random sampling, it still presents larger gaps compared to our method in multiple domains. For
instance, in Quickdraw domain, given 3000 sampling budget, the K-Center method performs poorly
and is even worse than a random sampling.

4.2 Qualitative Study

To better understand the proposed method, we conduct a series of qualitative studies on
client labeling. We use two DomainNet datasets as a representative benchmark in the studies.

Table 5: Ablation study of the proposed method on DomainNet. Test accuracy of the client labeling
case is reported.

Proximity Diversity Clipart Infograph Painting Quickdraw Real Sketch Average

✗ ✗ 30.7±2.2 21.6±4.9 44.0±3.1 39.0±5.6 59.9±3.6 47.2±3.4 40.4
✓ ✗ 25.5 ±5.7 21.1±0.5 41.4±5.3 31.3±1.3 60.3±2.3 31.9±2.9 35.2
✗ ✓ 39.3±3.6 18.2±2.7 46.6±2.5 36.1±2.9 63.8±1.9 47.7±2.8 42.0
✓ ✓ 33.2±5.9 23.8±2.2 47.4±3.3 39.8±7.7 62.9±1.9 51.7±1.2 43.2
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Figure 3: Demonstration of the cen-
troids qualified by private CC. We
use blue dots to represent the client
data from Real domain of Domain-
Net. For the data of the cloud do-
mains, larger circles represent cen-
troids with higher CC and orange
crosses are rejected OoD centroids.

1) Ablation study. In Table 5, we conduct ablation studies to
evaluate the effect of different objectives introduced by ECOS,
following the client labeling benchmark with a 3000 sample
budget. Without proximity and diversity objectives, we let the
baseline be the naive random sampling. We first include the
proximity objective, where we greedily select samples from
top-scored clusters until the budget is fulfilled. However, we
find that the naive proximity objective results in a quite nega-
tive effect compared to the random baseline. The failure can
be attributed to the nature of clustering, which includes more
similar samples and thereby lacks diversity. When diversity
is encouraged and combined with the proximal votes, we find
the performance is improved significantly in multiple domains
and on average. Now with diversity, the proximity objective
can further improve the sampling in Painting, Quickdraw, and
Sketch domains significantly. 2) Visualize cluster selection. In
Fig. 3, we demonstrate that the CC can effectively reject OoD
centroids. Also, it is interesting to observe that when multiple
centroids are distributed closely, then they will compete with
each other and reject the redundant ones consequently. 3) Effi-
ciency. In Section 3, we studied the communication efficiency
theoretically. Empirically, ECOS only needs to upload 100 bytes of the CC scores in all experiments,
while traditional outsourcing needs to upload the dataset, which is about 198MB for the lowest load
in DomainNet (50% of Sketch domain data for client). Even counting the download load, ECOS
only needs to download 45MB of the pre-trained ResNet18 feature extractor together with 51KB
data of centroid features, which is much less than data uploading. More detailed evaluation of the
efficiency is placed in Appendix B.4 and we study how sample budgets and privacy budgets trade off
the accuracy of ECOS models in Appendix B.3.

5 Conclusion

In this paper, we explore the possibility of outsourcing model training without access to the client
data. To reconcile the data shortage from the target domain, we propose to find a surrogate dataset
from the source agnostic public dataset. We find that the heterogeneity of the open-source data greatly
compromises the performance of trained models. To tackle this practical challenge, we propose a
collaborative sampling solution, ECOS, that can efficiently and effectively filter open-source samples
and thus benefits follow-up learning tasks. We envision this work as a milestone for the private and
efficient outsourcing from low-power and cost-effective end devices.

We also recognize open questions of the proposed solution for future studies. For example, the
public dataset may require additional data processing, e.g., aligning and cropping for improved
prediction accuracy. In our empirical studies, we only consider the computer vision tasks, though
no assumption was made on the data structures. We expect the principles to be adapted to other
data types with minimal efforts. More data types, including tabular and natural-language data, will
be considered in the follow-up works. Take the language data for example: BERT is among the
most popular pre-trained models for extracting features from sentences [16], upon which ECOS can
assistant to sample proxy data from massive public dataset, for instance, WikiText-103 [35] based
on 28,475 Wikipedia articles. Alternative to the L2-norm based proximity objectives, advanced
semantic features could also enhance the sampling effectiveness of ECOS in language data [54].
More discussions on the social impacts of this work are enclosed in Appendix A.5.
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A More Method Details

In this section, we elaborate on additional technical and theoretical details of our paper.

A.1 Automated client labeling via private kNN

Here, we briefly introduce the main idea of client labeling by private kNN. Given C classes, labeling
is done by nearest neighbor voting:

f(x) = argmaxc∈[C]Aϵ(vc), vc = |{(x′, y′) ∈ NK(x)|y′ = c}|,

where NK(x) is a set including theK-nearest neighbors of x in the client dataset. Aϵ is a privatization
mechanism complying with the notion of ϵ-Differential Privacy (DP) [19]. In brief, privatization is
done by adding Gaussian noise to a value with finite sensitivity. To filter out potential wrong labels,
the client only returns high-confident samples by screening. Let the confidence of a pseudo label be
s(x) = maxc∈[C]Aϵ(vc) which is also privatized by the Gaussian noise mechanism. We find that
the original version of screening may suffer from a large imbalance of pseudo labels. Per class, we
screen the pseudo labels by selecting the top-60 confident samples given 600 labeling budget.

A.2 Improving client labeling

Because of the noise mechanism for privacy protection, the client labeling may be quite random if
the selected samples are hard to discriminate. Thus, we propose to improve the discrimination of
selected samples in advance, when the ECOS selects samples for labeling. First, we estimate the
discrimination by the confidence in the ECOS. The ECOS confidence is defined by the vote count
of the highest-voted class subtracting the one of the second highest one, denoted as vconf

r . To merit
the balancedness of samples, we filter the clusters to keep the top-70% samples with the highest
confidence per class. When decompressing the clusters on the cloud, we incorporate the confidence
into the sampling score by v′r = ψ

[
(vconf

r + vr)/2
]

where vr is the original score.

A.3 Privacy Accountant for ECOS

To understand the privacy cost of ECOS, we review the techniques that are essential to establish the
privacy bound.

Definition A.1 (Differential Privacy [19]). Suppose ϵ and δ are two positive constants. A randomized
algorithm M : X → Y is (ϵ, δ)-DP if for every pair of neighboring datasets X,X ′ ∈ X , and every
possible measurable output set Y ⊂ Y the following inequality holds:

Pr[M(X) ∈ Y ] ≤ eϵPr[M(X ′) ∈ Y ] + δ,

where Pr[·] denotes the probability of a given event.

DP provides a way to quantify the privacy risk (termed as the difference between two probability
given a pair of similar but different inputs) in the probability of δ. Though DP is a simple notion for
risks, the estimation of a tight privacy bound is still challenging. For this reason, RDP is proposed an
alternative tool.

Definition A.2. (Rényi Differential Privacy (RDP) [36]) A randomized algorithm M : X → Y is
(α, ϵ)-RDP with order α > 1 if for all neighboring datasets X,X ′ the following holds

Dα(M(X)||M(X ′)) ≤ ϵ,

where Dα(·||·) is the Rényi divergence between two distributions.

The RDP and DP can be connected by Lemma A.1.

Lemma A.1. If a mechanism M satisfies (α, ϵ)-RDP, then it also satisfies (ϵ+ log 1/δ
α−1 , δ)-DP.

To reveal the potential privacy risks, we give a theoretical bound on the privacy cost based on DP in
Lemma A.2. The proof of Lemma A.2 is similar to Theorem 8 in [56] without confidence screening.
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Lemma A.2. Suppose the subsampling rate γ and noise magnitude σ of the ECOS are positive values
such that γ ≤ min

{
0.1, σ

√
log(1/δ)/6

}
and σ ≥ 2

√
5. The total privacy bound of the ECOS

scoring m = |D̂q| query samples with n = |D̂p| private client samples is (ϵ, δ)-DP with δ > 0 and

ϵ = O(
γ

σ

√
log(1/δ)), (4)

if vr in Algorithm 1 is estimated by using ⌈γn⌉ samples randomly subsampled from D̂p with replace-
ment and is processed by ṽr = vr +N (0, σ2I).

Proof. When one sample is absent from the private client dataset, the scores [v1, . . . , vR] will differ
by 2 if without subsampling. By Lemma 11 of [56], the subsampled Gaussian mechanism accounted
by the RDP is

ϵ(α) ≤ 24γ2α

σ2

for all 0 < α ≤ σ2 log(1/γ)
2 , γ ≤ 0.1 and σ ≥ 2

√
5. By Lemma A.1, we can convert the RDP

inequality to the standard (ϵ, δ)-DP as

ϵ =
24γ2α

σ2
+

log(1/δ)

α− 1
.

Let α be 1 +

√
log(1/δ)√

24γ2

σ2

. Thus,

ϵ =
24γ2

σ2
+ 4

γ

σ

√
6 log(1/δ) ≤ 8

γ

σ

√
6 log(1/δ),

where the last inequality is derived by the given range of γ. This thus completes the proof.

The above bound implies that the privacy cost for our method is invariant w.r.t. the scale of the query
dataset D̂q, and only depends on the DP parameters. Note that the Lemma A.2 is an asymptotic
bound which requires some strict conditions on γ or other variables. In practice, we leverage the tool
of analytic privacy accountant through a numerical method [49], with which we can relax the strict
conditions.

A.4 Theoretical Analysis

Though empirical results show that more accurate models can be trained on ECOS-sampled datasets,
it remains unclear how the cloud dataset and the training process affect the model performance on the
client. In this section, we provide the proof of Theorem 3.1 using the domain generalization bound as
stated in Theorem A.1.
Theorem A.1 (Domain-adaptation learning bound from [7]). Suppose two domains with distributions
Ds and Dt. Let H be a hypothesis space of V C-dimension d and Ds be the dataset induced by
samples of size N drawn from Ds, respectively. Then with probability at least 1− p over the choice
of samples, for each f ∈ H,

L(f,Dt) ≤ L(f,Ds) +
1

2
dH∆H(Ds,Dt) + 4

√
2d log(2N) + log(4/p)

N
+ ξ, (5)

where ξ is the optimal loss, i.e., minf L(f,Ds) + L(f,Dt), and dH∆H(Ds,Dt) denotes the diver-
gence between domain s and t.

Proof of Theorem 3.1. Our proof is mainly based on Theorem A.1. By definition, S contains data
sampled from the mixture of distributions,

∑R
r=1 Dq

r . Apply Theorem A.1 to attain

L(fθ,Dp) ≤ L(fθ, S) +
1

2
dH∆H(

R∑
r=1

Dq
r ,Dp) + 4

√
2d log(2|S|) + log(4/p)

|S|
+ ξ. (6)
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And we have

dH∆H

(∑R

r=1
Dq

r ,Dt

)
≤

∑R

r=1
αrdH∆H(Sr,Dt), (7)

which was proved in [42] (proof of Theorem 2). Plugging Eq. (7) into Eq. (6), we can get the
conclusion.

Now, we consider fθ to be trained by the widely-adopted gradient descent method. We first present
Theorem A.2 which characterizes the empirical error bound after T iterations. Substitute Eq. (8) into
Eq. (3). Then we can obtain Lemma A.3.
Theorem A.2 (Convergence bound, e.g., from [8]). Suppose the model f is parameterized by θ
initialized as θ0. Let the loss function L(fθ, D) be µ-strongly convex and G-smooth w.r.t. θ, and
assume that the global minima θ∗ exists. Then after T iterations, gradient descent with a fixed
learning rate η ≤ 1/G satisfies

L(fθT , D) ≤ L∗ + (1− µ/G)T ℓ0(θ0, D) (8)
where L∗ = minθ L(fθ, D) and ℓ0(θ0, D) is the initial error gap, i.e., |L(fθ0 , D)− L∗|.
Lemma A.3. Suppose assumptions in Theorems 3.1 and A.2 holds. Let L(·, ·) be a loss function
on a hypothesis and a dataset (for empirical error) or a distribution (for generalization error). If
f is governed by the parameter θ trained on S via T -iteration gradient descent and belongs to
a hypothesis space H of V C-dimension d, then with probability at least 1 − p over the choice of
samples, the inequality holds,

L(fθT ,Dp) ≤ (1− µ

G
)T ℓ0(θ0, S) +

1

2

∑R

r=1
αrdH∆H(Dq

r ,Dp)

+ 4

√
2d log(2|S|) + log(4/p)

|S|
+ ξ′, (9)

where ξ′ = minθ {L(fθ, S) + L(fθ, D
p)} + minθ L(fθ, S), and dH∆H(D,D′) denotes the distri-

bution divergence.

A.5 Social Impacts

The conflict between the concerns on data privacy and demands for intensive computation resources
for machine learning has composed the main challenge in training outsourcing. In this work, we
devote our efforts to outsourcing with uploading data by leveraging authorized or public datasets. As
the public datasets commonly available in many applications are collected from multiple data sources
and thus tend to be non-identically distributed as the client data, it casts new challenges to use the
public in place of the client dataset. Our method addresses this problem with accountable privacy
cost and low communication and computation complexity. Therefore, the proposed ECOS provides
a promising solution to mitigate the aforementioned conflict between the privacy and computation
desiderata. Therefore, users from a broader spectrum can benefit from such a method to confidentially
conduct cloud training.

A.6 Connection to Federated Learning

Both our method and federated learning (FL) [34] consider protecting data privacy via not sharing
data with the cloud. The key difference between FL and our concerned problem (training outsourcing)
is that FL requires clients to conduct training while ECOS outsources the training to the cloud server.
Since ECOS does not require local training, it can be ad-hocly plugged into FL to obtain an auxiliary
open-source dataset for enhancing the federated training. ECOS can be used either before federated
training (when a pre-trained model is required) or during federated training (when the pre-trained
model can be replaced by the on-training model).

B Experimental Details and More Experiments

Complementary to the main content, we provide the details of the experiment configurations to merit
the reproducibility. We also conduct more qualitative experiments to understand the efficiency and
effectiveness of the proposed method.

17



B.1 Experimental Details

We organize the case-specified configurations into three cases and discuss the general setups first.

For Digits, we train the model for 150 epochs. We adopt a convolutional neural network for Digits
in Table 6 and ResNet18 for DomainNet. To solve the learning problems including FixMatch and
distillation-based compression, we use stochastic gradient descent with the momentum of 0.9 and
the weight decay of 5× 10−4. We use s = 5 for the scale function ψs on DomainNet and s = 1 on
Digits. When not specified, we noise the ECOS query with the magnitude as 25. In Case 1 and 2, we
reduce the noise magnitude to 10 for DomainNet, since the two queries can bear more privacy costs
to trade for higher accuracy.

Case 1: Selective manual labeling. We make use of the off-the-shelf ResNet18 is pre-trained on the
ImageNet, which is widely accessible online. We adopt FixMatch for semi-supervised learning with
the coefficient of 0.1 on the pseudo-labeled loss, the moving average factor of 0.9, and the batch size
of 64 for DomainNet and 128 for Digits. To avoid feature distorting, we warm up the fine-tuning
by freezing all layers except the last linear layer with a learning rate of 0.01. After 30 epochs, we
fine-tune the model end to end until 80 epochs to avoid overfitting biased data distributions.

Case 3: Adaptive model compression. We first pre-train a ResNet50 using all labeled open-source
data for 100 epochs with a cosine-annealed learning rate from 0.1. The same warm-up strategy as
Case 1 is used here. To extract the knowledge from ResNet50, we combine the knowledge-distillation
(KD) loss LKD and cross-entropy loss LCE by 0.1× LKD + 0.9× LCE and calculate the losses on
the selected samples only. The temperature in the KD loss is set to be 10.

Case 2: Automated client labeling. For the cloud training, we adopt the same configuration as
the selective manual labeling. For private kNN, we let the client release 600 labels with class-wise
confidence thresholds described in the last section. We noise the labeling in the magnitude of 25 and
the confidence in the magnitude of 75. For both datasets, we subsample 80% client data per labeling
query to reduce the privacy cost.

Table 6: The structure of the conventional neural network for the Digits dataset.
Layer name PyTorch pseudo code

conv1 Conv2d(1, 64, kernel_size=(5, 5), stride=(1, 1))
bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1)

conv1_drop Dropout2d(p=0.5, inplace=False)
conv2 Conv2d(64, 128, kernel_size=(5, 5), stride=(1, 1))
bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1)

conv2_drop Dropout2d(p=0.5, inplace=False)
fc1 Linear(in_features=2048, out_features=384, bias=True)
fc2 Linear(in_features=384, out_features=192, bias=True)
fc3 Linear(in_features=192, out_features=11, bias=True)

We conduct our experiments on the Amazon Web Service platform with 4 Tesla T4 GPUs with 16GB
memory and a 48-thread Intel CPU. All the code is implemented with PyTorch 1.11. To account for
the privacy cost, we utilize the open-sourced autodp package following the private kNN.

B.2 Effect of Parameters

To better understand the proposed method, we study the effect of the important hyper-parameters. To
this end, we consider the selective labeling task with Digits, keeping 50% of the SVHN dataset at
the client end. Both the ID+OoD and OoD cases are evaluated to reveal the method’s effectiveness
under circumstances with various hardness. Also, we study how the score scale s affects the ID ratios
(denoted as the ID TPR) in the selected set and the number of effective samples. We only examine the
ID TPR corresponding to the proximity objective in Eq. (2) if known ID samples are present on the
cloud, namely in the ID+OoD case. In the middle panes of Figs. 4 and 5, we show that our method
can effectively improve the ID TPR against the inherent ratio of ID samples on the cloud.

Effect of the compression size R. In Fig. 4, we evaluate R in terms of the test accuracy. When the
budget is small (1k and 2k budgets in the ID+OoD case), it is essential for the cloud server to sense
the client distribution with higher accuracy via more queries. Therefore, a larger R is desired, which
can increase the portion of ID samples in the selected set, as shown in the middle pane of Fig. 4.
Considering that a higher burden on communication comes with a larger R, the value of 100 leads to
a fair trade-off to the accuracy in which case the ID TPR reaches a peak.
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Figure 4: Vary the compression size R and evaluate the test accuracy, ID ratios (%) in selected
samples and the number of effectively selected samples. The red horizontal line indicates the ratio of
ID samples in the whole cloud dataset.

Given a larger budget, e.g., 8000, increasing R may lower the ID TPR. We attribute the decline to the
limited size of the client dataset and privacy constraints. Given more clusters (i.e., R), the expected
number of votes (proportional to the score) for each cluster will be reduced and is badly blurred by
the DP noise. Thus, the ID TPR will decrease simultaneously, regardless of which the test accuracy
is not significantly affected.

For the OoD case which is relatively harder for sampling due to the lack of true ID data, the parameter
sensitivity is weakened, though the compression size of 100 is still a fair choice, for example, bringing
in 1− 2% gains in the 5k, 8k cases comparing the worst cases.
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Figure 5: Vary the score scale s in terms of test accuracy, ID ratios (%) in selected samples and the
number of effectively selected samples (which could be smaller than the budget). The red horizontal
line indicates the ratio of ID samples in the whole cloud dataset.

Effect of the score scale s. The score scale s decides the sensitivity of the sampling in the sense
of proximity. A larger s means that the ECOS will prioritize the proximity more during sampling.
In Fig. 5, we present the ablation study of s. A larger s is preferred when the budget becomes
limited because it increases the ID TPR effectively. Though not significantly, an overly large s has
a significantly negative influence on the accuracy, especially for the OoD case. The reason for the
negative impact of s on a large budget can be understood by probing the number of effective samples.
For budgets larger than 2000, the effectively selected samples are reduced with heavily scaled scores
(e.g., s ≥ 3) where the ECOS will concentrate its selection into very few clusters and eliminate the
rest clusters strictly.

B.3 Evaluation of Sample and Privacy Efficiency

Effects of sample budgets. In Fig. 6, we compare the sample efficiency in the selective labeling task
with Digits, keeping 50% of the SVHN dataset at the client end. We obtain the upper-bound accuracy
in the ideal case via random sampling when the cloud dataset distributes identically (ID) as the
client dataset. When OoD data are included in the open-source cloud dataset (ID+OoD), the training
becomes more demanding for the labeled samples. If none of the iid samples presents in the cloud set
(OoD), the accuracy decreases quickly with the same labeled samples. In comparison, informative
sampling by K-Center slightly improves the accuracy by different budgets and the proposed ECOS
significantly promotes the sample efficiency. With ECOS, 8× 103 labeled samples in the ID+OoD
case achieves comparable accuracy as the ideal case, while baselines remain large gaps. Both in
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ID+OoD and OoD cases, our method yields competitive accuracy (at the 4× 103 budget) versus the
best baseline results using only half of the labeled data (at the 1× 104 budget), dramatically cutting
down the cost for manual labeling.
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Figure 6: Evaluation of the sample efficiency
on selective labeling. The green horizontal
line implies the ideal case when all ID cloud
data are labeled.

On observing the gains in sample efficiency, readers
may also notice that our method induces additional
costs at privacy, as compared to the baselines. We
point out that the cost is constant w.r.t. the sampling
budget and is as neglectable as (0.22, 10−5)-DP. It
is worth noticing that the cost is independent of the
hyper-parameters of the ECOS because the ECOS
communication is a single query for each private sam-
ple (so as for the private dataset), even if we increase
the size of the query set (i.e., the compression size
R). In practice, the client can control the privacy risk
(namely, the privacy cost) flexibly by adjusting the
noise magnitude and the subsampling rate.
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Figure 7: Evaluation on how the privacy costs
affect the performance.

Privacy-accuracy trade-off. Additionally, we eval-
uate how the privacy costs affect the In Fig. 7, we
study the relationship between privacy cost and per-
formance by varying the noise scale σ of the ECOS
in label outsourcing. The experiment is conducted on
SVHN client data for label outsourcing. Interestingly,
the sampling effectiveness is not very sensitive to the
noise scale. A very low privacy cost (0.08) can be
achieved with noise as large as 70 and accuracy as
high as 83.7%. The success could be attributed to the
low dimension of queries (100 clusters) to the private
dataset, resulting in the efficiency of privacy costs.

B.4 Evaluation of Communication and Computation Efficiency

When improving the sample efficiency, we also need to take care of the communication and computa-
tion overheads brought by the ECOS. We examine the two kinds of efficiency by the same experiment
configurations as in the last section.
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Figure 8: With the 5000 budget, we evaluate the computation efficiency. The efficiency of locally-
training (LT) on the DomainNet is enhanced by linear fine-tuning where only the linear classifier
head is locally trained.

Computation efficiency. In Fig. 8, we compare the computation efficiency of our method to the
local training (LT). We utilize the multiplication-and-addition counts (MACs) as the metric of
computation (time) complexity, which is hardware-agnostic and therefore is preferred here. For a
fair comparison, we tune the learning rate in {0.1, 0.01, 0.001} with the cosine annealing during
training and the number of epochs in {20, 50, 100} of the LT to achieve a fair trade-off between the
computation cost and test accuracy. For ECOS, since the computation cost linearly increases by
the compression size (as shown in Fig. 9), we vary the compression size to check the performance
when increasing computation costs. On Digits, we observe a large computation save by our method,
even if the cost of our method will gradually increase by the size R of the compressed query set.
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Figure 9: The linearly growing computa-
tion cost by increasing the compression
size on the Digits dataset.

Similar experiments are also run on the large-sized im-
ages using the DomainNet dataset (ID+OoD case), where
the cost for extracting features is steeply increased by
using a deep network (ResNet18). Recently, the most
popular strategy for cloud training is two-phase learning:
pre-training a model on the cloud using ImageNet and fine-
tuning the linear classifier head on the client. Considering
the large cost of feature extraction, we only let the client
pre-extract features once only. Thus, the local training is
as efficient as training a linear layer on extracted features.
In Fig. 8, our method outperforms the local training a lot
using much fewer MACs for data matching. Because all
training is outsourced to the cloud, our method enables the
end-to-end fine-tuning of the model resulting in better test
accuracy. Even if the LT trains longer with higher computation costs, the test accuracy of the ECOS
with the least MACs is comparable to the best performance of LT at around 109 MACs, where the
ECOS only utilizes the 10% of MACs by LT.
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Figure 10: Evaluate the communication efficiency.

Communication efficiency. We also compare the communication efficiency to the full cloud training
(via uploading the whole client dataset) and fully client training (via downloading cloud dataset) in
Fig. 10. For the ECOS, we let the size of the query set be 100, which is the default configuration in our
experiments. Because the ECOS only communicates a few low-dimensional features (for example,
512-dimensional ResNet-extracted features for DomainNet and 72-dimensional HOG features for
Digits), it costs much fewer bytes compared to traditional outsourcing by uploading the client data.
To be concrete, we also present the cost of downloading the cloud data and it is way more expensive
than the rest two methods.
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