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Abstract

Learning structures between groups of variables from data with missing values is
an important task in the real world, yet difficult to solve. One typical scenario is
discovering the structure among topics in the education domain to identify learning
pathways. Here, the observations are student performances for questions under
each topic which contain missing values. However, most existing methods focus on
learning structures between a few individual variables from the complete data. In
this work, we propose VISL, a novel scalable structure learning approach that can
simultaneously infer structures between groups of variables under missing data and
perform missing value imputations with deep learning. Particularly, we propose a
generative model with a structured latent space and a graph neural network-based
architecture, scaling to a large number of variables. Empirically, we conduct
extensive experiments on synthetic, semi-synthetic, and real-world education data
sets. We show improved performances on both imputation and structure learning
accuracy compared to popular and recent approaches.

1 Introduction

Understanding the structural relationships among different variables provides critical insights in
many real-world applications, such as medicine, economics and education [42, 62]. Thus, learning
graphs from observed data, known as structure learning, has recently made remarkable progress
[10, 61, 63, 64].

For many applications, variables in the data can be gathered into semantically meaningful groups,
where useful insights are at group level. For example, in finance, one may be interested in how a
financial situation influences different industries (i.e. groups) instead of individual companies (i.e.
variables). Similarly, in education, the data can contain student responses to thousands of individual
questions (i.e. variables), where each question belongs to a broader topic (i.e. groups). Again, it is
insightful to find relationships between topics instead of individual questions. Moreover, real-world
data such as educational data is inherently sparse since it is not feasible to ask every question to
every student; the dimensions of the data in terms of the number of variables and the number of
observations are very high, posing a scalability challenge. Despite the progress in structure learning,
no existing method can discover group-wise relationships given large-scale partially observed data.

In this work, we present VISL (missing value imputation with structural learning), a novel approach
to simultaneously tackle group-wise structure learning and missing value imputations driven by the
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Figure 1: (a) Graphic representation of VISL. VISL is a variational auto-encoder based framework. Observations
from each group are encoded into low dimensional latent variables. The structure is treated as a global latent
variable. A GNN based decoder is used to decode the latent variables to observations. (b) Probabilistic graphical
model for VISL, where the partial observation x is generated from its local latent variable z and the global
latent variable G which characterizes the structures.

real-world topic relationship discovery in an education setting. This is accomplished by combining
variational inference with a generative model that leverages a structured latent space and a decoder
based on message-passing Graph Neural Networks (GNN) [13]. Namely, the structured latent
space endows each group of variables with its latent subspace, and the interactions between the
subspaces are regulated by a GNN whose behavior depends on the inferred graph from variational
inference, see Fig. 1(a). VISL satisfies all the desired properties: it leverages continuous optimization
of the structure learning to achieve scalability [63, 64]; the VISL formulation naturally handles
missing values, and it can discover relations at different levels of granularity with pre-defined
groups. Empirically, we evaluate VISL on one synthetic and two real-world problems including
the aforementioned education scenario. VISL shows improved performance in both missing data
imputation and structure learning accuracy compared to popular and recent approaches for each task.
We worked closely with an education domain expert to evaluate the learned topic relationships, and
our model has provided insightful results as recognized by the domain experts.

2 Model Description

In the following, we present the formulation of VISL for scalable group-wise structure learning with
partial observations using a novel deep generative model based framework.

2.1 Problem setting

Assume a training data set X = {xn}Nn=1 with xn ∈ RD. The observed and missing values are
denoted as XO and XU , respectively, where we assume the data are missing completely at random
(MCAR) or missing at random (MAR). In Appx. A, we explain how to handle MAR. In particular,
variables can be gathered into M groups, where each can be denoted as χn,m = [xn,i]i∈Im

. Im
containing the variable indices belonging to group m (e.g., I2 = [4, 5, 6] indicates group 2 includes
the 4th, 5th and 6th variables). One should note that each Im may have varying sizes for different
m (i.e. varying group sizes). Throughout the paper, we assume the group information is provided a
priori. If this information is unavailable, casual representation learning can be leveraged to represent
low-level signals into groups. The goal of VISL is to (i) perform missing value imputation for
test samples and (ii) infer structures between groups of variables. We use the adjacency matrix
G ∈ [0, 1]M×M to represent a graph, where Gij = 1 or 0 indicates whether there is a directed edge
from i−th to j−th group or not. In the context of the education domain, the above formulation can
be rephrased as follows: variable xn containing the student’s responses to a set of questions. xi,j = 1
represents student i has answered question j correctly. Groups can be defined as the topic associated
with each question. Im contains the question IDs that belong to the same topic, and χm represents a
group of responses related to that topic. Clearly, not all students can answer every question. Thus,
XO, XU represent the existing responses and un-answered questions, respectively. The goal of
VISL is to (i) predict students’ responses to un-answered questions, which by itself is important in
the education domain [56, 57], and (ii) discover the relationships between topics, which can help
education experts optimize the learning experience and the curriculum. For structure learning, we
adopt a Bayesian approach for graphs [18]. Namely, we seek to maximize the posterior probability of
G given partially observed training data XO within the space of all DAGs:
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G⋆ =argmaxG∈DAGs p(XO|G)p(G). (1)

To optimize over the structure with the DAG constraint in Eq. 1, we resort to recent continuous
optimization techniques [25, 63, 64], where a differentiable measure of ’DAG-ness’, R(G) =
tr(eG⊙G)−D − 1, was proposed and is zero if and only if G is a DAG. To leverage this DAG-ness
characterisation, we follow Kyono et al. [25], Yu et al. [61] and introduce a regulariser based on
R(G) to favour the DAG-ness of the solution, i.e.

G⋆ = argmaxG (p(XO|G)p(G)− λR(G)) . (2)

In the following two sections, we present our detailed formulation, training and imputation algorithms
of VISL, that allows the model to infer the latent structure G and impute missing values x̃U in a test
sample x̃ ∈ RD based on the observed x̃O.

2.2 Generative model and variational inference

Algorithm 1 Generative process

Gij ∼ Bernoulli(pij)
for n ∈ {1, 2, · · · , N} do

Zn ∼ N (0, σ2
zI)

xn ∼ N (fθ(Zn,G), σ2
xI)

end for

For the generation of observation X, we adopt the latent vari-
able model of Fig. 1. Particularly, given an inferred graph G
and latent Z, the generative path from Z to X is provided in
Fig. 1, where we use a graph neural network (GNN) decoder
that respects the learned graph structure G and the provided
grouping structure. Then the joint model likelihood is

p (X,Z,G) = p(G)
∏

n p(xn|Zn,G)p(Zn). (3)

Using this marginal likelihood p(X) is consistent with Bayesian
score based causal discovery [18]. As Kaiser and Sipos [22] and Reisach et al. [39] pointed out that
other commonly used objectives, e.g. L2 loss in NOTEARS [63], are sensitive to data scaling and
result in learning directions towards the high variance nodes. Loh and Bühlmann [28] and Ng et al.
[35] showed that using a proper likelihood function can address these problems. Next, we leverage
amortized variational inference to sidestep the intractable marginalization of the joint likelihood.

Amortized variational inference. The true posterior distribution over Z and G in Eq. 3 is intractable
since we use a complex deep learning architecture. Therefore, we resort to an efficient amortized
variational inference as in Kingma and Welling [24], Kingma et al. [23]. Here, we consider a fully
factorized variational distribution q(Z,G|X) = qϕ(G)

∏N
n=1 qϕ(Zn|xn), where qϕ(Zn|xn) is a

Gaussian whose mean and (diagonal) covariance matrix are given by an encoder. For q(G), we
consider the product of independent Bernoulli distributions over the edges; that is, the presence of
each edge from i to j is associated with a probability pij to be estimated. With the above formulation,
the evidence lower bound (ELBO) is

ELBO =
∑

n

{
Eqϕ(Zn|xn)q(G)[log p(xn|Zn,G) −

KL[qϕ(Zn|xn)||p(Zn)]]
}
− KL[q(G)||p(G))]. (4)

Next, we explain our choice of the generator (decoder), which uses a GNN over a learned graph G to
model the interactions between latent variables, representing the information about each group. Then,
we focus on the inference network (encoder), representing the mapping from the group of observed
variables to its corresponding latent representation.

Generator. The generator (i.e., decoder) takes Zn and G as inputs and outputs the reconstructed
x̂n = fθ(Zn,G), where θ are the decoder parameters. In order to respect the pre-defined group
structure, as shown in Fig. 1, Zn is partitioned into M parts, where zn,m represents the latent variable
for the group of observations χn,m. This defines a group-wise structured latent space. We adopt a
two-step process for the generative path Zn to Xn: (i) GNN message passing with respect to the
learned graph G between latent zn,m; (ii) final read-out layer to generate Xn.

GNN message passing in the generator. In message passing, the information flows between nodes
in T consecutive node-to-edge (n2e) and edge-to-node (e2n) operations [13]. At the t-th step, we
compute an embedding hf

i→j for each edge i → j, called forward embedding, which summarizes the
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information sent from node i to j. Specifically, the n2e/e2n operations in VISL are

n2e : h
(t),f
i→j = MLPf

([
z
(t−1)
i , z

(t−1)
j

])
, (5)

e2n : z
(t)
i = MLPe2n

(∑
k ̸=i Gki · h(t),f

k→i

)
. (6)

Here, t refers to the t-th iteration of message passing (that is, Z(0) = Zn, notice that we omit subindex
n for clarity). Finally, MLPf , and MLPe2n are MLPs to be trained.

Interestingly, the message passing updates indicate that the information flows between latent nodes if
a directed edge is specified in graph G. Hence, the inferred structure G directly defines relations for
latent space Z which contains the information of pre-defined groups. We show that under certain
conditions, the inferred graph G also represents the group-wise structure in observational space, and
the corresponding model can be reformulated to a general structural equation model (SEM) [37] (see
Appx. B).

Read-out layer in the generator. After T iterations of GNN message passing, we have Z(T ).
Due to we allow Z(T ) and x to have different dimensions, we apply a final function that maps
Z(T ) to the reconstructed x̂, which also respects the pre-defined group structure. Since the ob-
servation x = [χ1, . . . ,χM ] may contain χm with different dimensions, we adopt M different
MLPs, one for each group as the final read-out layer, to respect the group structure. Namely,
x̂ = (g1(zT1 ), . . . , g

M (zTM ))⊤, where gm represents the MLP for group m. Thus, the decoder
parameters θ include the parameters of the following neural networks: MLPf , MLPe2n and gm for
m = 1, . . . ,M .

Inference network. As in standard VAEs, the encoder maps a sample xn to its latent representation
Zn. As discussed before, Zn is partitioned into M parts, where each zn,m contains the information
of the observation in group m. Similar to the read-out layer, we utilize the M MLPs to map groups
of observations to the mean/variance of the latent variables:

µn =
(
µ1
ϕµ1

(χn,1), . . . , µ
M
ϕµM

(χn,M )
)⊺

, (7)

σn =
(
σ1
ϕσ1

(χn,1), . . . , σ
M
ϕσM

(χn,M )
)⊺

.

Here, µm
ϕµm

and σm
ϕσm

are neural networks for group m. When missing values are present, we replace
them with a constant as in [34]. Under this formulation, VISL can infer latent variables Zn from
incomplete xn for both training and test data. A graphic representation of how the encoder respects
the structure of the latent space is shown in the appendix, Fig. 6(b).

2.3 Training VISL

Given the model described above, we propose the training objective to minimize w.r.t. θ, ϕ and G:

LVISL(θ, ϕ,G) = −ELBO+ λEq(G) [R(G)], (8)

where ELBO is given by Eq. 4 and the DAG regulariser R(G) was introduced in Eq. 2 to favor the
DAG-ness of learned graph G.

Evaluating the training loss LVISL. VISL can work with any type of data. The log-likelihood term
(log pθ(xn|Zn,G) in Eq. 4) is defined according to the data type. We use a Gaussian likelihood for
continuous variables and a Bernoulli likelihood for binary ones. For the inference of Z and G, the
standard reparametrization trick is used to sample Zn from the Gaussian qϕ(Zn|xn) [23, 24]. To
backpropagate the gradients through the discrete variable G, we resort to the Gumbel-softmax trick
to sample from q(G) [21, 31]. The KL[qϕ(Zn|xn)||p(Zn)] and KL[q(G)||p(G))] terms can be
obtained in closed-form since they are Gaussian distributions and independent Bernoulli distributions
over the edges, respectively. This formulation brings additional advantages in real-life applications
since one can easily incorporate domain knowledge and prior information into the VISL framework.
For example, if the existence of a specific edge is known a priori, the edge probability can be set to
0/1 in the prior distribution. Finally, the DAG-loss regulariser in Eq. 8 can be computed by evaluating
the function R on a Gumbel-softmax sample from q(G). To adapt the model to different missing
levels in the training data X, we adopt the masking strategy [15, 30], which drops a random percent
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Algorithm 2 Training VISL.
Input :Training dataset X, possibly with missing values.
for each batch of samples {xn}n∈B do

Drop a percentage of the data for each sample xn.
Encode xn through the reparametrization trick to sample Zn ∼ N (µϕ(xn),σ

2
ϕ(xn)) using Eq.7.

Use the Gumbel-softmax to sample G from q(G).
Use decoder to reconstruct x̂n = fθ(Zn,G).
Calculate the training loss LVISL (Eq. 8).
Gradient step w.r.t. ϕ (encoder parameters), θ (decoder parameters) and G (posterior edge probabilities).

Output :Encoder parameters ϕ, decoder parameters θ, and posterior probabilities over the edges G.

of the observed values during training. The entire training procedure for VISL is summarised in
Algorithm 2.

Two-step training. After training, we obtain the posterior of the graph G, which respects the
underlying structure of the groups as shown in Appx. B. With the trained network, we can impute
missing values in the groups where their ancestors contain some observations but if a group has no
ancestors no information can be propagated during imputation. After learning the graph structure
and to facilitate the imputation task, we introduce a backwards edge: for an edge from j to i we
denote the backwards edge information as hb

i→j which codifies the information that the i → j

edge lets flow from the j-th to the i-th node. It is defined in the same way as Eq. 5, i.e.,: h(t),b
i→j =

MLPb
([

z
(t−1)
i , z

(t−1)
j

])
, where MLPb is the backward MLP; and the e2n update (Eq.6) is modified

to z
(t)
i = MLPe2n

(∑
k ̸=i Gki ·

{
h
(t),f
k→i + h

(t),b
i→k

})
.

In summary, we propose a two-stage training process, where the first stage — described in previous
sections — focuses on discovering the edge directions between nodes without the MLPb (i.e., we do
not train the MLPb). In the second stage, we fix the graph structure G and continue to train the model
with the backward MLP. This two-stage training process allows VISL to leverage the backward MLP
for the imputation task without updating the graph structure.

Revisiting the learning objectives. The optimal graph of relationships, denoted as G⋆ in Eq. 2, is
given by the estimated posterior probabilities of graph G. In addition, the regularizer R(G) provides
a way to evaluate if the resulting graph is a DAG. By tuning the regularizer strength λ, one can ensure
that the resulting G∗ represents a proper DAG.

For imputation, similar to Ma et al. [30], Nazabal et al. [34], the trained model can impute missing
values for a test instance x̃ as

p(x̃U |x̃O,X) = Eqϕ(Z|x̃)q(G)p(x̃U |Z,G). (9)

Therefore, the distribution over x̃U (missing values) is obtained by applying the encoder and decoder
with x̃ as input. Previous work [30, 34] also uses variational autoencoders for missing value
imputation, which can have problems with overfitting due to spurious correlations [25] even with
sufficient training data. One important distinction of VISL is the incorporation of the learned structure
G, which helps the model to be robust to spurious correlations.

Special case: variable-wise relations. In the above formulation, we have defined VISL for group-
wise structure learning. Variable-wise relations can be regarded as a special case. In particular, we
can set M = D and Im = {m} (see Fig. 5 (a) in the appendix), i.e. each group only contains a
single variable. Through this modification, we can further simplify the encoder and read-out layer.
Instead of using M different MLPs, a single MLP can be shared across all variables since each group
has dimension of 1. The mean function for the encoder is then defined as

µn = (µϕ(xn,1), . . . , µϕ(xn,D)) . (10)

One can define encoder variance σ (Fig. 6 (a) in the appendix) and the read-out layer g analogously.

Computational cost. The main computational bottleneck is the training of VISL, where we require a
different inference network and read-out layer for each group m ∈ M . However, some weight sharing
schemes can be used to reduce the computational cost. When each group has the same dimensionality,
we share the weights of the inference networks. In the case of different dimensionalities, one can
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infer the latent variables by parallelizing inference network forward passes to reduce computational
cost. Table 11 in appendix provides the wall-clock time comparison for each of the methods for up to
512 variables. We can see that all deep learning based methods (i.e. NOTEARS, DAG-GNN, VISL,
etc.) have similar time complexity.

3 Related Work

Since VISL simultaneously tackles missing value imputation and structure learning, we review both
fields. Moreover, we review recent works regarding improving the deep learning performance with
structure learning. Finally, as one of the focused applications of this work is education, we review
recent advances of AI in education.

Structure learning. Structure learning aims to infer the underlying structures associated with some
observations. There are mainly three types of methods: constrained-based, score-based, and hybrid.
Constraint-based ones exploit (conditional) independence tests to find the underlying structure, such
as PC [47] and Fast Causal Inference (FCI) [48]. They have recently been extended to handle partially
observed data through test-wise deletion and adjustments [50, 52]. Score-based methods find the
structure by optimizing a proper scoring function. The core difficulty lies in the number of possible
graphs growing super-exponentially with the number of nodes [4]. Thus, explicitly solving the
optimization can only be done up to a few nodes [7, 36, 46]. Therefore, approximation have been
proposed to ease the computational burden, including searching over topological ordering [43, 44, 51],
greedy search [3, 38], coordinate descent [1, 11, 17].

Recently, continuous optimization, called Notears, has become very popular [63]. Notears proposed
a differentiable characterization of the DAG to learn the model parameters and graph structures
jointly. Notears has inspired the development of other methods, Notears-MLP and Notears-Sob [64],
Grandag [26], and DAG-GNN [61], which extends to model nonlinear relationships between variables.
However, their formulations cannot handle missing values and have been observed to be sensitive to
data scaling [22]. DAG-GNN also adopts a specially-designed GNN to perform structure learning
[61]. There are three key distinctions compared to VISL: (i) our model handles the group-wise
relationship, while DAG-GNN focuses on variables level; (ii) our model is capable of missing value
imputation and group-wise structure learning simultaneously, whereas the original formulation of
DAG-GNN and related work require complete data; (iii) VISL adopts Bayesian view for the graphs,
compared to a point estimation. VISL is also related to Bayesian DAG learning. Viinikka et al.
[55] proposed to sample the graph posterior using MCMC, but it suffers from high computation
complexity. VISL, in contrary, can easily be scaled to high dimensional datasets. BCD [6] and
DiBS [29] have recently leveraged the approximate inference for scalable Bayesian DAG learning.
BCD nets focused on linear Gaussian SEM (v.s. nonlinear relationship by VISL). DiBS adopted
a full Bayesian treatment and used a particle sampler to draw from a joint posterior. Compared to
VISL, it cannot handle missing values nor variable groups. Geffner et al. [12] recently proposed
an end-to-end causal inference framework (DECI) combining causal discovery and inference with
missing data. Compared to VISL, DECI is built upon nonlinear additive noise models [19], whereas
VISL uses an autoencoder structure with a GNN decoder. When the GNN reaches equilibrium
state, Appendix B shows that VISL represents a general SEM, which includes additive noise models
as a special case. Apart from the likelihood-based causal discovery, Rolland et al. [40] used score
matching to extract causal relationships for non-linear additive noise models. Our work differs in four
aspects: (1) structure learning (VISL) v.s. causal discovery; (2) VISL is based on the auto-encoder
framework; (3) VISL can handle MAR missing data and (4) VISL uses a Bayesian view of graphs.

Structure deep learning. Continuous optimization for learning structures has been used to boost
performance in classification. In CASTLE [25], structure learning is introduced as a regulariser
for a classification model. This regulariser reconstructs only the most relevant features, leading to
improved out-of-sample predictions. In SLAPS [10], the classification objective is supplemented with
a self-supervised task that learns a graph of interactions between variables through a GNN. These
works focused on leveraging the structure learning instead of advancing its performance.

Missing values imputation. The relevance of missing data in real-world problems has motivated
a long history of research [9, 41]. A popular approach is to estimate the missing values based on
the observed ones through different techniques [45], e.g. Random Forest [49], Bayesian Ridge
Regression [2]. Wu et al. [59] explored the use of generative model for missing value imputation,
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although fully observed training data is required. This limitation is addressed in both Nazabal et al.
[34] with zero-imputing strategy, and Ma et al. [30] with a permutation invariant set encoder. Mattei
and Frellsen [32] proposed to use the importance weighted autoencoder, which enables a tighter
lower bound than ELBO and leads to improved performance. Ivanov et al. [20] parameterized
the imputation as sampling from a conditional distribution, and proposed a method for arbitrary
conditioning with VAEs.

AI in education. There has been tremendous progress in AI for educational applications, e.g. knowl-
edge tracing [27, 33, 54]; grading students’ performance [58]; generating feedback for students
working on coding challenges [60]. In particular, most related to VISL is imputing missing values in
students’ responses. Wang et al. [56] adopts a partial VAE [30] to perform missing value imputation
and personalization. However, partial VAE does not consider the structural relations between ques-
tions/topics. With the additional insights from structure learning, VISL can provide more information
to teachers to help curriculum design than just imputations.

1

2 5

3 4

1

2 5

3 4

(a) (b)

Figure 2: (a): Structure simulated for one of the synthetic
datasets with 5 variables. (b): Graph predicted by VISL
(when the one on the left is used as the true one). VISL
recovers the ground truth graph with one addition edge from
5 to 4.

1 2 3 4 5

1

2

3

4

5

0.0 0.08 0.954 0.9021 0.943

0.069 0.0 0.949 0.922 0.953

0.084 0.092 0.0 0.638 0.343

0.073 0.077 0.195 0.0 0.219

0.085 0.094 0.446 0.517 0.0

Figure 3: Probability of edges obtained by
VISL in the synthetic experiment. By using
a 0.5 threshold, we get the predicted graph in
Fig. 2(b). Item (i, j) refers to the probability
of edge i → j.

RMSE

Major 0.54±0.0032
Mean 0.22±0.0061
MICE 0.14±0.0046

Missforest 0.13±0.0025
PVAE 0.14±0.0043
VISL 0.12±0.004

Table 1: Imputation re-
sults for the synthetic
experiment. Mean and
standard error over 15
datasets.

Adjacency Orientation Causal
accuracy

Recall Precision F1-score Recall Precision F1-score

PC 0.42±0.056 0.63±0.067 0.49±0.056 0.22±0.046 0.33±0.061 0.26±0.051 0.33±0.046
GES 0.45±0.044 0.57±0.036 0.49±0.038 0.25±0.046 0.31±0.053 0.27±0.049 0.36±0.045

NOT. (L) 0.19±0.028 0.44±0.059 0.27±0.036 0.15±0.023 0.37±0.060 0.21±0.032 0.15±0.023
NOT. (NL) 0.33±0.039 0.49±0.051 0.39±0.044 0.28±0.032 0.42±0.043 0.33±0.035 0.28±0.032
DAG-GNN 0.44±0.064 0.51±0.062 0.46±0.061 0.35±0.050 0.42±0.052 0.37±0.049 0.35±0.050

VISL 0.78±0.084 0.73±0.078 0.74±0.063 0.66±0.13 0.60±0.10 0.63±0.10 0.66±0.13

Table 2: Structure discovery results for synthetic experiment (mean and std error
over 15 datasets).

4 Experiments

We evaluate the performance of VISL in three different problems: a synthetic experiment where the
data generation process is controlled, a semi-synthetic problem (simulated data from a real-world
problem) (Neuropathic Pain), and the real-world problem that motivated the group-level structure
learning (Eedi). The first two datasets are on the variable level. The last one focuses on the group
level and real-world usage, and have worked closely with the domain expert to evaluate the results.
Additional experiments are presented in the appendix.

Baselines. We consider five baselines for the structure discovery task at the variable level. PC [48]
and GES [3] are popular constraint-based and score-based approaches, respectively. NOTEARS
(NOT.) [63], the non-linear (NL) extension of NOTEARS [64], and DAG-GNN [61] are the other
three closely related baselines. Unlike VISL, these baselines cannot deal with missing values.
Therefore, we work with complete training data in the first two sections. The Eedi real-world data is
only partially observed, where these baselines are not applicable. For the missing data imputation,
we also consider five baselines. Mean Imputing (Mean), Majority Vote (Major) (refer to Appx. D for
short descriptions), Missforest [49] and MICE [2] are four widely-used imputation algorithms, and
PVAE [30] is a recent algorithm based on amortized inference.
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Accuracy AUROC AUPR

Major 0.9268±0.0003 0.5304±0.0003 0.3366±0.0025
Mean 0.9268±0.0003 0.8529±0.0012 0.3262±0.0034
MICE 0.9469±0.0007 0.9319±0.0010 0.6513±0.0046

Missforest 0.9305±0.0004 0.8915±0.0093 0.5227±0.0033
PVAE 0.9415±0.0003 0.9270±0.0007 0.5934±0.0046
VISL 0.9471±0.0006 0.9392±0.0008 0.6597±0.0053

Table 3: Imputation results for neuropathic pain data (mean and std error over five runs).

Adjacency Orientation Causal
Accuracy

Recall Precision F1-score Recall Precision F1-score

PC 0.046±0.001 0.375±0.006 0.082±0.001 0.024±0.001 0.199±0.011 0.044±0.002 0.058±0.003
GES 0.110±0.001 0.436±0.008 0.176±0.002 0.082±0.001 0.323±0.009 0.131±0.003 0.121±0.001

NOT. (L) 0.006±0.000 0.011±0.001 0.008±0.000 0.001±0.000 0.001±0.001 0.001±0.000 0.001±0.000
NOT. (NL) 0.011±0.001 0.644±0.025 0.022±0.002 0.006±0.001 0.354±0.018 0.012±0.001 0.006±0.001
DAG-GNN 0.129±0.028 0.272±0.101 0.128±0.027 0.051±0.010 0.126±0.059 0.050±0.007 0.051±0.010

VISL 0.261±0.006 0.637±0.009 0.370±0.005 0.236±0.007 0.573±0.005 0.334±0.006 0.245±0.006

Table 4: Structure discovery results for neuropathic pain data (mean and std error over five runs).

Metrics. Imputation performance is evaluated with standard metrics such as RMSE (continuous
variables) and accuracy (binary variables). For binary variables , we also provide the area under the
ROC and the Precision-Recall curves (AUROC and AUPR, respectively), which are especially useful
for imbalanced data (such as Neuropathic Pain). We follow common practice [14, 52] regarding
structure discovery performance, and consider metrics on the adjacency and orientation. While the
former does not take into account the direction of the edges, the latter does. We report recall, precision
and F1-score. We also provide causal accuracy, a discovery metric that considers orientation [5].

4.1 Synthetic experiment

We simulate fifteen synthetic datasets. For each simulated dataset, we first sample the true structure
G; see Fig. 2(a) for an example. The appendix provides detailed generation mechanism, including a
visualisation of the data in Fig. 7. For each dataset, we simulate 5000 training and 1000 test samples.

Imputation performance. VISL outperforms the baselines in terms of imputation across all synthetic
datasets ( Table 1).The results grouped by the number of variables are presented by Table 8 in the
appendix.

Structure discovery performance. VISL obtains better performance than the baselines, see Table 2.
The results split by the number of variables are shown in the appendix, Table 10. Specifically,
we observe VISL consistently outperforms the baseline method in all metrics considered with all
datasets (see Table 10). In this small synthetic experiment, it is possible to visualize the predicted
graph. Fig. 3 shows the posterior probability of each edge (i.e. the estimated matrix G) for the
simulated dataset in Fig. 2(a). Using a threshold of 0.5, we obtain the predicted graph in Fig. 2(b).
We observed that VISL recovers the ground truth graphs with one additional edge. The sources of its
advanced performances are twofold: 1) VISL uses the ELBO (Eq. 4) as training objective, a surrogate
for marginal likelihood. Kaiser and Sipos [22], Reisach et al. [39] reported that L2 loss used in
NOTEARS is sensitive to data scaling and directs the learning of directions towards high variance
nodes. This can be resolved by using a proper likelihood training objective [28, 35]; 2) instead of
using observed variables to construct the structural equation model (NOTEARS) or designing a
specialized GNN structure (DAG-GNN), VISL is more flexible in terms of transforming the observed
variables into a latent distribution via the encoder, and adopting a general message-passing GNN
decoder.

Finally, VISL can scale to large data in terms of data points and dimensionality. We demonstrate the
computational efficiency with synthetic data ranging from 4 to 512 nodes in the appendix, Table 11.

4.2 Neuropathic pain dataset

We evaluate our method using a benchmark in healthcare applications [53]. The dataset contains
records of patients regarding the symptoms associated with neuropathic pain. There are 222 variables
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Accuracy AUROC AUPR

Major 0.6260±0.0000 0.6208±0.0000 0.7465±0.0000
Mean 0.6260±0.0000 0.6753±0.0000 0.6906±0.0000
MICE 0.6794±0.0005 0.7453±0.0007 0.7483±0.0010

Missforest 0.6849±0.0005 0.7219±0.0007 0.7478±0.0008
PVAE 0.7138±0.0005 0.7852±0.0001 0.8204±0.0002
VISL 0.7147±0.0007 0.7815±0.0008 0.8179±0.0006

Table 5: Imputation results for Eedi topics dataset
(mean and standard error over five runs).

Adjacency Orientation

Expt 1 Expt 2 Expt 1 Expt 2

Random 2.04 2.08 1.44 1.40
DAG-GNN 2.04 2.32 1.68 1.68

VISL 3.60 3.70 2.76 2.60

Table 6: Average expert evaluation of the topic re-
lationships. Cohen’s κ inter-annotator agreement
is 0.72 for adjacency and 0.76 for orientation (sub-
stantial agreement).

in this dataset. Unlike the previous experiment with continuous data, this dataset has binary variables
indicating the symptoms. The train and test sets have 1000 and 500 patients, respectively.

Imputation performance. VISL shows competitive or superior performance when compared to
the baselines, see Table 3. Notice that AUROC and AUPR allow for an appropriate threshold-free
assessment in this imbalanced scenario. Indeed, as expected from medical data, the minority of values
are 1 (symptoms); here, the prevalence of symptoms is around 8% in the test set. Interestingly, it
is precisely in AUPR where the differences between VISL and the rest of the baselines are larger
except MICE, whose performance is very similar to VISL in this dataset.

Structure discovery results. As in the synthetic experiment, VISL outperforms the causality-based
baselines; see Table 4. Notice that NOTEARS (NL) is slightly better in terms of adjacency-precision,
i.e. the edges that it predicts are slightly more reliable. However, this is at the expense of a significantly
lower capacity to detect true edges, see the recall and the trade-off between both (F1-score).

4.3 Eedi topics dataset

Finally, we evaluate our method on an even more challenging real-world dataset in education to
discover the group-wise structure between topics while the observations are question-answer pairs
under these topics. This is an important real-world problem in the field of AI-powered educational
systems [56, 57]. This dataset is very sparse, with 74.1% of the values missing. The dataset contains
the responses from 6147 students to 948 mathematics questions. The 948 variables are binary (1:
correct and 0 otherwise). These questions target specific mathematical concepts and are grouped into
a meaningful hierarchy of topics; see Fig. 4 in Appx. E. Here we apply VISL to find the structures
among the topics using the third level hierarchy (Fig. 4), resulting in 57 group-level nodes.

Imputation results. VISL achieves competitive or superior performance when compared to the base-
lines (Table 5). Although the dataset is more balanced (54% of the values are 1), we provide AUROC
and AUPR for completeness. Notice that this setting is more challenging since the information flows
at less granular level (i.e. group). Interestingly, even in this case, VISL obtains similar or improved
imputation results compared to the baselines.

Structure discovery results between groups. Most of the baselines used so far cannot be applied
here because i) they cannot deal with missing data or ii) they cannot learn group-level relationships.
DAG-GNN is the only one that can be adapted to satisfy both properties. For missing data, we adapt
DAG-GNN following the same strategy as in VISL, i.e. replacing missing entries with a constant
value. For the second one, we further adapt it by using group-specific mappings like VISL to cope
with arbitrary groups. We also include another baseline, Random, where the structures between topics
are randomly sampled from a Bernoulli distribution. Due to the lack of ground truth relationships, we
ask two experts (teachers) to assess the validity of the relationships found by VISL, DAG-GNN, and
Random. For each relationship, they are asked to rate a value from 1 (strongly disagree) to 5 (strongly
agree) for the adjacency (whether it is sensible to connect the two topics) and the orientation (whether
the first one is a prerequisite for the second one). We release the the complete list of relationships
and expert evaluations for VISL, DAG-GNN, and Random; see Table 15, Table 16, and Table 17,
respectively. Thus, the results is reproducible and allow the community to build on this data as a
structure discovery benchmark. In summary, Table 6 shows here the average evaluations: we see that
the relationships discovered by VISL score much more highly across both metrics than the baseline
models.
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Another interesting aspect is how the relationships between level-3 topics are distributed in higher-
level topics. Intuitively, it is expected that most of the relationships happen inside higher-level topics
(e.g. Number-related concepts are more probably related to each other than to Geometry-related
ones). Table 7 in appendix shows the distribution for the compared methods. Indeed, notice that the
percentage of inside-topic relationships is higher for VISL (82%) and DAG-GNN (42%) than for
Random (34%). An analogous analysis for the 25 level-2 topics is provided in the appendix; see
Table 12 (VISL), Table 13 (DAG-GNN), and Table 14 (Random). 6% of the connections happen
inside level 2 topics for Random, it is 14% for DAG-GNN and 36% for VISL.

Education Impact. Lastly, to make a real-world impact, we have been provided with an additional
education dataset in the same format as Eedi by an education organization to help provide insight for
math curriculum building. The final structure among all topics found by VISL is presented by figure
Fig. 8 in the appendix. This figure provides insights into which topics are foundational and need to be
covered earlier (topics with many originating edges), or later (topics with many incoming edges). This
allowed us to re-evaluate the order of topics in a nationwide used secondary curriculum. Specifically,
topics such as “arithmetic” or “properties of shapes” were moved earlier in the curriculum, while
topics such as “negative numbers” or “proportion and similarity” were moved to a later stage in the
curriculum. Another interesting example found by the domain expert are “Venn diagrams”, which
were originally taught in year 9/10 and are now suggested to be moved to year 7. Experts found that
the topic “Venn diagram” has been a useful tool in teaching other topics which are currently taught
before year 10. This emphasises the real-world impact our model can have in planning curricula.

5 Conclusions
We introduced VISL, a novel approach that simultaneously performs group-wise structure discovery
and learns to impute missing values. Both tasks are performed jointly: imputation is informed by the
discovered relationships and vice-versa, leading to improved performance for both tasks. Moreover,
motivated by a real-world problem, VISLshows its impact in the real-world education domain to
aid domain experts in setting up curriculum. Despite of the improved performance on structure
learning with missing data, VISL can be further extended in several directions. First, one potential
limitation is that the inferred structure from VISL is not causal. Appendix B shows that VISL
satisfies the cauasl Markov assumption under equilibrium, which opens a door for potential causal
claims. Another direction for future work is to extend the M(C)AR assumption to missing not at
random(MNAR), which can be more practical for real world usage. In the end, the performance can
further be boosted by designing better graph posteriors beyond an independent Bernoulli distribution.
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