
A Deferred Proofs.

Proof of Theorem 4.1. Let Q0 be the optimal value of the LP.

Let p⇤ 2 P(A) be a solution of the maximization (7). Consider the following assignment of the
variables qv,j = p

⇤(v, j) for all v 2 {0, 1}n and j 2 [k]. Since p
⇤ 2 P(A), it is straight-forward

to verify that the variables qv,j satisfy constraints (a) and (b) of the LP. Moreover, the objective
function is minimized whenever the values �v are chosen as small as possible. Due to constraint (c)
of the LP, we have that �v = maxj2[k] qv,j for each v 2 {0, 1}n. We have that

1�Q =
X

v2{0,1}n

max
v2{0,1}n

max
j2[k]

p
⇤(v, j) =

X

v2{0,1}n

�v � 1�Q
0 (11)

By contradiction, assume the optimal solution q
⇤
v,j , �⇤v is such that 1�Q

0 =
P

v2{0,1}n �
⇤
v < 1�Q.

Since q⇤v,j , �⇤v is an optimal solution, due to constraint (c) we have that �⇤v = maxj2[k] q
⇤
v,j . Consider

a PMF p̃ over {0, 1}n ⇥ [k] such that p̃(v, j) = q
⇤
v,j . It is easy to verify that p̃ 2 P(A) due to the

constraint (a) and (b). Moreover, we have that Q(p̃) = 1�
P

v max p̃(v, j) = 1�
P

v �
⇤
v > Q. This

is a contradiction as maxp2P(A) Q(p) = Q. Therefore, we have that 1�Q
0 � 1�Q. Combining

the latter inequality with inequality (11), we can conclude that Q = Q
0.

Proof of Theorem 4.2. Without loss of generality, we assume that ↵i � �i for each i 2 [n]. In
fact, if ↵i < �i, then we can consider the attribute function 0

i = 1� i, and the i-th column of the
matrix A would become (1� ↵i, 1� �i)T , with 1� ↵i � 1� �i. Also, assume that the attributes
are ordered such that ↵1 � �1 � ↵i � �i for each i 2 [n].

We first prove the second part of the Theorem. Let ga be defined as in the problem statement. It is
easy to see that for any p 2 P(A), we have that

"(ga, p) = P
x⇠D

(ga � (x) 6= y(x)) = (12)

= P(1(x) = 0|y(x) = 1)P(y(x) = 1) + P(1(x) = 1|y(x) = 0)P(y(x) = 0)

=
1

2
(1� ↵1) +

1

2
�1

=
1

2
(1� |�1 � ↵1|) = Q

Since this holds for any p 2 P(A), we have that

max
p2P(A)

"(ga, p) =
1

2
(1� |�1 � ↵1|) .

Now, we will prove the first part of the Theorem. The proof is by induction. For i 2 [n], let Ai be
the matrix that consists of the first i columns of A. For i 2 [n], let Gi be the set of all the functions
{0, 1}n ! [2]. For i 2 [n], let p(i) be a PMF with support over {0, 1}i ⇥ [2] such that

p
(i) = argmax

p2P(Ai)
min
g2Gi

0

@1�
X

v2{0,1}i

p(v, g(v))

1

A

| {z }
.
=

"(i)(g,p)

(13)

For ease of notation, for i 2 [n], we will denote p
(i)
v,j = p

(i)(v, j) for each v 2 {0, 1}i and j 2 [2].

The following auxiliary proposition is crucial to prove the theorem.

Proposition A.1. Let i 2 [n]. We have that ming2Gi "
(i)(g, p(i)) = Q if and only if for each

v 2 {0, 1}i�1
, it holds both p

(i)
1v,1 � p

(i)
1v,2 and p

(i)
0v,1 p

(i)
0v,2.

15

Proof. Assume that for each v 2 {0, 1}i�1, it holds both p
(i)
1v,1 � p

(i)
1v,2 and p

(i)
0v,1 p

(i)
0v,2. Then, we

have that

min
g2Gi

"
(i)(g, p(i)) = 1�

X

v2{0,1}i

max(p(i)v,1, p
(i)
v,2) =

= 1�
X

v2{0,1}i�1

max(p(i)0v,1, p
(i)
0v,2)�

X

v2{0,1}i�1

max(p(i)1v,1, p
(i)
1v,2)

= 1�
X

v2{0,1}i�1

p
(i)
0v,2 �

X

v2{0,1}i�1

p
(i)
1v,1

= 1� 1

2
(1� �1) +

1

2
↵1 (14)

=
1

2
(1� |↵1 � �1|) = Q

Equality (14) is simply obtained by marginalization, since p
(i) 2 P(Ai), thus Px⇠D(1(x) =

0 ^ y(x) = 2) = (1� �1)/2 and Px⇠D(1(x) = 1 ^ y(x) = 1) = ↵1/2.

Assume that there exists v0 2 {0, 1}i�1 such that p(i)1v0,1 < p
(i)
1v0,2 (the case p

(i)
0v0,1 > p

(i)
0v0,2 is proven

with the same argument). Let g(i)a be defined similarly to ga, i.e. g(i)a = 1 if 1(x) = 1, and g
(i)
a = 2

otherwise. Following the same computation of (12), we can show that "(i)(ga, p(i)) = Q. Consider
the classifier g̃ such that g̃(v) = ga(v) for all v 2 {0, 1}i such that v 6= 1v0, and g̃(1v0) = 2. We
have that

"
(i)(g(i)a , p

(i))� "
(i)(g̃, p(i)) = p

(i)(v0
, g̃(v0))� p

(i)(v0
, g

(i)
a (v)) = p

(i)
1v0,2 � p

(i)
1v0,1 > 0

Therefore, "(i)(g̃, p(i)) < "
(i)(g(i)a , p

(i)) = Q, which directly implies that ming2Gi "
(i)(g, p(i)) <

Q.

By induction, we will prove that for each i 2 [n], it is true that ming2G "
(i)(g, p(i)) = Q.

Base case. Let i = 1. We have that

p
(1)
1,1 =

↵1

2
p
(1)
0,1 =

1

2
(1� ↵1)

p
(1)
1,2 =

�1

2
p
(1)
0,2 =

1

2
(1� �1)

Observe that p(1) 2 P(A1) as the classes are balanced, and we satisfy the constraints of the matrix
A for the first attribute. It is easy to observe that

min
g2G

"
(1)(g, p(1)) = 1� ↵1

2
� 1

2
(1� �1) = Q

Inductive step. For i 2 2, . . . , n, assume that ming2Gi�1 "
(i�1)(g, p(i�1)) = Q, where p

(i�1) is
solution of (13). We will show how to construct p(i) from p

(i�1) guaranteeing ming2Gi "
(i)(g, p(i)) =

Q and that p(i) 2 P(Ai). Observe that in that case, p(i) is also a solution of (13), since the classifier
g
(i)
a (defined as in the proof of Proposition A.1) has error exactly Q with respect to any PMF
p 2 P(Ai).

Our construction will be divided in three different cases, based on the ordering of the values ↵1,�1,
↵i and �i. We will exhibit a different construction of p(i) for each of the case, but they all share the
same proof line. In particular, we will guarantee that for each v 2 {0, 1}i�1 and j 2 [2], it holds

p
(i)
v1,j + p

(i)
v0,j = p

(i�1)
v,j (15)

This immediately implies that the classes are balanced, in fact, for any j 2 [2], we have that
X

v2{0,1}i

p
(i)
v,j =

X

v2{0,1}i�1

p
(i)
v0,j + p

(i)
v1,j =

X

v2{0,1}i�1

p
(i�1)
v,j =

1

2
,

16

where the last inequality is due to the assumption that p(i�1) 2 P(Ai�1). Moreover, (15) also
implies that p(i) satisfies the constraints imposed by the matrix A for the first i� 1 attributes. In fact,
for any a 2 [i� 1], and j 2 [2], we have that

X

v2{0,1}i:va=1

p
(i)
v,j = Aj,a

X

v2{0,1}i

p
(i)
v,j

()
X

v2{0,1}i�1:va=1

⇣
p
(i)
v0,j + p

(i)
v1,j

⌘
= Aj,a

X

v2{0,1}i�1

⇣
p
(i)
v0,j + p

(i)
v1,j

⌘

()
X

v2{0,1}i�1:va=1

p
(i�1)
v,j = Aj,a

X

v2{0,1}i�1

p
(i�1)
v,j .

The latter equality is true as p(i�1) 2 P(Ai�1).

For each different case, we will show that our construction also satisfies the constraints imposed
by matrix A for attribute i. This, together with (15), implies that our construction guarantees that
p
(i) 2 P(A).

Moreover, we will show that with our construction, we also guarantee that for each v 2 {0, 1}i�1, it
holds that

p
(i)
1v,1 � p

(i)
1v,2 ^ p

(i)
0v,1 p

(i)
0v,2 . (16)

Using Proposition A.1, (16) immediately implies that ming2Gi "
(i)(g, p(i)) = Q. In order to show

that (16) holds in our construction, we will use the fact that for each v 2 {0, 1}i�2, it holds that

p
(i�1)
1v,1 � p

(i�1)
1v,2 ^ p

(i�1)
0v,1 p

(i�1)
0v,2 . (17)

This is indeed the case, as by assumption ming2Gi�1 "
(i�1)(g, p(i�1)) = Q, hence we can apply the

other direction of Proposition A.1.

We will now show our construction for the three different cases. For each case, it is straightforward
to check that in our construction (15) holds, and that (17) immediately implies (16). Therefore, we
omit those computations.

First Case. [�1 � �i ^ ↵i ↵1]. We construct p(i) as follows. For each v 2 {0, 1}i�2, we let

p
(i)
1v1,2 = p

(i�1)
1v,2 p

(i)
1v0,2 = 0

p
(i)
1v1,1 = p

(i�1)
1v,2 +

↵i � �1

↵1 � �1

⇣
p
(i�1)
1v,1 � p

(i�1)
1v,2

⌘

p
(i)
1v0,1 =

↵1 � ↵i

↵1 � �1

⇣
p
(i�1)
1v,1 � p

(i�1)
1v,2

⌘
.

These probabilities are well defined, as 0 ↵i��1

↵1��1
 1 and p

(i�1)
1v,1 � p

(i�1)
1v,2 . By construction,

we have that p(i)1v1,2 + p
(i)
1v0,2 = p

(i�1)
1v,2 and p

(i)
1v1,1 + p

(i)
1v0,1 = p

(i�1)
1v,1 , and it is easy to see that

p
(i)
1v1,1 � p

(i)
1v1,2 and p

(i)
1v0,1 � p

(i)
1v0,2.

For each v 2 {0, 1}i�2, we let

p
(i)
0v0,1 = p

(i�1)
0v,1 p

(i)
0v1,1 = 0

p
(i)
0v0,2 = p

(i�1)
0v,1 +

↵1 � �i

↵1 � �1

⇣
p
(i�1)
0v,2 � p

(i�1)
0v,1

⌘

p
(i)
0v1,2 =

�i � �1

↵1 � �1

⇣
p
(i�1)
0v,2 � p

(i�1)
0v,1

⌘

Again, by construction we have that p(i)0v0,2 + p
(i)
0v1,2 = p

(i�1)
0v,2 and p

(i)
0v0,1 + p

(i)
0v1,1 = p

(i�1)
0v,1 , and it is

easy to see that p(i)0v0,2 � p
(i)
0v0,1 and p

(i)
0v1,2 � p

(i)
0v1,1.

17

The PMF p
(i) satisfies the constraints imposed by the class-attribute matrix A for the attribute i, in

fact
X

v2{0,1}i�1

p
(i)
v1,1 =

�1

2
+
↵i � �1

↵1 � �1
· 1
2
(↵1 � �1) =

↵i

2

X

v2{0,1}i�1

p
(i)
v1,2 =

�1

2
+
�i � �1

↵1 � �1
· 1
2
(↵1 � �1) =

�i

2

Second case. [�1 �i ^ ↵1 ↵i]. We construct p(i) as follows. For each v 2 {0, 1}i�2, let

p
(i)
1v1,1 = p

(i�1)
1v,1 p

(i)
1v0,1 = 0

p
(i)
1v1,2 = p

(i�1)
1v,2 p

(i)
1v0,2 = 0

and let

p
(i)
0v1,1 =

↵i � ↵1

1� ↵1
p
(i�1)
0v,1

p
(i)
0v0,1 =

1� ↵1

1� ↵1
p
(i�1)
0v,1

p
(i)
0v1,2 =

↵i � ↵1

1� ↵1
p
(i�1)
0v,1 +

(↵1 � �1)� (↵i � �i)

↵1 � �1

⇣
p
(i�1)
0v,2 � p

(i�1)
0v,1

⌘

p
(i)
0v0,2 =

1� ↵1

1� ↵1
p
(i�1)
0v,1 +

↵i � �i

↵1 � �1

⇣
p
(i�1)
0v,2 � p

(i�1)
0v,1

⌘

By construction, we can observe that for each v 2 {0, 1}i�1, it holds that p(i)1v,1 � p
(i)
1v,2 and that

p
(i)
0v,2 � p

(i)
0v,1. Moreover, for each v 2 {0, 1}i and j 2 [2], it holds that p(i)v1,j + p

(i)
v0,j = p

(i�1)
v,j .

The PMF p
(i) satisfies the constraints imposed by the class-attribute matrix A for the attribute i, in

fact
X

v2{0,1}i�1

p
(i)
v1,1 =

↵1

2
+
↵i � ↵1

1� ↵1
· 1
2
(1� ↵1) =

↵i

2

X

v2{0,1}i�1

p
(i)
v1,2 =

�1

2
+
↵i � ↵1

1� ↵1
· 1
2
(1� ↵1)+

+
(↵1 � �1)� (↵i � �i)

↵1 � �1
· 1
2
(↵1 � �1) =

�i

2

Third case. [�i �1 ^ ↵i ↵1]. We construct p(i) as follows. For each v 2 {0, 1}i�2, let

p
(i)
0v0,1 = p

(i�1)
0v,1 p

(i)
0v1,1 = 0

p
(i)
0v0,2 = p

(i�1)
0v,2 p

(i)
0v1,2 = 0

and let

p
(i)
1v1,2 =

�i

�1
p
(i�1)
1v,2

p
(i)
1v0,2 =

�1 � �i

�1
p
(i�1)
1v,2

p
(i)
1v1,1 =

�i

�1
p
(i�1)
1v,2 +

↵i � �i

↵1 � �1

⇣
p
(i�1)
1v,1 � p

(i�1)
1v,2

⌘

p
(i)
1v0,1 =

�1 � �i

�1
p
(i�1)
1v,2 +

(↵1 � �1)� (↵i � �i)

↵1 � �1

⇣
p
(i�1)
1v,1 � p

(i�1)
1v,2

⌘

Again, by construction, we can observe that for each v 2 {0, 1}i�1, it holds that p(i)1v,1 � p
(i)
1v,2 and

that p(i)0v,2 � p
(i)
0v,1. Moreover, for each v 2 {0, 1}i and j 2 [2], it holds that p(i)v1,j + p

(i)
v0,j = p

(i�1)
v,j .

18

The PMF p
(i) satisfies the constraints imposed by the class-attribute matrix A for the attribute i, in

fact
X

v2{0,1}i�1

p
(i)
v1,1 =

�i

�1

�1

2
+
↵i � �i

↵1 � �1
· 1
2
(↵1 � �1) =

↵i

2

X

v2{0,1}i�1

p
(i)
v1,2 =

�i

�1
· 1
2
�1 =

�i

2

We conclude the proof by observing that since ↵1 � �1 � ↵i � �i, the case [�i < �1 ^ ↵1 < ↵i] is
impossible.

Proof of Theorem 4.3.
By combining (6) and (7), we can rewrite Q as

Q = max
p2P(A)

min
g2G

"(g, p) .

Consider the maximin

Q
0 = max

p2P(A)
min

gW 2GR

"(gW , p) . (18)

We show that Q = Q
0. In fact, given p 2 P(A), it is clear that the expected error (10) of a randomized

attribute-class classifier gW 2 GR

"(gW , p) = 1�
X

v2{0,1}n

X

j2[k]

Wv,j · p(v, j)

is minimized when Wv,j0 = 1 if j0 = argmaxj2[k] p(v, j) for all v 2 {0, 1}n, and such a attribute-
class classifier is deterministic, i.e. it is equal with probability 1 to a properly chosen classifier in G.
This proves the second part of the Theorem.

Given ↵ 2 [0, 1] and p1, p2 2 P(A), we define p↵ = ↵p1+(1�↵)p2 as a convex combination of p1
and p2, where for each v 2 {0, 1}n and j 2 [k], we have that p↵(v, j) = ↵p1(v, j)+(1�↵)p2(v, j).
It is easy to verify that p↵ 2 P(A). Moreover, for two randomized attribute-class classifiers gW , gW 0 ,
and ↵ 2 [0, 1] we define g↵ = g↵W+(1�↵)W 0 as the convex combination of gW and gW 0 , and
observe that g↵ 2 GR.

The sets P(A) and W are closed and bounded, therefore compact, and we have shown they are
also convex. Moreover, the function ✏(·, ·) is bilinear with respect to p and W . Therefore, by von
Neumann’s Minimax Theorem (Neumann, 1928), the value of the minimax is equal to the value of
the maximin, i.e.

min
g2GR

max
p2P(A)

"(gW , p) = max
p2P(A)

min
g2GR

"(gW , p) = Q

B Adversarial Attribute-Class Classifier Computation

In this section of the Appendix, we show how to compute a randomized attribute-class classifier that
satisfies Theorem 4.3. First, we show that the randomized attribute-class classifier

gW ⇤ = argmin
gW 2GR

max
p2P(A)

"(gW , p) (19)

satisfies the condition of the Theorem. In fact, as noted in the proof of Theorem 4.3, we have that

min
g2GR

max
p2P(A)

"(gW , p) = max
p2P(A)

min
g2GR

"(gW , p) = max
p2P(A)

min
g2G

"(g, p) = Q

Now, we show how to compute W ⇤. The minimax (19) can be written as a bilinear problem. Let
wv,j and qv,j be variables that denote respectively Wv,j and p(v, j) for v 2 {0, 1}n and j 2 [k].

19

Inspecting (10), and using the fact that the minimax is equal to the maximin, we can compute (19) as

1 + max
q�0

min
w�0

X

v2{0,1}n

X

j2[k]

(�wv,j) · qv,j s.t. (20)

(a)
X

v2{0,1}n:
vi=1

qv,j = Aj,iPj 8j 2 [k], i 2 [n]

(b)
X

v2{0,1}n

qv,j = Pj 8j 2 [k]

(c)
X

j2[k]

wv,j = 1 8v 2 {0, 1}n

We use Pj to denote Pj = Px⇠D(y(x) = j) for j 2 [k], which is equal to 1/k when the classes are
balanced. We transform the maximin (20) in a minimization problem that can be easily solved using
a Linear Program.

For a given q, let wq be an assignment of the variables w that achieves the minimum. We can write
the dual of the maximization problem over the variables q with respect to the fixed wq as

1 + min
a2Rk

b2Rk⇥n

0

@
X

j2[k]

Pj · aj +
X

j2[k]

X

i2[n]

Pj ·Mj,i · bj,i

1

A s.t.

(a) aj +
X

i2[n]
vi=1

bj,i � �w
q
v,j 8v 2 {0, 1}n, j 2 [k]

Due to strong-duality, the optimal value of the dual problem is the same of the primal with respect to
the fixed assignment wq . By choosing wq as the minimum over all feasible w, we finally obtain the
following minimum problem whose optimal value is equal to (20).

1 + min
a2Rk

b2Rk⇥n

w�0

0

@
X

j2[k]

Pj · aj +
X

j2[k]

X

i2[n]

Pj ·Mj,i · bj,i

1

A s.t. (21)

(a) aj +
X

i2[n]
vi=1

bj,i � �wv,j 8v 2 {0, 1}n, j 2 [k]

(b)
X

j2[k]

wv,j = 1 8v 2 {0, 1}n

This minimization problem is easily solved as a Linear Programming with O(k · 2n) variables and
constraints. We choose W ⇤ as the optimal solution w⇤ of the minimum (21).

C Approximation of the Lower Bound

In this section of the Appendix, we show a computationally efficient method to compute a lower
bound to the value Q in a multiclass classification setting, i.e. k � 2. We build on the results
of Section 4.2, and we will approximate Q by using Theorem 4.2 between properly chosen pairs
of the k classes. Consider a weighted, undirected complete graph G. Each vertex of the graph
represents a class j 2 [k], and the edge {j, j0} between classes j, j

0 2 [k], j 6= j
0, has weight

w{j,j0} = 1
2

�
1�maxi2[n] |Aji �Aj0i|

�
computed as in Theorem 4.2. A matching M is a subset of

edges such that no two edges of M share an endpoint, i.e. for each e, e
0 2 M , e 6= e

0, we have that
e \ e

0 = ;. The weight of a matching M is defined as the sum
P

e2M we of the weights of the edges
of M . The following theorem relates the weight of a matching to the value Q.
Theorem C.1. Let M be a matching of G, and Q be computed as in (7). Then, Q � 2

k

P
e2M we .

20

Proof. For each edge {j, j0} = e 2 M , consider the matrix Ae obtained by selecting the two rows
of the classes j and j

0. Let pe be the PMF over {0, 1}n ⇥ {j, j0} that achieves the maximum of
Theorem 4.2. That is, pe is the adversarial distribution if we were to only distinguish between the
two balanced classes j and j

0 assuming that we need to also satisfy the constraints imposed by Ae.

Let C = [k] \ ([e2MM) be the set of classes that do not belong to any edge of the matching M . For
any c 2 C, we let pc be an arbitrary PMF over {0, 1}n ⇥ {c} that satisfies the constraints imposed
by the c row of the matrix A. We give a simple example of such a PMF p

c, assuming independence
between the attributes. For each v 2 {0, 1}n, we let

p
c(v, c) =

Y

i2[n]

A
vi
c,i

Y

i2[n]

(1�Ac,i)
1�vi ,

and it is easy to verify that this PMF satisfies the constraints imposed by the row c of matrix A.

Based on the previous PMFs, we define a PMF p̃ 2 P(A) over {0, 1}n ⇥ [k]. For each v 2 {0, 1}n
and j 2 [k], we let

p̃(v, j) =

⇢
1
kp

j(v, j) if j 2 C

2
kp

e(v, j) for e 2 M : j 2 e

Observe that this PMF is well defined, as each class is either in C or it belongs to a unique edge in the
matching M . Moreover, by construction of p̃, the classes are balanced and they satisfy the constraints
imposed by matrix A.

For each {j, j0} = e 2 M , by construction we have that 1 �
P

v max(pe(v, j), pe(v, j0)) =P
v min(pe(v, j), pe(v, j0)) = we (as pe achieves the maximum of Theorem 4.2). We have that:

Q � min
g2G

"(g, p̃) = 1�
X

v

max
j2[k]

p̃(v, j)

�
X

{j,j0}=e2M

X

v

min (p̃(v, j), p̃(v, j0))

=
2

k

X

{j,j0}=e2M

X

v

min (pe(v, j), pe(v, j0))

=
2

k

X

e2M

we

The first inequality is true because M is a matching, so no two edges of M share an endpoint, and
the second equality is due to the definition of p̃.

In order to maximize the lower bound provided by Theorem C.1, we want to find a matching of G
with maximum weight. This optimization problem can be solved in O(k3) time by using an optimized
version of the blossom algorithm (Edmonds, 1965; Lawler, 2001).

D Experimental details

In this section, we provide additional details for the experiments in Section 5.

D.1 Data

We choose the following four datasets with attributes that are widely used benchmarks in ZSL.

Animals with Attributes 2 (AwA2) consists of 37,322 images of 50 animal classes that are split into
40 seen and 10 unseen classes (Xian et al., 2018a). The dataset contains 85 attributes. We normalize
the provided continuous-valued class-attribute matrix, whose entries indicate the strength of the
class-attribute association, which we interpret as a probability. We use this matrix as class-attribute
matrix. We use the provided binary class-attribute matrix to infer image-level attribute representation
for each image to learn the attribute detectors (Appendix D.2).

21

aPascal-aYahoo (aPY) consists of 15,339 images of 32 classes of animals and means of transportation,
that are split into 20 seen and 12 unseen classes (Farhadi et al., 2009). Each image is annotated with
64 attributes.

Caltech-UCSD Birds-200-2011 (CUB) consists of 11,788 images of 200 fine-grained birds classes
that are split into 150 seen and 50 unseen classes (Wah et al., 2011). Each image is annotated with
312 attributes.

SUN attribute database (SUN) consists of 14,340 images of 717 scenes, e.g., ballroom and audi-
torium, that are split into 645 seen and 72 unseen classes (Patterson et al., 2014). Each image is
annotated with 102 attributes.

For each image, both the SUN and CUB datasets provide multiple crowdsourced attribute annotations.
We average such annotations, and we obtain a continuous attribute-representation of each images.
For our purposes, i.e., the training of the attribute detectors (Appendix D.2), we round the value of
each attribute.

For all these datasets, we use the split between seen and unseen classes suggested by Xian et al.
(2018a). Except for AwA2, we obtain the class-attribute matrices by averaging the attribute represen-
tation of the images of each class. This is the same strategy used by Romera-Paredes & Torr (2015) in
their experiments. For each dataset, we use a pre-trained ResNet-101 (He et al., 2016) as an encoder
to extract features from the images. The features are 2048-dimensional, and they are used as input
for the ZSL models.

Synthetic Data Generation. In Section 5.2, we generate adversarial synthetic data based on a input
class-attribute matrix A 2 [0, 1]k⇥n. To this end, we compute the solution of the Linear Program
presented in Section 4.1. The values of the variables qv,j that achieve the minimum value of the Linear
Program denote an adversarial distribution over the attributes and (balanced) classes that satisfy the
constraints imposed by the class-attribute matrix. We remind that qv,j denotes the probability that
an image has attribute representation v and it belongs to class j. We sample classification items
from this distribution as follows. We sample a class uniformly at random among the [k] classes, and
then we sample a feature vector x with probability k · qx,j with x 2 {0, 1}n (That is, the feature
representation is equal to the attribute representation). It is clear that data sampled in this way satisfy
the constraints imposed by the class-attribute matrix with attribute functions i(x) = xi for i 2 [n].

D.2 Learning Attribute Detectors

For DAP, we need to learn an attribute detector for each attribute. The attribute detectors are classifiers
that given an image output either 1 or 0, if the attribute appears in the image or not, respectively.
We learn the attribute detectors in a supervised fashion on the seen classes, by using the attribute
annotations of the images. In AwA2, the attributes are not explicitly annotated for each image, and
we use the discrete attribute description of the image’s class.

D.3 ZSL models and training details

In our experiments, we compare the lower bound on the error with multiple ZSL methods. Here, we
provide details about the methods how we train them.

DAP (Lampert et al., 2014). This method is the first attribute-based method to solve the ZSL problem
in the visual domain. It uses attribute detectors trained on the seen classes, and then uses the class-
attribute matrix to infer the a posteriori most-probable unseen class. DAP unrealistically assumes
attribute independence. We train attribute detectors as explained in the previous section. As suggested
by Lampert et al. (2014), we use a uniform prior on the unseen classes. The implementation of DAP
is based on the code released by Lampert et al. (2014)2 under the MIT License3.

ESZSL (Romera-Paredes & Torr, 2015), SAE (Kodirov et al., 2017), ALE (Akata et al., 2016), and
SJE (Akata et al., 2015) learn bilinear maps from image features to the the rows of the class-attribute
matrix. At training, they use the class-attribute matrix of the seen classes, while for predictions they
use the one of the unseen classes. These methods differ in the definition of the learning objective and
the optimization method. In particular, ESZSL and SAE have closed form solutions.

2https://github.com/zhanxyz/Animals_with_Attributes
3https://opensource.org/licenses/MIT

22

https://github.com/zhanxyz/Animals_with_Attributes
https://opensource.org/licenses/MIT

Method aPY AwA2 CUB SUN

DAP (Lampert et al., 2014) 30.32 40.44 27.99 19.65
ESZSL (Romera-Paredes & Torr, 2015) 38.56 54.82 53.95 55.69
SAE (Kodirov et al., 2017) 16.49 58.89 46.71 59.86
ALE Akata et al. (2016) 33.52 ± 0.35 52.78 ± 2.78 51.38 ± 0.77 61.69 ± 0.40
SJE (Akata et al., 2015) 31.93 ± 0.41 69.17 ± 1.89 52.23 ± 0.19 52.94 ± 0.70
DAZLE (Huynh & Elhamifar, 2020) 31.46 ± 1.52 67.57 ± 1.33 57.23 ± 0.70 56.15 ± 0.57

Table 1: We report the Top-1 balanced average unseen class-accuracy, and standard errors over 5
seeds, for popular attribute-based ZSL. All the metrics are obtained using the splits proposed in Xian
et al. (2018a). ESZSL, SAE and DAP do not have intervals because have a closed form solution. For
SAE we report results from the semantic to the feature space (Kodirov et al. (2017), Section 4.1).

ESZSL. The hyperparameters of the model are ↵ and �, which are the regularizer parameter for
feature space and the regularizer parameter for the attributes space, respectively. The parameters ↵
and � for each dataset are set as follows: aPY, ↵ = 3 and � = �1; AwA2, ↵ = 3 and � = 0; CUB,
↵ = 3 and � = �1; SUN, ↵ = 3 and � = 2.

SAE. The hyperparameter of the model is � which is a coefficient that controls the trade-off between
the decoder and encoder losses. The values of � are set as follows for each dataset: aPY, � = 4;
AwA2, � = 0.2; CUB, � = 0.2; SUN, � = 0.16.

ALE. The hyperparameters of the models are the normalization strategy applied to the class-attribute
matrix, and the SGD learning rate �. For each dataset, the normalization strategy and the learning
rates are: aPY, `2 and 0.04; AwA2, `2 and � = 0.01; CUB: `2 and � = 0.3; SUN, `2 and � = 0.1.

SJE. The hyperparameters of the model are the normalization strategy applied to the class-attribute
matrix, the SGD learning rate �, and the margin m for the optimization of the objective. For each
dataset we report these parameter, in order: aPY, no normalization, � = 0.01, and m = 1.5; AwA2,
`2, � = 1, and m = 2.5; CUB, mean-centering, � = 0.1, and m = 4; SUN, mean-centering, � = 1,
and m = 2.

The chosen hyperparameters maximize the balanced accuracy on the validation classes, and lead
to test errors on the unseen classes comparable with the benchmarks by Xian et al. (2018a). The
implementations of ESZSL, SAE, ALE, SJE are based on a public code repository4 released under
the MIT License. In Table 1, we report the balanced accuracy of each method when trained on the
whole set of attributes and seen classes. Interestingly, we note that the accuracy of the methods on
aPY is comparable to the accuracy that the methods achieve by only using 15 attributes (Figure 1).

The last ZSL method we consider is DAZLE (Huynh & Elhamifar, 2020) which (1) uses dense
attribute-based attention to find local discriminative regions, and (2) embeds each attribute-based
feature with the attribute semantic description. The implementation of DAZLE is based on the code
released by Huynh & Elhamifar (2020)5 under the MIT License.

DAZLE. The hyperparameters of the model the weight of the the self-calibration loss �, the learning
rate �, the weight decay w, and momentum m. For each dataset we report these parameter, in order:
aPY, � = 0.1, � = 0.0001, w = 0.0001, and m = 0; AwA2, � = 0.1, � = 0.0001, w = 0.0001,
and m = 0; CUB, � = 0.1, � = 0.0001, w = 0.0001, and m = 0.9; SUN,� = 0.1, � = 0.0001,
w = 0.0001, and m = 0.9. We used the same setting as in the released implementation of the model.

Resources. We run the experiments on an internal cluster. Most of the methods are executed on
CPUs, while for DAZLE we used a GPU NVIDIA GeForce RTX 3090.

4https://github.com/mvp18/Popular-ZSL-Algorithms
5https://github.com/hbdat/cvpr20_DAZLE

23

https://github.com/mvp18/Popular-ZSL-Algorithms
https://github.com/hbdat/cvpr20_DAZLE

Figure 3: Comparison of the lower bound with the empirical error. We plot the lower bound on
the error (Q), and the error of ZSL methods with attributes (DAP, ESZSL, SAE, ALE, and DAZLE).
The first column reports these values computed on the unseen classes of SUN dataset, varying the
number of available attributes. The second column reports the values for the adversarially generated
synthetic data. The bands indicate the standard errors on five runs with different seeds for randomized
methods.

E Additional Experimental Results

E.1 Additional Results for Section 5.2

In Figure 3, we report the results for the experiments of Section 5.2 for the SUN dataset. The
experiments are consistent with our findings. We observe that for the experiments on the SUN data,
we still observe that the empirical error of ZSL models roughly follows the trend of the lower bound.
This suggests that the lower bound is able to capture how the additional information provided by
an attribute leads to improvements of the ZSL models. Moreover, for the adversarially generated
synthetic data, we observe that no method is able to achieve errors lower than the lower bound,
consistently with our theory.

In this subsection, we also report the empirical results for a method that we call APA (Adversarial
Predicted Attributes) across all four datasets. APA is an adversarial algorithm that uses a map from
attributes to classes that satisfies Theorem 4.3, computed as in Appendix B. The method uses attribute
detectors trained on the seen classes (Appendix D.2), and predicts the target classes according to
the output of those detectors, as specified in Section 4.3. APA is similar to DAP, except in how
the attribute detectors are used to predict the target classes. In Figure 4, we report the result of the
experiments for the method APA. We point out that the performance of APA is competitive to the
other ZSL approaches, at least using a reduced number of attributes. We remark that this comparison
is out of the scope of this paper, but we believe these results open promising direction for further
development of adversarial attribute-based zero-shot learning models.

E.2 Additional Results for Section 5.3

In this subsection, we extend the experiments of Section 5.3 and we propose a way to analytically
quantify the similarity between the pairwise lower bound error matrix L and the misclassification
matrices. Suppose that a model makes m errors E = {(j1, j01), . . . , (jm, j

0
m)} on the data, where

for each i 2 [m], the pair (ji, j0i) represents an instance where the ZSL model outputs ji but the
true class is j0i 6= ji. We compute the ratio between the empirical expected weight of the errors E
according to the graph G and the expected weight of errors made uniformly at random between
the classes, i.e.

⇣
1
m

P
(j,j0)2E wj,j0

⌘
/

⇣
1

k(k�1)

P
j 6=j0 wj,j0

⌘
. We name this quantity skeweness

(Sk), and we observe that if the ratio is greater than 1, then the misclassification errors E of the
ZSL models are skewed towards pair of classes that have larger values in L, i.e., they are hard to
distinguish. In Table 2, we report the skewness scores computed for all the combination of ZSL
models and datasets. We observe that all these quantities are greater than 1. As noted before, this
shows that the errors are skewed towards those indicated by our theoretical analysis. We can observe
that the skewness is approximately 1 for SAE on the aPY dataset. This is not surprising, as the
model has very low performance (16.49% accuracy, see Table 1 in Appendix D) on this ZSL task.
We point out that it is very challenging to define a pairwise metric between the entries of L and the
misclassification matrix M to describe their similarity. A pairwise metric would fail to capture more
complex relations between classes. For instance, consider the scenario where three classes are very

24

Method aPY AwA2 CUB SUN

DAP 3.65 ± 0.04 3.44 ± 0.04 2.96 ± 0.01 3.09 ± 0.00
ESZSL 3.94 ± 0.07 3.11 ± 0.03 3.38 ± 0.02 3.45 ± 0.00
SAE 1.20 ± 0.01 3.33 ± 0.02 3.65 ± 0.02 3.55 ± 0.00
SJE 5.09 ± 0.04 3.37 ± 0.03 3.32 ± 0.02 3.44 ± 0.00
ALE 4.89 ± 0.04 3.56 ± 0.02 3.68 ± 0.01 3.59 ± 0.00
DAZLE 3.93 ± 0.05 3.07 ± 0.05 3.87 ± 0.01 3.51 ± 0.00

Table 2: We report for each model the average skewness and standard deviation over class-balanced
test sets. A value greater than 1 indicates that the model’s misclassification error is skewed toward
pairs of classes with large values in L.

Figure 4: Comparison of the lower bound on the error with the ZSL models error on the

validation classes. We plot the lower bound on the error (Q) and compare it to the error rates of
the ZSL adversarial algorithm (APA) and the other ZSL models with attribute (DAP, ESZSL, SAE,

ALE, and DAZLE). The bands indicate the standard error on five runs with different seeds.

hard to distinguish according to the values of their lower bound in L. A ZSL model could fail to
distinguish between them, and it could always output the same class given an image of any of those
three classes. This would imply that we will observe zero misclassifications between a pair of these
two classes in the matrix M , which is different from the same entry in L. Contrarily, the skewness
metric is not affected by this problem.

Additonal Details. As our lower bound is computed assuming balanced classes, we ensure this
assumption holds by sampling the test data uniformly among the unseen classes. In Table 2, we report
the skewness averaged on 10 different randomly selected subsets of test data, and the respective
standard deviation. Specifically, for each class we sample a number of images equal to the minimum
class-size among the unseen classes.

25

F Extension to Incomplete Class-Attribute Information

In this paper, we assume that we are provided a class-attribute matrix A 2 [0, 1]k⇥n such that for
each i 2 [n] and j 2 [k], the entry Aj,i provides the probability that we observe attribute i (i.e.,
 i(x) = 1) given that we sample an element of class j (i.e., y(x) = j). Formally, the entries of the
class-attribute matrix follow equation (1)

Aj,i = P
x⇠D

[i(x) = 1|y(x) = j] .

In some Zero-Shot Learning problems (Jayaraman & Grauman, 2014; Wang et al., 2017), we
are provided a incomplete class-attribute matrix. That is, for each class, we are provided reliable
information only for a subset of the n attributes. Formally, we are given a matrix A 2 ([0, 1][{⇤})k⇥n,
where the symbol ‘⇤0 denotes a lack of information. That is, if Aj,i = ⇤, then the probability of
observing attribute i given a sample of an element of class j is arbitrary. Conversely, if Aj,i 2 [0, 1],
then we are provided the same information considered in the original setting, and we know that the
relation between attribute i and class j follows equation (1).

We can easily extend the lower bound developed in Section 4 for incomplete class-attribute matrices.
In fact, in the original formulation in the paper, each entry of the class-attribute matrix defines a
constraint on the joint distribution p over classes and attributes. If we are not given a relation between
class j and attribute i, i.e. Aj,i = ⇤, then we simply do not specify that constraint. The lower
bound can still be computed by using a Linear Program as in Section 4.1. In the case of incomplete
class-attribute matrix, we specify the constraints (a) of the Linear Program only for pairs of attribute
i and class j such that Aj,i 2 [0, 1].

26

	Introduction
	Background and Related Work
	Preliminaries
	Lower Bounds for Zero-Shot Learning with Attributes
	Computing the Lower Bound
	Lower Bound for Binary Classification
	Lower Bound is Tight

	Empirical Applications
	Experimental Setup
	Comparing Lower Bound and Empirical Error
	Pairwise Misclassification Prediction

	Conclusions, Limitations, and Future Work
	Deferred Proofs.
	Adversarial Attribute-Class Classifier Computation
	Approximation of the Lower Bound
	Experimental details
	Data
	Learning Attribute Detectors
	ZSL models and training details

	Additional Experimental Results
	Additional Results for sec:exp:adversarial
	Additional Results for sec:exp:misclassification

	Extension to Incomplete Class-Attribute Information

