
A Expected coverage as a special case of simulation-based calibration

Simulation-based calibration (SBC) [14] provides a way to diagnose the faithfulness of an approximate
posterior distribution p̂(θ|x). Given an observation x∗ ∼ p(x), Talts et al. [14] prove that, for any
one-dimensional statistic f : Θ 7→ R, the rank statistic

r(ϑ∗) = Ep(ϑ |x∗)

[
1[f(ϑ) ≤ f(ϑ∗)]

]
(10)

of posterior samples ϑ∗ ∼ p(ϑ |x∗) is uniformly distributed over the interval [0, 1]. Consequently,
any deviation from the uniform distribution for the approximate rank statistic

r̂(ϑ∗) = Ep̂(ϑ |x∗)

[
1[f(ϑ) ≤ f(ϑ∗)]

]
(11)

indicates some error in the approximate posterior p̂(ϑ |x∗). As this holds for any statistic f , it also
holds for f(ϑ) = p̂(ϑ |x∗). In this special case, if r̂(ϑ∗) = α, a proportion 1 − α of samples
ϑ ∼ p̂(ϑ |x∗) have an approximate posterior density larger than ϑ∗. In other words, it means that ϑ∗

resides within the 1− α highest posterior density region Θp̂(ϑ |x∗)(1− α) of p̂(ϑ |x∗). Therefore,
we have

P (r̂(ϑ∗) ≥ α) = Ep(ϑ∗ |x∗)

[
1[ϑ∗ ∈ Θp̂(ϑ |x∗)(1− α)]

]
(12)

and since r̂(ϑ∗) should be uniformly distributed, P (r̂(ϑ∗) ≥ α) should be equal to 1−α. In practice,
this test cannot be performed locally for a given x∗ as we cannot sample from the unknown posterior
distribution p(ϑ |x∗). Instead, SBC checks globally that r̂(ϑ∗) is uniformly distributed over pairs
(ϑ∗,x∗) ∼ p(ϑ,x) sampled from the joint distribution, which, in the special case f(ϑ) = p̂(ϑ |x∗),
comes down to check that

Ep(ϑ∗,x∗)

[
1[ϑ∗ ∈ Θp̂(ϑ |x∗)(1− α)]

]
= 1− α (13)

is satisfied for all α ∈ [0, 1]. We recognize here the expected coverage diagnostic used in Hermans
et al. [1] and this work.

B Proof of Theorem 2

Theorem 2. Any balanced classifier d̂ satisfies Ep(ϑ)p(x)

[
1− d(ϑ,x)

1− d̂(ϑ,x)

]
≥ 1.

Proof. From the integral form of the balancing condition, we have

1 =

¨ (
p(ϑ,x) + p(ϑ)p(x)

)
d̂(ϑ,x) dϑdx

= 2−
¨ (

p(ϑ,x) + p(ϑ)p(x)
)
d̂(ϑ,x) dϑdx

=

¨
p(ϑ,x) dϑdx +

¨
p(ϑ)p(x) dϑdx−

¨ (
p(ϑ,x) + p(ϑ)p(x)

)
d̂(ϑ,x) dϑdx

=

¨ (
p(ϑ,x) + p(ϑ)p(x)

)(
1− d̂(ϑ,x)

)
dϑdx,

which implies that
(
p(x,ϑ)+p(ϑ)p(x)

)(
1− d̂(ϑ,x)

)
is a valid density, integrating to 1 and positive

everywhere. Therefore, its Kullback-Leibler divergence with p(ϑ)p(x) is positive and, using Jensen’s
inequality, we have

0 ≤ KL
(
p(ϑ)p(x)

∣∣∣∣(p(ϑ,x) + p(ϑ)p(x)
)(

1− d̂(ϑ,x)
))

≤ Ep(ϑ)p(x)

[
log

p(ϑ)p(x)(
p(ϑ,x) + p(ϑ)p(x)

)(
1− d̂(ϑ,x)

)]

≤ Ep(ϑ)p(x)

[
log

1− d(ϑ,x)

1− d̂(ϑ,x)

]

⇒ 1 ≤ Ep(ϑ)p(x)

[
exp

(
log

1− d(ϑ,x)

1− d̂(ϑ,x)

)]
= Ep(ϑ)p(x)

[
1− d(ϑ,x)

1− d̂(ϑ,x)

]
.
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C Benchmarks

The SLCP simulator models a fictive problem with 5 parameters. The observable x is composed of
8 scalars which represent the 2D-coordinates of 4 points. The coordinate of each point is sampled
from the same multivariate Gaussian whose mean and covariance matrix are parametrized by ϑ. We
consider an alternative version of the original task [4] by inferring the marginal posterior density of 2
of those parameters. In contrast to its original formulation, the likelihood is not tractable due to the
marginalization.

The Weinberg problem [32] concerns a simulation of high energy particle collisions e+e− → µ+µ−.
The angular distributions of the particles can be used to measure the Weinberg angle x in the standard
model of particle physics. From the scattering angle, we are interested in inferring Fermi’s constant
ϑ.

The Spatial SIR model [1] involves a grid-world of susceptible, infected, and recovered individuals.
Based on initial conditions and the infection and recovery rate ϑ, the model describes the spatial
evolution of an infection. The observable x is a snapshot of the grid-world after some fixed amount
of time.

M/G/1 [33] models a processing and arrival queue. The problem is described by 3 parameters ϑ that
influence the time it takes to serve a customer, and the time between their arrivals. The observable x
is composed of 5 equally spaced quantiles of inter-departure times.

The Lotka-Volterra population model [34, 35] describes a process of interactions between a predator
and a prey species. The model is conditioned on 4 parameters ϑ which influence the reproduction
and mortality rate of the predator and prey species. We infer the marginal posterior of the predator
parameters from time series representing the evolution of both populations over time. The specific
implementation is based on a Markov Jump Process as in Papamakarios et al. [4].

Gravitational Waves (GW) are ripples in space-time emitted during events such as the collision of two
black-holes. They can be detected through interferometry measurements x and convey information
about celestial bodies, unlocking new ways to study the universe. We consider inferring the masses ϑ
of two black-holes colliding through the observation of the gravitational wave as measured by LIGO’s
dual detectors [36, 37].

D Architectures and hyper-parameters

Table 1 summarizes the architectures and hyper-parameters used for each benchmark. The classifier
architectures are separated into two parts: the embedding and the head networks. The embedding
network φ compresses the observable into a set of features. The head network f then uses those
features φ(x) concatenated with the parameters ϑ to predict the class,

d̂(ϑ,x) = f(ϑ, φ(x)).

The learning rate is scheduled during training. Table 1 provides the initial learning rates. Those are
then divided by 10 each time no improvement was observed on the validation loss for 10 epochs.
Further details can be found in the code repository attached to this manuscript.

Table 1: Architectures and training hyper-parameters
SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW

Embedding network None None None CNN Resnet-18 CNN
Embedding layers / / / 8 / 13
Embedding channels / / / 8 / 16
Convolution type / / / Conv1D Conv2D Dilated Conv1D
Head network MLP MLP MLP MLP MLP MLP
Head layers 6 6 6 3 3 3
Head hidden neurons 256 256 256 128 256 128
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Epochs 500 500 500 500 500 500
Batch size 256 256 256 256 256 256
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E Estimation of the expected coverage probability

We describe in this section the methodology used to estimate the expected coverage probability

Ep(ϑ,x)

[
1
[
ϑ ∈ Θp̂(ϑ |x)(1− α)

]]
.

We consider n test simulations (ϑ∗i ,xi) ∼ p(ϑ)p(x |ϑ) and compute their associated approximate
posteriors p̂(ϑ |xi) in a discretized and empirically normalized grid of the parameter space. The
associated credible region is the highest density credible region, i.e. a credible region of the form

Θp̂(ϑ |xi)(1− α) = {ϑ : p̂(ϑ |xi) ≥ γ} . (14)

The threshold γ is computed using a dichotomic search to produce a credible region of level 1−α. We
then estimate the empirical expected coverage probability by the proportion of nominal parameters
ϑ∗i that falls in their associated credible region Θp̂(ϑ |xi)(1− α),

1

n

n∑
i=1

1
[
ϑ∗i ∈ Θp̂(ϑ |xi)(1− α)

]
.

F Standard deviations of Coverage AUCs

Figure 6 shows the coverage AUC for various simulation budgets. The mean and standard deviation
over 5 runs are reported.
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Figure 6: Coverage AUC measures the integrated signed area between the expected coverage curve
and the diagonal. A perfectly calibrated posterior has an expected coverage probability equal to the
nominal coverage probability, producing a diagonal line and has a coverage AUC of 0, as shown
on the left subplot. A conservative estimator on the other hand has a coverage AUC larger than 0
and an overconfident estimator smaller than 0. We observe that while NRE can produce coverage
AUC both below or above 0, BNRE always produces a coverage AUC larger than 0, implying that its
posterior approximations are conservative. Solid lines represent the mean over 5 runs and shaded
areas represent the standard deviation.

G Complete bias and variance analysis

Figure 7 shows the evolution of the bias and variance w.r.t. the simulation budget on a wide variety
of benchmarks. We observe that observations made on Weinberg in Section 4 generalize to all
benchmarks. The variance obtained with BNRE is always higher or equal than the one obtained with
NRE as suggested by Theorems 1 and 2. In addition, as suggested by Theorem 3, the bias and variance
obtained with BNRE converges, as NRE, to the Bayes optimal solution.
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Figure 7: Evolution of the bias and variance w.r.t. the simulation budget. The bias and variance are
estimated as described in Section 4 and are scaled to account for the prior’s spread, permitting a direct
comparison between the benchmarks. Marginals are considered when dealing with multidimensional
parameter spaces. Those are denoted by an index following the benchmark name.
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