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Abstract

Continuous-time dynamic graphs naturally abstract many real-world systems, such
as social and transactional networks. While the research on continuous-time dy-
namic graph representation learning has made significant advances recently, neither
graph topological properties nor temporal dependencies have been well-considered
and explicitly modeled in capturing dynamic patterns. In this paper, we introduce
a new approach, Neural Temporal Walks (NeurTWs), for representation learning
on continuous-time dynamic graphs. By considering not only time constraints but
also structural and tree traversal properties, our method conducts spatiotemporal-
biased random walks to retrieve a set of representative motifs, enabling temporal
nodes to be characterized effectively. With a component based on neural ordinary
differential equations, the extracted motifs allow for irregularly-sampled temporal
nodes to be embedded explicitly over multiple different interaction time intervals,
enabling the effective capture of the underlying spatiotemporal dynamics. To
enrich supervision signals, we further design a harder contrastive pretext task for
model optimization. Our method demonstrates overwhelming superiority under
both transductive and inductive settings on six real-world datasets 1.

1 Introduction

Continuous-time dynamic graphs (CTDGs) consist of temporal events with respect to nodes (e.g.,
node addition/deletion) and edges (i.e., temporal interactions), which naturally arise in many real-
world systems such as social networks and knowledge graphs [13, 32]. Traditional studies in dynamic
graph modeling manually extract expressive patterns that are beneficial for understanding the crucial
laws behind [36]. For example, two people are likely to know each other if they have a common
friend (Figure 1). Such a dynamic graph motif describes how social connections are established
[31]. Other expressive patterns, such as feedforward control loops, have also been investigated [20].
However, manually extracting motifs is expensive, time-consuming, and requires domain knowledge,
thus hindering the learning on dynamic graphs with more complicated laws [36].
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Figure 1: Temporal walks capture the law

The advent of graph neural networks (GNNs) makes
it possible to understand more complicated graphs by
automatically learning the laws behind [40, 42]. While
GNNs have demonstrated great success in modeling
static graphs, the research on dynamic graphs is still
nascent. Current research on dynamic graph neural
networks (DGNNs) faces two fundamental challenges.
Firstly, the entangled spatial and temporal dependen-
cies in real-world CTDGs typically need a specific design to model, preventing the direct use of
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off-the-shelf GNNs. To overcome this barrier, previous works simplify CTDGs to a series of static
graph snapshots with uniform time intervals (i.e., discrete-time dynamic graphs, DTDGs) [24, 29].
However, this approximation compromises the modeling precision. Although [15] and [34] propose
to learn on CTDGs directly, the inductiveness of the patterns they captured is not guaranteed because
node identities are directly involved in their modeling process. Some recent methods [38, 27, 36]
attempt to alleviate this issue. However, they only consider time but not topological and tree traversal
properties when sampling temporal neighbors, limiting their ability to extract diverse and expressive
patterns from dynamic systems. Secondly, temporal events in CTDGs occur irregularly (e.g., nodes
a and c interact with b at different timestamps in Figure 1), resulting in a significant challenge in
modeling temporal dependencies. Previous works typically bypass this challenge with the time
encoding [38] to enable the use of message passing [38, 27] or sequence models [15, 36]. However,
time encoding hurts model performance as temporal dependencies are modeled implicitly.

To tackle the above challenges, we propose the Neural Temporal Walks (NeurTWs) method for
representation learning on CTDGs, which extracts and encodes informative dynamic graph motifs
composed of irregularly-sampled temporal nodes. Specifically, motivated by [36], we propose
sptaiotemporal-biased random walks to extract diverse and expressive patterns from a CTDG by
not only considering time constrains but also topological properties and tree traversals, allowing the
sampler to be better aware of the importance of temporal neighbors while maintaining the exploration
and exploitation trade-off. To explicitly model temporal dependencies and capture essential dynamic
laws more effectively, the extracted motifs consisting of irregularly-sampled temporal nodes are
encoded with the proposed continuous evolution and instantaneous activation processes to learn
time-aware node representations. The former process learns latent spatiotemporal dynamics across
multiple interaction time intervals with an ordinary differential equation (ODE) function, and the
second process regularizes the latent state trajectories with those irregularly-sampled observations.

On this basis, we acquire time-aware node embeddings by retrieving and encoding neighboring
representative dynamic graph motifs, where a contrastive objective can be naturally designed to
optimize NeurTWs by maximizing the mutual information between interacting temporal nodes.
Compared with most existing works that use a simple link prediction objective, this harder contrastive
pretext task helps enrich supervision signals, thus lifting the learning ability of NeurTWs.

On five benchmark datasets and a new dense e-commerce dataset, our method significantly and
consistently outperforms all state-of-the-art methods in general. Specifically, it surpasses the strongest
baselines by around 3% and 5% in all transductive and seven out of eight inductive link prediction
tasks. It also achieves the best or on-par performance on dynamic node classification tasks. In
summary, our technical contributions are three-fold: (1) We propose novel spatiotemporal-biased
random walks to extract diverse and expressive patterns from CTDGs by considering not only time
constraints but also topological and tree traversal properties; (2) We introduce a new perspective
to encode dynamic graph motifs composed of irregularly-sampled temporal nodes, explicitly and
better modeling the underlying spatiotemporal dynamics; (3) We integrate contrastive learning into
dynamic graph modeling to enrich supervision signals, which lifts the learning ability of our model.

2 Related Work

Dynamic Graph Neural Networks (DGNNs). Existing DGNNs can be broadly classified into two
categories based on their inputs. Discrete-time DGNNs operate over a sequence of evenly-sampled
static graph snapshots, where different strategies are proposed to model spatial and temporal clues,
e.g., combining GNNs with sequence models [30, 24, 5, 29]. Our work relates to the second category,
continuous-time DGNNs, where time-dependent node or edge embeddings are learned directly on
CTDGs. Among these works, an in-demand design updates latent node states by aggregating k-hop
neighborhood information with temporal message passing. For instance, TGAT [38] samples a set of
k-hop temporal neighbors and proposes learnable time encodings to preserve time information in
message passing. TGN [27] further equips TGAT with a node memory update mechanism as in [15].
Another line of research leverages random walks to learn on CTDGs. Specifically, CTDNE [23] is
the first to propose a CTDG embedding method with temporal walks. CAWs [36] extend this concept
with anonymous temporal walks and uses a recurrent net to learn walk embeddings that are further
aggregated when calculating interactive representations. Our method is different from prior walk-
based approaches in three aspects: (1) We propose a new perspective on sampling temporal walks.
While prior arts only consider time constraints, our method leverages multidimensional information,
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allowing the model to explore diverse and expressive patterns from CTDGs; (2) We propose a novel
and intuitive motif embedding method to model latent spatiotemporal dynamics among irregularly-
sampled temporal nodes on CTDGs without relying on time encodings, which allows temporal
dependencies to be modeled explicitly; (3) We replace the simple link prediction-based learning
objective with a more challenging contrastive pretext task, which helps provide stronger supervision
signals.

Neural Ordinary Differential Equations (NODEs). Chen et al. [2] propose a new paradigm that
generalizes discrete deep neural networks by parameterizing the derivative of latent states. This
concept has been applied in research areas including time series forecasting [12, 28] and computer
vision [9, 1]. Recently, some works have extended NODEs to the graph domain, where most consider
building deeper GNNs while alleviating the negative impacts of over-smoothing [37, 25]. Notably,
the time information is absent among those works. In dynamic graph learning, most ODE-based
works focus on discrete-time settings [12, 6, 8], and only a few extend NODEs to learn on CTDGs [7].
In this paper, inspired by the research on time series forecasting [28], we propose NeurTWs to
encode extracted motifs with irregularly-sampled temporal nodes on CTDGs, which is fundamentally
different from [7]: We directly integrate over multiple interaction time intervals to explicitly model
the latent spatiotemporal dynamics across different temporal nodes with an ODE function, while [7]
relies on a time encoding-assisted message passer to learn from historical temporal events.

Graph Contrastive Learning (GCL). Recently, GCL has achieved great success in graph self-
supervised learning [19]. Most existing works are on static graphs [35, 43, 44, 11]. While some studies
have explored the possibility of dynamic graph contrastive learning, many of them are on DTDGs.
For example, STGCL [18] enhances the model’s forecasting ability with DTDG augmentations and
an auxiliary contrastive loss. A similar design also exists in [41, 39] and [26]. On CTDGs, Tian
et al. [33] propose to maximize the agreement between time-aware node embeddings at different
time points. In DySubC [10], the mutual information between a node and its surrounding temporal
subgraphs is maximized. Different from these works, we design an effective pretext task for model
optimization, where the mutual information between two nodes in an interaction is maximized.
Meanwhile, we push nodes away in the embedding space if there are no temporal interactions.

3 Problem Formulation

We start by formally introducing the learning problem on CTDGs. A complete notation table is in
Appendix A. This paper defines a CTDG as a stream of temporal interactions, i.e., G = {(ei, ti)}Ni=1,
where each interaction has two nodes at a specific time, e.g., (ei, ti) := ({ui, vi}, ti), ti 2 R+. As
many real-world CTDG datasets are unattributed and for simplicity, we first assume these temporal
interactions are without node and edge attributes and later we will discuss how our method is extended
to learn on attributed CTDGs. Facing the challenge of lacking label information, DGNNs are typically
supervised by temporal interactions [45]. Thus, dynamic link prediction is a widely adopted testbed
to evaluate how accurate a DGNN is in predicting future interactions with the observation of historical
events. Specifically, given two nodes u and v at time t in G, we aim to learn their time-aware
embeddings hu and hv, where the presence of an interaction between them can be predicted with
a downstream classifier, i.e., byu,v,t = clf(hu, hv). The ground truth yu,v,t = 1 if there exists an
interaction between u and v at time t otherwise yu,v,t = 0. On this basis and with learned time-aware
node representations, conducting other downstream tasks, such as dynamic node classification with
another classifier, is also feasible.

4 The Proposed Method: Neural Temporal Walks

4.1 Preliminaries: Temporal Walks and Dynamic Graph Motifs

Given a dynamic graph G, we define a motif as a subset of temporal nodes with their interactions
within a defined time range [14], e.g., 0  t  q. As those motifs reflect certain dynamic laws in a
CTDG, it is desirable to characterize a temporal node with its surrounding motifs.

Definition 4.1.1 (Temporal Walk). Given a dynamic graph G, we denote the interactions that are
directly associated with a node u before a cut time t as Gu,t = {(e, t0) | t0 < t, u 2 e , (e, t0) 2 G}.
A (time-reversed) temporal walk rooted at node u at time t is defined as W , which is a sequence of

3



u b c u7 6 4
47b u c

6

34v e d v6
36e v d

4
u b c u7 6 4

v e d v6 4 3

Two different temporal walks
Anonymized walks

Dynamic graph motif

0 ≤ # ≤ 7

Figure 2: Triadic closures and the dynamic graph motifs: Two example temporal walks form two
different triadic closures but represent the same motif within the time range 0  t  7.

A dynamic graph with timestamped edges and a queried interaction
at a specific time

Temporal-biased walk Spatiotemporal-biased walk

Spatiotemporal-biased walk with exploration & exploitation trade-off

a

b

c

v

d

gf

et = 8 ?

5,6

3,6

3,4

0,2,4 2,7 6

3,5

u 1,6

0,4,5

4

1,4

(a) Dynamic Graph Motif Extraction

Root node

u f v d7 6 5

… v e g v6 5 4

…
!! !"

7 6 5

…
6 5 4

…
"(!!) "(!")

(b) Walk Anonymization

Anonymized node Anonymization operation

Figure 3: Temporal walk sampling and anonymization. Given a CTDG and a queried interaction
(u, v, 8), we first extract surrounding temporal motifs by sampling a set of diverse and expressive
temporal walks started from u and v, respectively, denoted as Mu and Mv. Then, the walks in two
sets are anonymized by replacing nodes’ identities with their position encodings.

temporal nodes as in [36], i.e., node wi at time ti with w0 := u and t0 := t:

W = {(wi, ti) | i 2 N, 0  i  l, t0 > t1 > · · · > tl, ({wi, wi�1}, ti) 2 Gwi�1,ti�1 for i � 1},
(1)

where l is the walk length. We also use W [i][0] and W [i][1] (i.e., wi and ti in (wi, ti) respectively)
to denote the specific node and time in the i-th step.

Each walk W rooted at a temporal node can actually be regarded as one of its surrounding motifs
if t1 � tl is bounded within the defined motif time range. A concrete example is given in Figure
2, where two walks in the leftmost side form two triadic closures, which essentially represent the
same motif on the rightmost side after an individual walk anonymization [21]. The necessity of
anonymization is to replace original node identities in walks with their relative identities, which maps
each walk to a particular pattern and thus connects temporal walks and dynamic graph motifs.

Definition 4.1.2 (Anonymous Walk). Given a temporal node w and a walk W , the anonymization
operation A(·) is defined as follows [36]:

A(w;W ) = |{v0, · · · , vi⇤ | vi 2 W}|,where i⇤ is the smallest index s.t. vi⇤ = w. (2)

4.2 Dynamic Graph Motif Extraction

Temporal Walk Sampling. Existing path-based methods mainly employ a temporal-biased sampling
method when extracting dynamic graph motifs [23, 36]. Specifically, given a node u at time t, the
probability of its neighbor a in ({a, u}, t0) 2 Gu,t to be sampled is proportion to exp(↵(t0 � t)),
which discounts stale neighbors and tends to sample more current nodes with timestamps closer to
t. A larger ↵ emphasizes more on this bias. Although more current neighbors are more likely to be
informative, the underlying topological and tree traversal properties are not respected, which hinders
the extraction of diverse and expressive patterns. Here, we propose spatiotemporal-biased random

walks with the exploitation and exploration trade-off.

Our motivations are twofold: (1) Most-recent neighbors should be allocated a larger sampling
probability / exp(↵(t0 � t)) as they are typically more informative w.r.t. a root node at time t. In
Figure 3(a), given a root node u and its two temporal neighbors f and c, a temporal-biased sampling
path is more likely to be u ! f instead of u ! c; (2) Neighbors with higher connectivity need to be
emphasized to allow exploring more diverse and potentially expressive motifs. Given a node a at time
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t0, we use its degree da = |Ga,t0 | to reify its connectivity, thus the proposed spatial-biased probability
/ exp(��/da) with a hyperparameter � to control the bias intensity. Algorithm 1 illustrates the
walk sampling procedures with the above considerations. Given a node u at time t, the probability of
its temporal neighbor a to be sampled is the average of the following normalized probabilities:

Prt(a) =
exp(↵(ta � t))P

a02Gu,t
exp(↵(ta0 � t))

(3) Prs(a) =
exp(��/da)P

a02Gu,t
exp(��/da0)

(4)

Algorithm 1 Sampling Temporal Walks
Require: Root node w0, cut time t0, G, C, l
1: Initialize {Wc =

�
(w0, t0)

�
| 1  c  C}

2: for i in 1, 2, · · · , l do
3: for j in 1, 2, · · · , C do
4: wp, tp := Wj [i][0],Wj [i][1]
5: Initialize dw = 0 for all w 2 Gwp,tp

6: for (e, t) in Gwp,tp do
7: Let e := {w,wp}, dw = |Gw,t|

8: end for
9: Sample one (e, t) 2 Gwp,tp with prob.

/ exp(↵(t� tp)) and exp(��/dw)
10: Let e := {w,wp}, Wc = Wc||(w, t)
11: end for
12: end for
13: return {Wc | 1  c  C}

Although Algorithm 1 complements the temporal-
biased schema by considering the additional topolog-
ical information, it may overly encourage the depth-
first search (DFS), which could misleadingly sam-
ple many homogeneous motifs with a limited bud-
get. Take an extreme example, if |Mu| is restricted
to 3 in Figure 3(a), paths u ! b ! c ! u may
be sampled three times, leaving no room to explore
u ! c ! b ! a and u ! f ! v ! d. Thus, we
design an exploitation & exploration trade-off to reg-
ularize the walk sampling with another probability:

Pre(a) =
exp(��sa)P

a02Gu,t
exp(��sa0)

, (5)

where sa and � denotes the traversal times of node a
and the intensity of such a regularization.

Our complete walk sampling algorithm and its complexity analysis are in Appendices B.1 and B.3.
In a nutshell, given a temporal node, the probability of its neighbor to be sampled is the average of
the probabilities defined in Equations 3, 4 and 5. In NeurTWs, given a queried interaction between
two temporal nodes u and v as shown in Figure 3, we sample a set of C temporal walks rooted at
each node with length l, denoted as Mu and Mv .

Anonymization. Walk anonymization replaces node identities with position encodings (aka relative
identities), which injects structural information while maintaining the inductiveness of NeurTWs. A
drawback of Equation 2 is that the position encoding of each node only depends on its specific walk,
leading anonymous walks rooted at the same node sharing different name spaces [36]. Thus, we
consider two practical solutions: unitary and binary anonymization to address this problem. For a
temporal node w in at least one walk rooted at node u, its unitary anonmization w.r.t. u considers the
name space defined over Mu, the set of walks rooted at u:

A(w;Mu)[i] = |{W | w = W [i][0], W 2 Mu}|,where i 2 {0, · · · , l}. (6)

In Equation 6, the identity of w is replaced by a vector A(w;Mu) with length l, where the i-th
element counts the number of walks that have node w appearing in position i.

While unitary anonymization anonymizes node w w.r.t. Mu as A(w;Mu), for interacting root nodes
u and v, A(w;Mu) and A(w;Mv) belong to different name spaces. Since DGNNs are typically
supervised by temporal interactions, establishing the correlations between W 2 Mu [Mv may be
beneficial. Thus, the binary anonymization is defined as follows [36]:

A(w;Mu,Mv) = A(w;Mu) || A(w;Mv), (7)

where || denotes the concatenation operation to establish the connections among motifs in Mu and
Mv . In the rest of the paper, we abbreviate the two anonymization strategies as A(w) for simplicity
and denote cW = {

�
A(wi), ti

�
| (wi, ti) 2 W for i = 0, 1, · · · , l} as an anonymous walk.

4.3 Neural Temporal Walk Encoding

A significant challenge to model CTDGs is that interactions occur irregularly. Previous works bypass
this challenge by concatenating node attributes with extra time encodings when aggregating the
neighbourhood information [38, 27, 36], where temporal dependencies are modeled implicitly. A
detailed discussion is in Appendix D.2. To encode a motif with irregularly-sampled temporal nodes,
we explicitly integrate over multiple interaction time intervals to learn the latent spatiotemporal
dynamics with those discrete observations. Figure 4 and Algorithm 2 describe our method in a
nutshell, which consists of two interleaving steps: Continuous evolution and instantaneous activation.
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Algorithm 2 Neural Temporal Walk Encoding

Require: An anonymous temporal walk cW =
{
�
A(wi), ti

�
| (wi, ti) 2 W for i = 0, 1, · · · , l}

1: Reverse the order of elements in cW
2: t�1 = t0, h�1 = 0
3: for i in 0, 1, 2, · · · , l do
4: h

0
i = ODESolve(hi�1, f✓, ti�1, ti)

5: A
0
(wi) = MLP (A(wi))

6: hi = g�(h
0
i, A

0
(wi))

7: end for
8: return The walk embedding hl

Irregular trajectory of latent state evolution
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Figure 4: The spatiotemporal dynam-
ics behind irregularly-sampled temporal
nodes are explicitly modeled.

Continuous Evolution. Given a series of temporal nodes at different time, i.e., (A(wi), ti) 2 cW
and ensuring ti�1 < ti by reversing the order of elements in cW , the latent spatiotemporal dynamics
among those nodes are modeled as follows:

h
0

i = hi�1 +

Z ti

ti�1

f(ht, ✓) dt, (8)

where hi�1 denotes the latent states after encoding (A(wi�1), ti�1) 2 cW . We define the ODE
function f(ht, ✓) as an autoregressive gated recurrent unit parameterized by ✓. See Appendix B.2.

Instantaneous Activation. The latent state evolution in Equation 8 conditions on a series of discrete
observations. Thus, we define a function to activate latent state trajectories with instantaneous inputs:

hi = g(h
0

i, A
0
(wi),�), (9)

where g(·,�) can be a standard RNN cell parameterized by �, and A
0
(wi) = MLP(A(wi), ) denotes

the linear mapping of a discrete observation A(wi) in an anonymous walk cW .

Compared with [36], we naturally model spatiotemporal dynamics behind walks with irregularly-
sampled temporal nodes, where the time information has been explicitly reflected in this modeling
process. On this basis, for a temporal node u, we obtain its time-aware representation by pooling the
embedding of walks in Mu, denoted as hu. In this paper, we adopt the sum pooling for simplicity.

4.4 Contrastive Optimization

A self-supervised pretext task is required to train DGNNs due to the scarcity of the labeling informa-
tion. Most current works formulate their learning problems as a binary classification task, where the
existence of an interaction is predicted. From the contrastive point of view, a binary cross-entropy
loss essentially forms a particular case of the Jensen-Shannon estimator [19], where the number of
negatives is one and thus provides limited supervision signals.

Here, we introduce a harder contrastive pretext task, where the mutual information between interacting
temporal nodes (e.g., node u and v in Figure 3) is maximized. We detail the complete training
algorithm of our method in Appendix B.4. In brief, the following noise-contrastive loss is minimized
in the proposed approach:

L = �E
h
log

exp
�
sim(hu, hv)

�

exp
�
sim(hu, hv)

�
+
P

v02G,v0 6=v exp
�
sim(hu, hv0)

�
i
. (10)

sim(·) measures the similarity between two entities, i.e., sim(hu, hv) = �
�
MLP(hu, ha, ⇠)

�
, where

�(·) and ⇠ are sigmoid activation and trainable parameters.

4.5 Extension and Discussion

Learning on Attributed CTDGs. Our method can be easily extended to model CTDGs with node
and interaction attributes. To achieve this, we only need to slightly modify Equation 9 as follows:

hi = g(h
0

i, A
0
(wi) || Xwi || Xei , �), (11)
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Table 1: The dataset statistics. Average interaction intensity � = 2N/(|V |T ) [16, 36] embodies the
density of interactions in a fixed period, where T and |V | are dataset duration and number of nodes.

Statistics CollegeMsg Enron Taobao MOOC Wikipedia Reddit
# Nodes & Interactions 1,899 & 59,835 143 & 62,617 64,703 & 77,436 7,144 & 411,749 9,227 & 157,474 10,984 & 672,447
Duration (second) 16,621,303 72,932,520 36,000 2,572,086 2,678,373 2,678,390
# Nodes & Interaction attributes 0 & 0 0 & 0 0 & 4 0 & 4 172 & 172 172 & 172
Average interaction intensity � 3.79⇥ 10�6 1.2⇥ 10�5 6.64⇥ 10�5 4.48⇥ 10�5 1.27⇥ 10�5 4.57⇥ 10�5

# Dynamically labeled nodes - - - - 217 366

where Xwi and Xei are linearly mapped features of node wi and edge ei := {wi�1, wi} in cW .

Batching and Computational Complexity. One computational challenge is that each walk contains
irregularly-sampled nodes at different timestamps, requiring the model to separately solve C different
ODEs to calculate the embedding of a root node, thus hindering training in batches. To solve all
ODEs at once in a minibatch with B sampled interactions, we unify the integral time among all ODEs
(see Appendix B.3) to a certain range, which results in a lower time complexity of O(l) instead of
O(Bl). In Appendix B.3, we also provide detailed complexity analysis and discuss how to make
solving Equation 8 tractable with very large time intervals.

5 Experiments

5.1 Experimental Setting

Baselines. Our model is compared with six state-of-the-art methods in modeling CTDGs. They
can be divided into two categories based on their intrinsic mechanisms: (1) message passing-based
methods, including DyRep [34], TGAT [38], and TGN [27]; (2) sequential model-based methods,
including CTDNE [23], JODIE [15], and CAWs [36]. More details can be found in Appendix C.2.

Datasets. We evaluate model performance on six real-world datasets. CollegeMsg [17] is a social
network dataset consisting of message sending activities. Enron [17] is an email communication
network. Taobao [46] is an attributed user behavior dataset containing user-item interactions. MOOC
[17] is an attributed network consisting of student-course interactions. Wikipedia and Reddit [15]
are two bipartite interaction networks consisting of editor-page and user-post activities with rich
attributive information. The dataset statistics are summarized in Table 1, and their detailed descriptions
are in Appendix C.1.

Evaluation Protocols. For link prediction, we follow the evaluation protocols of CAWs [36] and
consider two different downstream tasks for evaluation: transductive and inductive link prediction.

In transductive link prediction, we sort and divide all N interactions in a dataset by time into three
separate sets for training, validation, and testing. Specifically, the ranges of training, validation, and
testing sets are [0, Ntrn), [Ntrn, Nval), [Nval, N ], where Ntrn/N and Nval/N are 0.7 and 0.85.

In inductive link prediction, we use the same splits but mask a proportion of nodes (10%) and
associated interactions during training, which are predicted during inference to evaluate the model
inductiveness. Specifically, we first remove all interactions connected with masked nodes in the
training set and then remove all interactions not associated with them in the validation and testing
sets. In particular, we have two specific settings: (1) New-Old tasks require the model to predict the
interactions with one unobserved (i.e., masked) and one observed nodes; and (2) New-New tasks aim
to predict the interactions between all unobserved nodes.

For dynamic node classification, we follow the evaluation protocol in [27]. Specifically, we first obtain
a model under the setting of transductive link prediction. Then, we train and test a separate classifier
on top of this pre-trained model with the temporal nodes observed in [0, Nval) and [Nval, N ].

Training Details. We implement and train all models under a unified evaluation framework with
the Adam optimizer. The tuning of primary hyperparameters is discussed in Appendix C.3. In
solving ODEs, we use the Runge-Kutta method with the number of function evaluations set to
8 by default. For fair comparisons and simplicity, we use sum-pooling when calculating node
representations in both our method and CAWs. We also test NeurTWs†, which is equipped with
the binary anonymization, while NeurTWs adopts the default unitary anonymization. All methods
are tuned thoroughly with nonlinear 2-layer and 3-layer perceptrons to conduct downstream link
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Table 2: Transductive and inductive link prediction performances w.r.t. AUC. We use bold font and
underline to highlight the best and second best performances. NeurTWs† is a vairant of our method
with the binary anonymization.

Task Method CollegeMsg Enron Taobao MOOC
Tr

an
sd

uc
tiv

e
JODIE [15] 0.5846 ± 0.038 0.8714 ± 0.011 0.8477 ± 0.015 0.6815 ± 0.014
DyRep [34] 0.5297 ± 0.042 0.8632 ± 0.013 0.8462 ± 0.012 0.6195 ± 0.018
TGAT [38] 0.7528 ± 0.004 0.6592 ± 0.012 0.5400 ± 0.005 0.6750 ± 0.035
TGN [27] 0.8990 ± 0.003 0.8944 ± 0.015 0.8484 ± 0.029 0.7703 ± 0.032
CAWs [36] 0.9002 ± 0.002 0.9520 ± 0.002 0.8719 ± 0.001 0.6948 ± 0.053
NeurTWs 0.9526 ± 0.002 0.9564 ± 0.005 0.9100 ± 0.014 0.7756 ± 0.031
NeurTWs† 0.9750 ± 0.004 0.9704 ± 0.012 0.8911 ± 0.014 0.7470 ± 0.028

In
du

ct
iv

e N
ew

-O
ld

JODIE [15] 0.4589 ± 0.028 0.8182 ± 0.022 0.7626 ± 0.002 0.6304 ± 0.006
DyRep [34] 0.4486 ± 0.021 0.7241 ± 0.025 0.7641 ± 0.012 0.5504 ± 0.010
TGAT [38] 0.7240 ± 0.008 0.6131 ± 0.049 0.5537 ± 0.018 0.6410 ± 0.024
TGN [27] 0.8699 ± 0.007 0.7068 ± 0.116 0.8706 ± 0.008 0.6968 ± 0.008
CAWs [36] 0.8911 ± 0.015 0.9612 ± 0.002 0.8744 ± 0.004 0.7479 ± 0.023
NeurTWs 0.9575 ± 0.011 0.9525 ± 0.002 0.9316 ± 0.018 0.7822 ± 0.004
NeurTWs† 0.9699 ± 0.010 0.9566 ± 0.007 0.9037 ± 0.013 0.7772 ± 0.006

N
ew

-N
ew

JODIE [15] 0.5135 ± 0.048 0.7537 ± 0.025 0.7791 ± 0.004 0.8243 ± 0.007
DyRep [34] 0.5813 ± 0.066 0.7184 ± 0.061 0.7716 ± 0.017 0.5288 ± 0.021
TGAT [38] 0.7283 ± 0.029 0.6340 ± 0.032 0.5479 ± 0.025 0.6365 ± 0.014
TGN [27] 0.7745 ± 0.102 0.9217 ± 0.026 0.8701 ± 0.011 0.6448 ± 0.053
CAWs [36] 0.8974 ± 0.009 0.9777 ± 0.001 0.8762 ± 0.004 0.7558 ± 0.036
NeurTWs 0.9649 ± 0.008 0.9906 ± 0.007 0.9242 ± 0.005 0.8329 ± 0.010
NeurTWs† 0.9768 ± 0.008 0.9858 ± 0.015 0.9140 ± 0.013 0.8302 ± 0.007

prediction and node classification tasks, and we adopt the commonly used Area Under the ROC
Curve (AUC) and Average Precision (AP) as the evaluation metrics. More implementation details
can be found in Appendix C.3.

5.2 Results and Discussion

Table 3: Dynamic node classification performance
w.r.t. AUC. We use bold font and underline to
highlight the best and second best performances.
The baseline results are taken from [27].

Method Wikipedia Reddit
CTDNE [23] 0.7589 ± 0.005 0.5943 ± 0.006
JODIE [15] 0.8484 ± 0.012 0.6183 ± 0.027
DyRep [34] 0.8459 ± 0.022 0.6291 ± 0.024
TGAT [38] 0.8369 ± 0.007 0.6556 ± 0.007
TGN [27] 0.8781 ± 0.003 0.6706 ± 0.009
NeurTWs 0.8851 ± 0.003 0.6652 ± 0.022

The link prediction performance of our method
and state-of-the-art baselines are summarized in
Table 2 (w.r.t. AUC) and Appendix D.1 (w.r.t.
AP). As can be seen from this table, our method
achieves the best performance on different tasks
and datasets in general. Notably, NeurTWs sur-
passes the strongest model, CAWs, significantly
on both unattributed and attributed CTDGs, e.g.,
7.76% and 4.78% on average on CollegeMsg and
Taobao. Particularly, NeurTWs and NeurTWs†
achieve a strong AUC result � 0.95 on Col-
legeMsg, while all baselines have their AUCs
 0.9, demonstrating the effectiveness of the proposed method.

Specifically, on both transductive and inductive tasks, we make the following observations. (1)
Our method performs well on both attributed and unattributed datasets, while the effectiveness of
baseline models varies significantly. For instance, JODIE and DyRep have enormous performance
gaps between Taobao and CollegeMsg in all three tasks. It indicates that our NeurTWs method is
better at capturing essential dynamic laws. This superiority can be attributed to our spatiotemporal
walks and associated encoding mechanism; (2) Our method is effective under both transductive
and inductive settings. On the contrary, some baseline models cannot well generalize to predict
interactions with unseen nodes (e.g., the performance of JODIE and DyRep drops on inductive tasks)
because they rely on node identities. TGAT, TGN, and CAWs can yield better performances but
leave room to improve. It is worth noting that simple unitary anonymization (i.e., NeurTWs) and
more complex binary anonymization (i.e., NeurTWs†) yield similar performance in most cases. Our
method with the default, simpler unitary anonymization performs significantly better than CAWs,
which utilizes binary anonymization, again demonstrating the superiority of our approach in modeling
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Table 4: Ablation study with the proposed NeurTWs method. The performance in predicting all

inductive interactions is reported.

No. Configuration CollegeMsg Taobao
AUC AP AUC AP

0 Full model (NeurTWs) 0.958 ± 0.01 0.966 ± 0.01 0.938 ± 0.02 0.933 ± 0.02
1 w/o T-biased probability 0.918 ± 0.02 0.928 ± 0.02 0.932 ± 0.03 0.927 ± 0.01
2 w/o S-biased probability 0.949 ± 0.02 0.958 ± 0.02 0.915 ± 0.01 0.915 ± 0.01
3 w/o E&E-biased probability 0.957 ± 0.01 0.965 ± 0.01 0.926 ± 0.01 0.927 ± 0.01
4 w/o continuous evolution 0.868 ± 0.02 0.898 ± 0.01 0.860 ± 0.05 0.901 ± 0.02
5 w/o contrasitve learning 0.954 ± 0.01 0.962 ± 0.01 0.935 ± 0.01 0.932 ± 0.01

CTDGs without relying on sophisticated position encodings; (3) Comparing the results on Taobao,
our method’s improvements over CAWs are more significant than on CollegeMsg, e.g., 7.48% vs.
3.81% on transductive and 7.91% vs. 5.26% on inductive settings. Similar observations can also
be found when compared on MOOC and CollegeMsg. This is because the CollegeMsg dataset has
a lower average interaction intensity (i.e., � = 3.79 ⇥ 10�6) compared with Taobao and MOOC
datasets (i.e., � = 6.64⇥ 10�5 and 4.48⇥ 10�5). A lower � indicates a larger average time span in
a temporal walk, for which our proposed continuous evolution process is more effective.

In addition, we compare the performance of our method (i.e., NeurTWs) on dynamic node classi-
fication with state-of-the-art baselines as shown in Table 3, where our approach achieves the best
or on-par performances, further confirming the effectiveness of the proposal. We do not report the
results of NeurTWs† because node classification mainly considers properties of temporal nodes rather
than interactions.

5.3 Ablation Study

In Table 4, we report the results of our ablation study on predicting inductive interactions in both
new-old and new-new settings. Specifically, ablations 1, 2, and 3 remove Equations 3, 4, and 5
when sampling temporal walks. Ablation 4 disables Equation 8 when encoding an anonymous
walk. Ablation 5 replaces our contrastive loss with a binary cross entropy loss. From the above
variants, we see performances degradation when retrieving motifs without considering the temporal
or spatial information, demonstrating the effectiveness of the proposed spatiotemporal-biased walk
sampler. Moreover, disabling the exploitation & exploration trade-off also hurts performances. When
removing the continuous evolution, more severe performance drops are found on CollegeMsg, further
demonstrating that NeurTWs excel on CTDGs with more sparse interactions where existing works
usually fail to model them well. The performance drops also exist when our contrastive pretext task
is disabled. A specific study related to continuous evolution is in Appendix D.2.

5.4 Parametric Sensitivity

We study the important settings in NeurTWs and have the following observations: (1) For each dataset,
there are sweet spots in balancing three intensities (i.e., ↵, �, and �). Specifically, different datasets
with different average interaction intensities, namely �, prefer different temporal-biased intensities.
For example, a relatively large ↵ benefits on CollegeMsg but hurts the performance on Taobao as
shown in Figure 5(a). On both datasets, overly emphasizing the topology information with a large
� hurts the performance (see Figure 5(b)) because the temporal information is overly neglected.
However, setting a relatively large � seems beneficial (see Figure 5(c)), indicating the importance
of balancing exploitation and exploration in temporal walk sampling; (2) We also investigate the
choice of walk length l and number of walks C as shown in Figures 5(e) and 5(f). On both datasets,
sampling 16 or 32 walks with the length 2 or 3 seems sufficient to characterize a temporal node;
(3) For efficiency, we limit the number of negatives in Equation 10 instead of calculating hv0 for
all v0 2 G where v0 6= v. Specifically, we find that a large number is usually beneficial on both
datasets as shown in Figure 5(d), where the performance increases to converge with an increasing
number of negatives. In our method, we normally do not have to tune continuous evolution-related
hyperparameters, but we provide a detailed study in Appendix D.2.
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Figure 5: Study on important settings of NeurTWs. The performance in predicting all inductive

interactions is reported.

6 Discussion and Conclusion

Limitations. There are a few limitations for our method. Firstly, a more sophisticated time interval
normalization is required. In real-world dynamic graphs, there may be some large time intervals
between temporal nodes when constructing temporal walks. Although we propose a simple solution
based on logarithmic transformations (see Appendix B.3), there is no theoretical guarantee of stability
when solving the continuous evolution process by this normalization trick. Secondly, the calculation
of spatial-biased probabilities is computationally heavy. While it is practical to limit the number of
spanned temporal neighbors to alleviate the computational burden (see Appendix D.4), we resort to
finding a more efficient implementation in the future.

Social Impacts. Continuous-time dynamic graph representation learning benefits a wide range of
real-world applications, including but not limited to recommender systems, social network mining,
and industrial process modeling. However, there are also some potential negative impacts. For
example, NeurTWs may learn skewed representations if there are biased patterns in the training data,
which may result stereotyped predictions. Also, powerful dynamic graph models may augment
harmful activities (e.g., attacking and phishing) on real-world dynamic systems.

Conclusion. We propose a novel and competitive method for modeling CTDGs, which has advan-
tages in three aspects. Firstly, our approach complements existing temporal neighborhood sampling
algorithms by simultaneously considering temporal, topological, and tree traversal properties, en-
abling diverse and expressive dynamic graph motifs to be retrieved. Secondly, the proposed method
allows these motifs with irregularly-sampled temporal nodes to be better embedded, where temporal
dependencies are now explicitly modeled. Thirdly, our model forms a harder contrastive pretext task
to enrich supervision signals. Consequently, the NeurTWs method outperforms existing works by
large margins, revealing significant application prospects in many real-world scenarios, which will be
an exciting focus in our future work.
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