
In Appendix A we provide heuristic justification for the scaling of the optimal minimax error rate
in (7). In Appendix B we provide the proofs for Theorems 1 and 2. In Appendix C we provide the
proofs for Theorem 4 and Proposition 6. In Appendix D we provide the proofs for Theorem 7. In
Appendix E we include some useful results for the sake of completeness.

Additional notation For a matrix A ∈ Rd1×d2 , ∥A∥op is the operator norm (with respect to
Euclidean norms), and ∥A∥F is the Frobenius norm of A. Sd−1 := {θ ∈ Rd: ∥θ∥= 1} is the unit
sphere and Bd := {θ ∈ Rd: ∥θ∥≤ 1} is the unit ball in the d-dimensional Euclidean space. For
a pair of probability distributions P and Q on a common alphabet X with densities p and q w.r.t.
to a base measure ν, we denote the total variation distance by dTV(P,Q) := 1

2

∫
|p − q|dν, the

Kullback-Leibler (KL) divergence by DKL(P || Q) :=
∫
p log p

qdν, and the chi-square divergence

by χ2(P || Q) :=
∫ (p−q)2

q dν =
∫

p2

q dν − 1.

A Heuristic justification of minimax rate (7)

The main intuition behind the HMM considered in this paper comes from the correlation decay
phenomenon in graphical model. Indeed, one can view the Markov chain X1 → X2 → · · · → Xn

sampled from the model (2) as a simple graphical model whose conditional independence structure is
expressed by a line graph on n nodes. Each node Xi is conditionally independent of other samples
given its neighbors Xi−1 and Xi+1. Furthermore, a pair of nodes Xi and Xj of large graph distance
(i.e., |i − j|) is approximately independent. Informally, we expect that there is one sign flip (i.e.,
Si = −Si+1) per ≈ 1

δ samples. Therefore, signs Si and Sj are likely to have the same value if
|i − j|≲ 1

δ and are approximately independent if |i − j|≳ 1
δ . This is the leading guideline for the

design of our estimator (14) for upper bound and the reduction to the genie-aided model (147) for
lower bound.

Recall that for the Gaussian location model

X = θ∗ + Z (28)

with Z ∼ N(0, Id), the minimax rate is given by

MGLM(n, d, t) ≍ t ∧
√
d

n
. (29)

Note that this is a compact way of writing the rate (5). Given n i.i.d. samples Xn
1 from model (28),

the estimator

θ̂ =
1

n

n∑
i=1

Xi (30)

achieves the rate (29). For the Gaussian mixture model X = Sθ∗ + Z with S ∼ Unif{−1, 1} and
Z ∼ N(0, Id), the minimax rate (6) [Wu and Zhou, 2019, Appendix B] can be compactly written as

MGMM(n, d, t) ≍

[
1

t

(√
d

n
+
d

n

)
+

√
d

n

]
∧ t. (31)

The above rate is attained by the estimator

θ̂ =

√
(λmax(Σ̂)− 1)+ · vmax(Σ̂) (32)

where Σ̂ = 1
n

∑n
i=1XiX

⊤
i . More generally, we can also consider the GMM

X̃ = Sθ∗ + Z̃ (33)

with S ∼ Unif{−1, 1} and Z̃ ∼ N(0, σ2 · Id), for some σ > 0, which is equivalent in distribution to
X̃ = σ(Sθ∗/σ + Z) where Z ∼ N(0, Id). Generalizing (31), it is straightforward to check that the
optimal minimax rate for model (33) is given by

M̃GMM(n, d, t, σ) ≍ σ

[(
1

t/σ

(√
d

n
+
d

n

)
+

√
d

n

)
∧ t

σ

]
(34)
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=

[
σ2

t

(√
d

n
+
d

n

)
+ σ

√
d

n

]
∧ t. (35)

Now, for the HMM at hand, the rationale is that the original model (2) is equivalent to X̃ = S ·X ,
where S ∼ Unif{−1, 1} is the coherent sign of a block of 1

δ raw samples from model (2), X =
1

1/δ

∑1/δ
i=1Xi represents the block-sample obtained by applying the estimator (30) to a block of 1

δ raw

samples, hence, X d
= θ∗ +N(0, δ · Id). Furthermore, the signs across different blocks are essentially

independent. Therefore

X̃
d
= Sθ∗ + Z (36)

where Z ∼ N(0, δ · Id), and we have n
1/δ = nδ i.i.d. block-samples from model (36). According to

(35), the optimal minimax rate of the HMM (2) should be

MHMM(n, d, δ, t) ≍ M̃GMM(nδ, d, t,
√
δ) (37)

≍

[
δ

t

(√
d

nδ
+

d

nδ

)
+
√
δ

√
d

nδ

]
∧ t (38)

=

[
1

t

(√
dδ

n
+
d

n

)
+

√
d

n

]
∧ t. (39)

Evaluating (39) immediately yields (7).

The optimal minimax error rates for GLM (cf. (5)), GMM (cf. (6), originally proved in [Wu and
Zhou, 2019, Appendix B]) and HMM (cf. (7), implied by our results Theorems 1 and 2) are plotted
in Figure 1.

t

MGLM(n,d,t)

d n

d n

t

MGMM(n,d,t)

(d/n)1/4

(d/n)1/4
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MHMM(n,d,δ,t)
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HMM (d≤δn)

t

Minimax rate

Figure 1: Plots of minimax rates of the Gaussian Location Model, the Gaussian Mixture Model
and the Hidden Markov Model. The top left, top right and bottom left figures show the scaling of
the minimax rates of GLM (cf. (5)), GMM with d ≤ n (cf. (6)) and HMM with d ≤ δn (cf. (7)),
respectively. All the above error rates are plotted in the bottom right figure in which one can clearly
see how the rate varies as δ varies.
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B Proofs for Section 2: Mean estimation for known δ

B.1 Proof of Theorem 1: Analysis of the estimator

Our proposed procedure in Theorem 1 for θ∗ estimation with a known flip probability δ is depicted in
Figure 2.

Figure 2: A visual illustration of the construction of the estimator θ̂cov(X
n
1 ; k) in (14) given n samples

Xn
1 from the model (2) with a known flip probability δ. The block size k is chosen to be 1

8δ .

Remark 8. The condition δ ≥ 1
n in Theorem 1 is inconsequential. Indeed, if δ ≤ 1

n , then also d ≥ δn
and we are at the high dimension regime. In that case, the estimator can artificially increase the flip
probability (by sign randomization) to 1

n , which results the local minimax rate of the GLM, that is,
M(n, d, δ, t) ≍ MGLM(n, d, t), which is optimal. We therefore assume δ ≤ 1

n throughout the proof.

To begin with the analysis of the estimator in Figure 2, the following lemma is a simple, yet key
tool for the proof. It establishes the variance of the random gain S. The proof relies on a sort of
self-bounding property (cf. [Boucheron et al., 2013, Chapter 3.3]), which stems from the fact that
|S|≤ 1.

Lemma 9. It holds that 0 ≤ S
2 ≤ 1 (with probability 1) and that

V(S2
) ≤ E[1− S

2
] ≤ 4δk. (40)

Proof. Trivially 0 ≤ S
2 ≤ 1 and so the variance is bounded as

V(S2
) = V(1− S

2
) ≤ E[(1− S

2
)2] ≤ E[1− S

2
]. (41)

The expected value is then upper bounded as

E[1− S
2
] = E

1−
1

k

k∑
j=1

Sj

2
 (42)

= E

1−
1

k

k∑
j=1

Sj

2
∣∣∣∣∣∣∣S0 = 1

 (43)

= E

1−

1

k

k∑
j=1

Sj

1 +

1

k

k∑
j=1

Sj

∣∣∣∣∣∣S0 = 1

 (44)
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≤ 2 · E

1−
1

k

k∑
j=1

Sj

∣∣∣∣∣∣S0 = 1

 (45)

= 2− 2

k

k∑
j=1

E [Sj |S0 = 1] (46)

(a)
= 2− 2

k

k∑
j=1

ρj (47)

= 2− 2

k

k∑
j=1

(1− 2δ)j (48)

(b)

≤ 2− 2

k

k∑
j=1

(1− 2jδ) (49)

=
4δ

k

k∑
j=1

j (50)

=
2δ(k2 + k)

k
(51)

≤ 4δk, (52)

where (a) follows from

E[Sj | S0 = 1]

= P[Sj−1 = 1 | S0 = 1]E[Sj | S0 = 1, Sj−1 = 1]

+ P[Sj−1 = −1 | S0 = 1]E[Sj | S0 = 1, Sj−1 = −1] (53)
= P[Sj−1 = 1 | S0 = 1]E[Sj | Sj−1 = 1] + P[Sj−1 = −1 | S0 = 1]E[Sj | Sj−1 = −1] (54)

= P[Sj−1 = 1 | S0 = 1]

(
1 + ρ

2
− 1− ρ

2

)
+ P[Sj−1 = −1 | S0 = 1]

(
−1 + ρ

2
+

1− ρ

2

)
(55)

= P[Sj−1 = 1 | S0 = 1] · ρ− P[Sj−1 = −1 | S0 = 1] · ρ (56)
= ρ · E[Sj−1 | S0 = 1] (57)

= · · · = ρj , (58)

(b) follows from Bernoulli’s inequality (1− x)r ≥ 1− rx for x ∈ [0, 1] and r ≥ 1.

The next lemma summarizes concentration results and bounds on the expected value of various
empirical quantities needed for the rest of the analysis. For a sequence of samples (Sn

1 , Z
n
1 ), let us

denote the following events:

E
′

n,δ,k :=

{
Sn
1 :

∣∣∣∣∣1ℓ
ℓ∑

i=1

S
2

i − ξk

∣∣∣∣∣ ≤ 5

√
δk2 log(n)

n

}
, (59)

E
′′

n,d,k :=

{
(Sn

1 , Z
n
1 ):

∥∥∥∥∥1ℓ
ℓ∑

i=1

SiZi

∥∥∥∥∥ ≤ 7

√
d

n

}
, (60)

E
′′′

n,d,k :=

Zn
1 :

∥∥∥∥∥1ℓ
ℓ∑

i=1

ZiZ
⊤
i − 1

k
· Id

∥∥∥∥∥
op

≤ 4

√
d

kn
+

4d

n

 , (61)

and let
En,d,δ,k := E

′

n,δ,k ∩ E
′′

n,d,k ∩ E
′′′

n,d,k. (62)
Note that these events depend on the choice of the block length k.
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Lemma 10. Assume that δ ≥ 1
n and d ≤ n. It holds that P[En,d,δ,k] ≥ 1− 5

n and

E

[∣∣∣∣∣1ℓ
ℓ∑

i=1

S
2

i − ξk

∣∣∣∣∣
]
≤ 2

√
δk2

n
, (63)

E

[∥∥∥∥∥1ℓ
ℓ∑

i=1

SiZi

∥∥∥∥∥
]
≤
√
d

n
, (64)

and

E

∥∥∥∥∥1ℓ
ℓ∑

i=1

ZiZ
⊤
i − 1

k
· Id

∥∥∥∥∥
op

 ≤ 13

√
d

nk
+ 10

d

n
. (65)

Proof. We analyze the expected value and concentration of each of the three terms.

First, the random variable S
2

i − ξk has zero mean, it is bounded in [−1, 1], and its variance is bounded
by 4δk according to Lemma 9. Since {S2

i − ξk}ℓi=1 are i.i.d., Bernstein’s inequality for bounded
distributions implies that (e.g., (323) from Wainwright [2019, Proposition 2.14], by setting in the
notation therein Xi = S

2

i − ξk which is a zero-mean random variable bounded in [−1, 1])

P

[∣∣∣∣∣1ℓ
ℓ∑

i=1

S
2

i − ξk

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− ℓ2t2

4ℓδk + ℓt/3

)
. (66)

Requiring that the r.h.s. is at most 2
n , and using n = ℓk, this implies that∣∣∣∣∣1ℓ

ℓ∑
i=1

S
2

i − ξk

∣∣∣∣∣ ≤
√

8δk2 log(n)

n
+

3
2k log(n)

n
(67)

with probability 1− 2
n . Under the assumption δ ≥ 1

n , we may further upper bound√
8δk2 log(n)

n
+

3
2k log(n)

n
≤ log(n) ·

[√
8δk2

n
+

3
2k

n

]
(68)

≤ log(n) ·

[√
8δk2

n
+

3

2

√
δk2

n

]
(69)

≤ 5 log(n) ·
√
δk2

n
, (70)

and this implies P[E ′

n,δ,k] ≥ 1− 2
n . In addition, since S

2

i − ξk are zero mean i.i.d., Lemma 9 implies
that

E

[∣∣∣∣∣1ℓ
ℓ∑

i=1

S
2

i − ξk

∣∣∣∣∣
]
≤

√√√√V

[
1

ℓ

ℓ∑
i=1

S
2

i − ξk

]
≤
√

4δk

ℓ
= 2

√
δk2

n
(71)

which proves (63).

Second, conditioned on any fixed {Si}ℓi=1, it holds that SiZi ∼ N(0,
S

2
i

k Id). Hence, 1
ℓ

∑ℓ
i=1 SiZi ∼

N(0, σ2 · Id) with

σ2 :=
1

kℓ2

ℓ∑
i=1

S
2

i ≤ 1

kℓ
=

1

n
. (72)

So, by standard concentration of norm of Gaussian (or, more generally subGaussian) random vectors
(325) from [Rigollet and Hütter, 2019, Theorem 1.19] (or a degenerate case of [Wainwright, 2019,
Example 6.2]), it holds with probability 1− ϵ that∥∥∥∥∥1ℓ

ℓ∑
i=1

SiZi

∥∥∥∥∥ ≤ 4σ
√
d+ 2σ

√
2 log

(
1

ϵ

)
≤ 4

√
d

n
+

√
8

n
log

(
1

ϵ

)
. (73)
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Since the r.h.s. does not depend on {Si}ℓi=1, the same bound holds unconditionally. Setting ϵ = 1
n

and further upper bounding

4

√
d

n
+

√
8

n
log(n) ≤

√
32d+ 16 log(n)

n
≤ 7

√
d

n
, (74)

using
√
a +

√
b ≤

√
2(a+ b) and d ≥ 2 log(n), results P[E ′′

n,d,k] ≥ 1 − 1
n . In addition, since

{SiZi}ℓi=1 are i.i.d., it holds that

E

[∥∥∥∥∥1ℓ
ℓ∑

i=1

SiZi

∥∥∥∥∥
]
≤

√√√√√E

∥∥∥∥∥1ℓ
ℓ∑

i=1

SiZi

∥∥∥∥∥
2
 =

√
dσ2 ≤

√
d

n
(75)

which proves (64).

Third, by Gaussian covariance estimation from [Wainwright, 2019, Example 6.2], it holds for any
η > 0 that

V := k

∥∥∥∥∥1ℓ
ℓ∑

i=1

ZiZ
⊤
i − 1

k
Id

∥∥∥∥∥
op

≤

2√d

ℓ
+ 2η +

(√
d

ℓ
+ η

)2
 (76)

with probability larger than 1− 2e−ℓη2/2.

We begin with a high probability event. Setting ϵ = 2e−ℓη2/2, it holds with probability larger than
1− ϵ that∥∥∥∥∥1ℓ

ℓ∑
i=1

ZiZ
⊤
i − 1

k
· Id

∥∥∥∥∥
op

≤ 2

√
d

k2ℓ
+

√
8 log

(
2
ϵ

)
k2ℓ

+

√ d

kℓ
+

√
2 log

(
2
ϵ

)
kℓ

2

(77)

= 2

√
d

kn
+

√
8 log

(
2
ϵ

)
kn

+

√ d

n
+

√
2 log

(
2
ϵ

)
n

2

(78)

(a)

≤ 2

√
d

kn
+

√
8 log

(
2
ϵ

)
kn

+
2d+ 4 log

(
2
ϵ

)
n

, (79)

where (a) follows from (a+ b)2 ≤ 2a2 + 2b2. Setting ϵ = 2
n and further upper bounding

2

√
d

kn
+

√
8 log(n)

kn
+

2d+ 4 log(n)

n
≤
√

8d+ 16 log(n)

kn
+

2d+ 4 log(n)

n
(80)

≤ 4

√
d

kn
+

4d

n
, (81)

using
√
a +

√
b ≤

√
2(a+ b) and d ≥ 2 log(n), results P[E ′′′

n,d,k] ≥ 1 − 2
n . For the bound on the

expectation, we further upper bound

V ≤ 2

√
d

ℓ
+ 2η +

2d

ℓ
+ 2η2. (82)

Let α = 2
√

d
ℓ + 2d

ℓ . Then, U := V − α satisfies that P
[
U ≥ 2η + 2η2

]
≤ 2e−ℓη2/2. Then,

E [U ] = E [U · 1{U < 0}] + E [U · 1{U ≥ 0}] (83)
≤ E [U · 1{U ≥ 0}] (84)

=

∫ ∞

0

P [U · 1{U ≥ 0} > t] dt (85)

=

∫ ∞

0

P [U > t] dt (86)
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(a)
=

∫ ∞

0

(2 + 4η)P
[
U > 2η + 2η2

]
dη (87)

≤
∫ ∞

0

(2 + 4η) 2e−ℓη2/2dη (88)

= 4

∫ ∞

0

e−ℓη2/2dη + 8

∫ ∞

0

ηe−ℓη2/2dη (89)

(b)
= 4

√
2π

ℓ
+

8

ℓ
, (90)

where (a) follows from the change of variables t = 2η + 2η2, and (b) follows from Gaussian
integration (the first term). Hence,

E
[
V

k

]
≤ 1

k
E[U + α] ≤ 13

√
d

nk
+ 10

d

n
(91)

which proves (65). The claim P[En,d,δ,k] ≥ 1− 5
n then follows from the union bound over the three

events considered above.

The next lemma utilizes Lemma 10 to establish concentration on the maximal eigenvalue and the
associated eigenvector.
Lemma 11. Let

ψ(n, d, δ, k) := 2

√
δk2

n
· ∥θ∗∥2+2

√
d

n
· ∥θ∗∥+13

√
d

nk
+ 10

d

n
. (92)

Then, it holds that

E
[∣∣∣∣λmax

(
Σ̂n,k(X

n
1 )
)
−
(
ξk∥θ∗∥2+

1

k

)∣∣∣∣] ≤ ψ(n, d, δ, k) (93)

and

E
[
loss

(
vmax

(
Σ̂n,k(X

n
1 )
)
,
θ∗
∥θ∗∥

)]
≤ 8 · ψ(n, d, δ, k)

∥θ∗∥2
. (94)

If En,d,δ,k holds then similar bounds hold (with probability 1) with ψ(n, d, δ, k) multiplied by 7 log(n).

Proof. Note that λmax(Σn,k(θ∗)) = ξk · ∥θ∗∥2+ 1
k . Then,∣∣∣∣λmax

(
Σ̂n,k(X

n
1 )
)
−
(
ξk∥θ∗∥2+

1

k

)∣∣∣∣
=
∣∣∣λmax

(
Σ̂n,k(X

n
1 )
)
− λmax (Σn,k(θ∗))

∣∣∣ (95)

(a)

≤
∥∥∥Σ̂n,k(X

n
1 )− Σn,k(θ∗)

∥∥∥
op

(96)

=

∥∥∥∥Σ̂n,k(X
n
1 )− ξkθ∗θ

⊤
∗ − 1

k
Id

∥∥∥∥
op

(97)

≤

∣∣∣∣∣1ℓ
ℓ∑

i=1

S
2

i − ξk

∣∣∣∣∣ · ∥θ∗∥2+
∥∥∥∥∥2ℓ

ℓ∑
i=1

SiZi

∥∥∥∥∥ · ∥θ∗∥+
∥∥∥∥∥1ℓ

ℓ∑
i=1

ZiZ
⊤
i − 1

k
· Id

∥∥∥∥∥
op

, (98)

where (a) follows from Weyl’s inequality. Taking expectation and using Lemma 10 proves the
claimed bound.

Next, note that vmax(Σn,k(θ∗)) =
θ∗

∥θ∗∥ , its eigenvalue is ξk∥θ∗∥2+ 1
k , and that all the (d− 1) other

eigenvalues of Σn,k(θ∗) are 1
k . Thus, the eigen-gap of the maximal eigenvalue is ξk∥θ∗∥2. Then, by

Davis-Kahan’s perturbation bound (328) from [Vershynin, 2018, Theorem 4.5.5]

loss

(
vmax

(
Σ̂n,k(X

n
1 )
)
,
θ∗
∥θ∗∥

)
= loss

(
vmax

(
Σ̂n,k(X

n
1 )
)
, vmax (Σn,k(θ∗))

)
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≤ 4

∥∥∥Σ̂n,k(X
n
1 )− Σn,k(θ∗)

∥∥∥
op

ξk∥θ∗∥2

(a)

≤ 8

∥∥∥Σ̂n,k(X
n
1 )− Σn,k(θ∗)

∥∥∥
op

∥θ∗∥2
,

where (a) follows since ξk = E[S2
] ≥ 1− 4kδ = 1

2 according to Lemma 9, and the choice k = 1
8δ .

The operator norm is upper bounded as for the maximal eigenvalue. The proof then follows by taking
expectation, and utilizing Lemma 10.

Finally, assuming the event En,d,δ,k holds, Lemma 10 implies that the same bound holds with
7 log(n) · ψ(n, d, δ, k) instead of ψ(n, d, δ, k).

The next lemma upper bounds θ̂ in expectation and in high probability whenever ∥θ∗∥ is below the

minimax rate β(n, d, δ) = Θ(
√

d
n ∨ ( δdn )1/4), and show that both are (roughly) at most on the scale

of β(n, d, δ).
Lemma 12. If ∥θ∗∥≤ β(n, d, δ) and k = 1

8δ then

E
[∥∥∥θ̂cov(X

n
1 ; k)

∥∥∥] ≤ 11 · β(n, d, δ), (99)

and if the event En,d,δ,k holds then∥∥∥θ̂cov(X
n
1 ; k)

∥∥∥ ≤ 77 log(n) · β(n, d, δ). (100)

Proof. It holds that

∥θ̂cov(X
n
1 ; k)∥2 =

λmax

(
Σ̂n,k(X

n
1 )
)
− 1

k

ξk
∨ 0 (101)

(a)

≤ 2

[
λmax

(
Σ̂n,k(X

n
1 )
)
− 1

k

]
∨ 0 (102)

≤ 2

[
λmax

(
Σ̂n,k(X

n
1 )
)
− ξk∥θ∗∥2−

1

k

]
∨ 0 + 2ξk∥θ∗∥2 (103)

(b)

≤ 2

[
λmax

(
Σ̂n,k(X

n
1 )
)
− ξk∥θ∗∥2−

1

k

]
∨ 0 + 2∥θ∗∥2, (104)

where (a) follows since ξk ≥ 1
2 and (b) follows since ξk ≤ 1. Taking expectation of both sides, and

utilizing Lemma 11 results

E
[
∥θ̂cov(X

n
1 ; k)∥2

]
≤ 2 · ψ(n, d, δ, k) + 2∥θ∗∥2 (105)

≤ 4

√
δk2

n
· ∥θ∗∥2+4

√
d

n
· ∥θ∗∥+26

√
d

nk
+ 20

d

n
+ 2∥θ∗∥2 (106)

(a)
= 4

√
1

64δn
· ∥θ∗∥2+4

√
d

n
· ∥θ∗∥+26

√
8δd

n
+ 20

d

n
+ 2∥θ∗∥2 (107)

(b)

≤ 4

√
1

64δn
·

(
2d

n
+ 2

√
δd

n

)
+ 4

√
d

n
·

(√
d

n
+

(
δd

n

)1/4
)

+ 26

√
8δd

n
+ 20

d

n
+ 2

(
2d

n
+ 2

√
δd

n

)
(108)

≤ 4

√
1

64δn
·

(
2d

n
+ 2

√
δd

n

)
+ 4

√
d

n
·
(
δd

n

)1/4

+ 78

√
δd

n
+ 28

d

n
(109)
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=
d√
δn3/2

+

√
d

n2
+ 4

√
d

n
·
(
δd

n

)1/4

+ 78

√
δd

n
+ 28

d

n
(110)

(c)

≤ 4

√
d

n
·
(
δd

n

)1/4

+ 78

√
δd

n
+ 30

d

n
(111)

(d)

≤ 80

√
δd

n
+ 32

d

n
, (112)

where (a) follows by setting k = 1
8δ , and (b) follows from the assumption ∥θ∗∥≤ β(n, d, δ) ≤√

d
n +

(
δd
n

)1/4
(and (a+ b)2 ≤ 2a2 + 2b2), (c) follows from δ ≥ 1

n , so that d√
δn3/2

≤ d
n , and (d)

follows from ab ≤ 1
2a

2 + 1
2b

2 applied to the first term.

The proof is then completed by Jensen’s inequality

E
[
∥θ̂cov(X

n
1 ; k)∥

]
≤
√
E
[
∥θ̂cov(Xn

1 ; k)∥2
]

(113)

≤

√
80

√
δd

n
+ 32

d

n
(114)

≤

√√√√112 ·

(√
δd

n
∨ d

n

)
(115)

≤ 11 · β(n, d, δ). (116)

If λmax(Σ̂n,k(X
n
1 )) − 1

k ≤ 0 then θ̂cov(X
n
1 ; k) = 0 and the claim is trivial. Otherwise, from the

same reasoning as above, assuming that the event En,d,δ,k holds, it also holds from Lemma 11 that
∥θ̂cov(X

n
1 ; k)∥≤ 77 log(n) · β(n, d, δ).

We may now prove Theorem 1.

Proof of Theorem 1. If ∥θ∗∥≤ β(n, d, δ) then Lemma 12 implies that

E
[∥∥∥θ̂cov(X

n
1 ; k)

∥∥∥] ≤ 11 · β(n, d, δ). (117)

Otherwise, assume that ∥θ∗∥≥ β(n, d, δ). For any estimator θ̃ we may write θ̃ = ∥θ̃∥·v where
v ∈ Sd−1, it holds that

loss(θ̃, θ∗) =
∥∥∥∥θ̃∥·v − θ∗

∥∥∥ (118)

=
∥∥∥∥θ̃∥·v − ∥θ∗∥·v + ∥θ∗∥·v − θ∗

∥∥∥ (119)

≤
∣∣∣∥θ̃∥−∥θ∗∥

∣∣∣+ ∥θ∗∥·loss
(
v,

θ∗
∥θ∗∥

)
, (120)

where the last inequality follows from the triangle inequality. Specifying this result to θ̃ = θ̂ ≡
θ̂cov(X

n
1 ; k), results

loss(θ̂, θ∗) ≤
∣∣∣∥θ̂∥−∥θ∗∥

∣∣∣+ ∥θ∗∥·loss
(
vmax

(
Σ̂n,k(X

n
1 )
)
,
θ∗
∥θ∗∥

)
. (121)

Lemma 11 implies that the first term in (121) is bounded as

∣∣∣∥θ̂∥−∥θ∗∥
∣∣∣ =

∣∣∣∥θ̂∥2−∥θ∗∥2
∣∣∣

∥θ̂∥+∥θ∗∥
(122)

≤

∣∣∣∥θ̂∥2−∥θ∗∥2
∣∣∣

∥θ∗∥
(123)
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=

∣∣∣∣∣∣∣
(
λmax(Σ̂n,k(X

n
1 ))− 1

k

)
+
− ξk∥θ∗∥2

ξk∥θ∗∥

∣∣∣∣∣∣∣ (124)

≤

∣∣∣λmax(Σ̂n,k(X
n
1 ))− 1

k − ξk∥θ∗∥2
∣∣∣

ξk∥θ∗∥
(125)

≤
2
∣∣∣λmax(Σ̂n,k(X

n
1 ))− 1

k − ξk∥θ∗∥2
∣∣∣

∥θ∗∥
, (126)

where the last inequality follows since ξk ≥ 1−4kδ (from Lemma 9), and k ≤ 1
8δ . Taking expectation

of both sides, and utilizing Lemma 11 results

E
[∣∣∣∥θ̂∥−∥θ∗∥

∣∣∣] ≤ 2 · ψ(n, d, δ, k)
∥θ∗∥

. (127)

Lemma 11 further implies that the second term in (121) is bounded as

E
[
∥θ∗∥·loss

(
vmax

(
Σ̂n,k(X

n
1 )
)
,
θ∗

∥θ∗∥

)]
≤ 8 · ψ(n, d, δ, k)

∥θ∗∥
. (128)

Hence, (121)

loss(θ̂, θ∗) ≤
10 · ψ(n, d, δ, k)

∥θ∗∥
(129)

≤ 20

√
δk2

n
· ∥θ∗∥+20

√
d

n
+

130

∥θ∗∥

√
d

nk
+ 100

1

∥θ∗∥
d

n
(130)

(a)
= 20

√
1

64δn
· ∥θ∗∥+20

√
d

n
+

130

∥θ∗∥

√
8δd

n
+

100

∥θ∗∥
d

n
(131)

(b)

≤ 20

√
d

n
+

130

∥θ∗∥

√
8δd

n
+

110

∥θ∗∥
d

n
, (132)

where (a) follows from setting k = 1
8δ , and (b) follows since for ∥θ∗∥≥ β(n, d, δ),

20

√
1

64δn
· ∥θ∗∥ = 20

∥θ∗∥2

∥θ∗∥

√
1

64δn
(133)

≤ 20 ·

(√
d
n +

(
δd
n

)1/4)2

∥θ∗∥
·
√

1

64δn
(134)

≤ 5 ·
d
n +

√
δd
n

∥θ∗∥
·
√

1

δn
(135)

= 5 · 1

∥θ∗∥

(
d

n3/2
√
δ
+

√
d

n

)
(136)

≤ 5

∥θ∗∥
d

n3/2
√
δ
+

5

∥θ∗∥
d

n
(137)

≤ 10

∥θ∗∥
d

n
, (138)

where the last inequality follows since δ ≥ 1
n .

B.2 Proof of Theorem 2: Impossibility lower bound

The proof’s main ideas The estimation error for the Markov model cannot be better than a genie-
aided model for which the sign is known during a block whose size is larger than the mixing time
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Θ( 1δ ) of the original Markov chain. The estimator can then align the signs of the samples in each
block, and thus reduce the noise variance by a factor of δ. This effectively reduces the problem into
a Markov model whose flip probability is asymptotically close to 1/2, that is, the resulting model
is close to a GMM. This aforementioned closeness is quantified by a uniform bound on the ratio
between the probability distributions. Based on the closeness of the models, the known lower bound
for the GMM model [Wu and Zhou, 2019, Appendxi B] implies a bound on the estimation error in
the Markov model.

The proof follows from an application of Fano’s method [Wainwright, 2019, Section 15.3] [Yang and
Barron, 1999], where, as usual, the main technical challenge follows from the bounding of the mutual
information term. We first begin with a brief description of the lower bound on the estimation error,
and then explain how it is solved in the Gaussian mixture case in [Wu and Zhou, 2019, Appendix B].
We then describe our analysis method for the Markov case.

Construction of a packing set The version of Fano’s method that we use is based on constructing
a packing set ΘM := {θm}m∈[M ] ⊂ Rd and an additional center vector θ0 ∈ Rd. Here, the set
ΘM packs points in a spherical cap of a fixed angle with a center at θ0. To construct this set, we
let ΦM := {ϕm}m∈[M ] ⊂ Bd−2 be a 1

16 -packing set of Bd−2 of size larger than M ≥ 16d−2 in the
Euclidean distance, whose existence is assured by a standard argument (e.g., (329) from [Wainwright,
2019, Lemma 5.7 and Example 5.8]). We then append to each ϕm another coordinate to obtain
ϕm := (ϕm,

√
1− ∥ϕm∥) ∈ Sd−2. Then, ΦM := {ϕm}m∈[M ] ⊂ Sd−2 is a 1

16 -packing set of Sd−2

of sizeM . Now, the packing set ΦM packs points in the Euclidean distance, however, the loss function
loss(·, ·) in (3) is sign-insensitive, and so the packing set requires further dilution. Specifically, there
must exist an orthant in Rd−1 which contains at least a 2−(d−1) fraction of the points in ΦM . So,
there must also exist a rotation matrix O ∈ R(d−1)×(d−1) of ΦM so that Φ̃M := OΦM ∩ Rd−1

+ =

{Oϕm}m∈[M ] ∩ Rd−1
+ has at least |ΦM |

2d−1 ≥ 1
16 · 8d−1 points (with Rd−1

+ being the positive orthant).
Furthermore, for any distinct ϕ̃m, ϕ̃m′ ∈ Φ̃M it holds that loss(ϕ̃m, ϕ̃m′) = ∥ϕ̃m − ϕ̃m′∥. We now
choose ϵ ∈ (0, 1), set θ̃0 = [1, 0, . . . , 0] ∈ Rd to be the center vector (this choice is arbitrary and
made for convenience), and θ̃m = [

√
1− ϵ2, ϵϕ̃m] ∈ Rd, for m ∈ [M ]. Evidently, the angle between

any θ̃m and θ̃0 is fixed for all m ∈ [M ]. Finally, given the prescribed norm t in the statement of
the theorem, we set the packing set that will be next used in Fano’s-inequality based argument as
ΘM := {t · θ̃m}m∈[M ] and set θ0 = tθ̃0. To summarize, ΘM satisfies the following properties: (i)
|ΘM |≥ 1

16 · 8d−1, (ii) for any θm ∈ ΘM it holds that ∥θm∥= t, (iii) for any distinct θm, θm′ ∈ ΘM

it holds that loss(θm, θm′) = ∥θm − θm′∥≥ 1
16ϵt, (iv) for any θm ∈ Θm it holds that

loss(θm, θ0) = ∥θm − θ0∥= t ·
√
(
√
1− ϵ2 − 1)2 + ϵ2 ≤ t ·

[√
1− ϵ2 − 1 + ϵ

]
≤ 2tϵ, (139)

where the first inequality is from
√
a2 + b2 ≤ a+ b for a, b ∈ R+ and the second inequality from√

1− ϵ2 ≤ 1 + ϵ.

Fano’s inequality based lower bound Recall that P (n)
θ is the probability distribution of Xn

1 under
the Markov model Xi = Siθ + Zi, i ∈ [n] with Sn

0 is as in (1). Let J ∼ Unif[M ] and assume that
given a prescribed norm t > 0, it holds that Xn

1 | J = j ∼ P
(n)
θj

. Then, based on the four properties
of the packing set ΘM , Fano’s method states that [Wainwright, 2019, Proposition 15.2]

M(n, d, δ, t) ≥ ϵt

32
·
[
1− I(J ;Xn

1 ) + log 2

logM

]
(140)

≥ ϵt

32
·
[
1− I(J ;Xn

1 ) + log 2

(d− 1) log 8

]
(141)

(a)

≥ ϵt

32
·
[
1

2
− 4 · I(J ;X

n
1 )

d

]
(142)

(b)

≥ ϵt

32
·

[
1

2
− 4 ·

maxm∈[M ] DKL(P
(n)
θm

|| P (n)
θ0

)

d

]
(143)
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where I(J ;Xn
1 ) is the mutual information between J andXn

1 , and in (a) we have used the assumption
d ≥ 3 which implies (d− 1) log 8− log 16 ≥ d

4 , and in (b) we have used the standard “information-
radius” bound on the mutual information (e.g., (15.52) in [Wainwright, 2019, Proof of Lemma 15.21
and Exercise 15.11]). The crux of the proof is to establish a bound of the form DKL(P

(n)
θm

|| P (n)
θ0

) ≤
d
16 for a given ϵ∗ > 0 to obtain a lower bound of Ω(ϵ∗t). Note that due to symmetry of the packing
set, the last KL divergence is the same for all m ∈ [M ].

Before continuing the proof for the Markov case with δ < 1
2 , we next describe the analysis of

the Gaussian mixture model in [Wu and Zhou, 2019]. For the Gaussian mixture model (that is,
a degenerate Markov model with δ = 1

2 ), P (n)
θ is an i.i.d. distribution, and so the tensorization

property of the KL divergence immediately implies that DKL(P
(n)
θm

|| P (n)
θ0

) = n · DKL(Pθm ||
Pθ0) (where Pθ ≡ P

(1)
θ ). Then, it was established in [Wu and Zhou, 2019, Lemma 27] that

DKL(Pθm || Pθ0) ≲ t2 · ∥θ0−θm∥2 as follows. First, it was noted that under θ0 = [t, 0, . . . , 0] ∈ Rd,
Pθ = Pt ⊗N(0, Id−1), that is a product distribution, with the first coordinate being one-dimensional
Gaussian mixture with means ±t, and all the other d − 1 coordinates being standard Gaussian.
Based on this and the chain rule of the KL divergence, the KL divergence DKL(Pθm || Pθ0) was
evaluated separately by the KL divergence between the distribution of the first coordinate, and
the KL divergence between the distributions of the other d − 1 coordinates, conditioned on the
first coordinates. Each of these two KL divergences was bounded by the corresponding chi-square
divergences, and was further shown to be O(t2 · ∥θ0 − θm∥2). Finally, the minimax lower bound

stated in (6) was obtained by setting ϵ = c · min{1, 1
t2

√
d
n} for some small enough c > 0 in the

construction of the packing set.

For the Markov model (with δ < 1
2 ), it seems rather cumbersome to bound DKL(P

(n)
θm

|| P (n)
θ0

)

since the model P (n)
θ has memory. Thus we next propose an indirect approach, which requires three

preliminary steps. At the first step, we reduce, via a genie-based argument, the original Gaussian-
Markov model with n samples to a Gaussian-Markov model with ℓ samples, where each of these
ℓ sample is a coherent average of a block of k consecutive samples, ℓ = n

k (in a similar, yet not
identical, form to the estimator from Section 2). The sequences of signs underlying each of these ℓ
samples also forms a Markov model, where the block length k is judiciously chosen (roughly) as
Θ( 1δ ) so that the dependency between the signs is much weaker, in the sense that the flip probability δ
of its signs asymptotically tends to 1

2 as δ → 0. Since for Gaussian mixture models the flip probability
is exactly 1

2 , this Markov model is approximately a Gaussian mixture model.

At the second step, we develop a change-of-measure argument. As said, the reduced model is only
approximately Gaussian mixture (δ ≈ 1

2 ); Had it was exactly a Gaussian mixture model (δ = 1
2 ) then

the bound on the KL divergence from [Wu and Zhou, 2019, Lemma 27] could have been directly
used. Nonetheless, since δ → 1

2 with our choice of k, the probability distribution of the samples
tends to that of the memoryless Gaussian mixture. Since divergences are essentially a continuous
functions of the measured distributions, we expect that the KL divergence for the Markov model with
δ is close to the KL divergence for the Gaussian mixture model. Lemma 13 forms the basis of this
change-of-measure argument in terms of the probability distribution of the signs, and Lemma 14
provides the corresponding change-of-measure bound for the KL divergence.

At the third step, we bound the chi-square divergence for a d dimensional Gaussian mixture model.
As described above, in [Wu and Zhou, 2019, Lemma 27] the KL divergence was upper bounded
for the Gaussian mixture model by first separating to the KL divergence in the first coordinate and
the KL divergence in all other d − 1 coordinates, exploiting the chain rule of the KL divergence,
and then bounding each of the two KL divergences by a chi-square divergence. Here, we provide a
refined proof which directly bounds the chi-square divergence, without the need to separate the first
coordinate from the others. This is the result of Lemma 15.

The proof of Theorem 2 is then completed using the results of the three preliminary steps. We next
turn to the detailed proof.

First step (genie-aided reduction): In this step we reduce the original model P (n)
θ to a model P̃ (ℓ)

θ
which is aided by knowledge from a genie, and so estimation errors in the new model are only lower.
Inspired by the operation of our proposed estimator in Section 2, we consider ℓ = n

k blocks of size

26



k each, where, for simplicity of exposition, we assume that both ℓ, k are integers. A genie informs
the estimator with the sign changes SjSj+1 at the time indices j ∈ [n− 1]\{ik}ℓ−1

i=1 , that is, at all
times except for j = k, 2k, 3k, · · · , n. Hence, the estimator can align the signs within each block
Ii := {(i − 1)k + 1, (i − 1)k + 2, · · · , ik} of size k, but not between blocks. Consequently, a
statistically equivalent model to the original model with genie information is the model

Yi = Riθ∗ + Zi (144)
where i ∈ [n], Zi ∼ N(0, Id) are i.i.d. exactly as in the original Markov model, and the signs
Ri ∈ {−1, 1} are such that

Ri+1 = Ri (145)
with probability 1 if i ∈ [n− 1]\{jk}ℓ−1

j=1 and

Rjk+1 =

{
R(j−1)k+1, w.p. 1+ρk

2

−R(j−1)k+1, w.p. 1−ρk

2

(146)

if i ∈ {jk}ℓ−1
j=1. Now, since the signs are fixed during the blocks {Ii}ℓi=1 of length k, the mean of

the samples in each block is a sufficient statistic for estimation of θ∗. Thus, in the same spirit of the
estimator in Section 2, the genie-aided model is equivalent to

Y i :=
1

k

∑
j∈Ii

Yi = Riθ∗ + Zi (147)

where i ∈ [ℓ], P[R0 = 1] = 1
2 , and

Ri+1 =

{
Ri w.p. 1+ρk

2

−Ri w.p. 1−ρk

2

(148)

is the gain (average of the signs) of the ith block, and

Zi :=
1

k

∑
j∈Ii

Zj ∼ N

(
0,

1

k
· Id
)

(149)

is a averaged Gaussian noise. Thus, there are ℓ samples in the equivalent model, and the flip
probability is δ := 1−ρk

2 , which is closer to 1
2 compared to the flip probability in the original model,

δ = 1−ρ
2 . We note that there are two differences compared to the model used by the estimator in

Section 2. First, due to the information supplied from the genie, here the average gain isRi ∈ {−1, 1}
with probability 1, to wit |Ri| never drops below 1; Second, there is no randomization between the
blocks. In the definition of the estimator in Section 2 we indeed had the freedom to randomize the
first sign in each block in order to make the blocks statistically independent, whereas here, in an
impossibility bound, it is possible that statistical dependence between the blocks may result improved
estimation rates (though as we shall see, this is essentially not the case). In what follows, we denote
by P

(ℓ)

θ the probability distribution of Y
ℓ

1 under the model (147) with flip probability δ (i.e., as with
signs as in (148)). At this point, the trade-off involved in an optimal choice of k is already apparent –
as the block length k increases, the dependence between the blocks, as reflected by the flip probability
δ = 1−ρk

2 , decreases. On the other hand, the largest lower bound is attained when the genie reveals
minimal information, that is, when k is minimal. Our choice of k is thus essentially the minimal
value required so that 1−ρk

2 → 1
2 , and specifically chosen as k = log(n)

δ .

Second step (change of measure): We denote by pδ(sℓ1) = P[Sℓ
1 = sℓ1] the probability distribution

of ℓ sign samples drawn according to the law of a homogeneous binary symmetric Markov chain
with P[S0 = 1] = 1/2 and flip probability δ. Note that p1/2(sℓ1) is then an i.i.d. model, with uniform
random signs. The next lemma uniformly bounds the ratio between pδ(sℓ1) and p1/2(sℓ1) when δ is
close to 1/2, as was obtained in the first step.
Lemma 13. Let Sℓ

0 ∈ {−1, 1}ℓ+1 be a homogeneous binary symmetric Markov chain with P[S0 =

1] = 1/2 and flip probability δ ∈ [0, 12 ], and let pδ(sℓ1) = P[Sℓ
1 = sℓ1]. Furthermore, for δ = 1−ρk

2

where ρ = 1− 2δ and k = log(n)
δ it holds that

1− 1

n
≤

pδ(s
ℓ
1)

p1/2(s
ℓ
1)

≤ 1 +
2

n
. (150)
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Proof. Note that p1/2(sℓ1) =
1
2ℓ

for all sℓ1 ∈ {−1, 1}ℓ. Then, since δ ∈ [0, 12 ], letting ρ = 1− 2δ,

pδ(s
ℓ
1) ≤ (1− δ)ℓ =

(
1 + ρ

2

)ℓ

= p1/2(s
ℓ
1) (1 + ρ)

ℓ
= p1/2(s

ℓ
1) (2− 2δ)

ℓ (151)

and

pδ(s
ℓ
1) ≥ δℓ =

(
1− ρ

2

)ℓ

= p1/2(s
ℓ
1) (1− ρ)

ℓ
= p1/2(s

ℓ
1) (2δ)

ℓ
. (152)

It this holds that

(2δ)
ℓ ≤ pδ(s

ℓ
1)

p1/2(s
ℓ
1)

≤ (2− 2δ)
ℓ
. (153)

Substituting δ = δ = 1−ρk

2 , the upper bound on pδ(s
ℓ
1)

p1/2(s
ℓ
1)

is further upper bounded as

(
1 + ρk

)ℓ
=
(
1 + (1− 2δ)

log(n)
δ

)ℓ
(154)

(a)

≤
(
1 +

1

n2

)ℓ

(155)

≤
(
1 +

1

n2

)n

(156)

(a)

≤ e1/n (157)
(b)

≤ 1 +
2

n
, (158)

where both transitions denoted (a) follow from 1 + x ≤ ex for x ∈ R, and (b) follows from

ex ≤ 1 + 2x for x ∈ [0, 1]. Similarly, the lower bound on pδ(s
ℓ
1)

p1/2(s
ℓ
1)

is further lower bounded as

(
1− ρk

)ℓ
=
(
1− (1− 2δ)

log(n)
δ

)ℓ
(159)

(a)

≥
(
1− 1

n2

)ℓ

(160)

≥
(
1− 1

n2

)n

(161)

(b)

≥ 1− 1

n
, (162)

where (a) follows again from 1 + x ≤ ex for x ∈ R, and (b) follows from Bernoulli’s inequality
(1− x)r ≥ 1− rx for x ∈ [0, 1] and r ≥ 1.

Let P̃ (ℓ)
θ denote the Gaussian mixture model (i.e., with flip probability 1/2) corresponding to ℓ

samples with means at ±θ ∈ Rd, and note that it has the same ℓ marginal distributions as the genie-
aided reduced model P

(ℓ)

θ (with flip probability δ). As discussed, the probability distributions P̃ (ℓ)
θ

and P
(ℓ)

θ are close. The following lemma provides a change-of-measure bound on the KL divergence
for this case.
Lemma 14. Let U ℓ

1 (resp. V ℓ
1 ) be distributed according to a probability distribution P ≡ PU1···Uℓ

(resp. Q ≡ QU1···Uℓ
) on (Rd)ℓ, and let P̃ ≡ P̃U1···Uℓ

:=
∏n

i=1 PUi and Q̃ ≡ Q̃V1···Vℓ
:=
∏n

i=1QVi

be the product distributions of their marginal distributions. Let

βP := sup
uℓ
1∈(Rd)ℓ

(
PU1···Uℓ

(uℓ1)

P̃U1···Uℓ
(uℓ1)

)
(163)

and

βQ := sup
uℓ
1∈(Rd)ℓ

(
Q̃V1···Vℓ

(uℓ1)

QV1···Vℓ
(uℓ1)

)
. (164)
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Then,
DKL (P || Q) ≤ DKL

(
P̃ || Q̃

)
+ log(βP · βQ). (165)

Proof. Since Q̃ is a product distribution, and since P and P̃ have the same marginal distributions on
Rd (at each time point) then∫

PU1···Uℓ
(uℓ1) log

(
1

Q̃V1···Vℓ
(uℓ1)

)
duℓ1

=

ℓ∑
i=1

∫
PU1···Uℓ

(uℓ1) log

(
1

Q̃Vi
(ui)

)
duℓ1 (166)

=

ℓ∑
i=1

∫
PUi

(ui) log

(
1

Q̃Vi
(ui)

)
dui (167)

=

ℓ∑
i=1

∫
P̃Ui(ui) log

(
1

Q̃Vi(ui)

)
dui (168)

=

ℓ∑
i=1

∫
P̃U1···Uℓ

(uℓ1) log

(
1

Q̃Vi
(ui)

)
duℓ1 (169)

=

∫
P̃U1···Uℓ

(uℓ1) log

(
1

Q̃V1···Vℓ
(uℓ1)

)
duℓ1. (170)

Using similar reasoning∫
P̃U1···Uℓ

(uℓ1) log
(
P̃U1···Uℓ

(uℓ1)
)
duℓ1

=

ℓ∑
i=1

∫
P̃U1···Uℓ

(uℓ1) log
(
P̃Ui

(ui)
)
duℓ1 (171)

=

ℓ∑
i=1

∫
P̃Ui(ui) log

(
P̃Ui(ui)

)
dui (172)

=

ℓ∑
i=1

∫
PUi

(ui) log
(
P̃Ui

(ui)
)
dui (173)

=

ℓ∑
i=1

∫
PU1···Uℓ

(uℓ1) log
(
P̃Ui(ui)

)
duℓ1 (174)

=

∫
PU1···Uℓ

(uℓ1) log
(
P̃U1···Uℓ

(uℓ1)
)
duℓ1 (175)

=

∫
PU1···Uℓ

(uℓ1) log
(
PU1···Uℓ

(uℓ1)
)
duℓ1 +

∫
PU1···Uℓ

(uℓ1) log

(
P̃U1···Uℓ

(uℓ1)

PU1···Uℓ
(uℓ1)

)
duℓ1. (176)

Combining (170) and (176) results the following bound

DKL (P || Q)

=

∫
PU1···Uℓ

(uℓ1) log

(
PU1···Uℓ

(uℓ1)

QV1···Vℓ
(uℓ1)

)
duℓ1 (177)

=

∫
PU1···Uℓ

(uℓ1) log

(
PU1···Uℓ

(uℓ1)

Q̃V1···Vℓ
(uℓ1)

)
duℓ1 +

∫
PU1···Uℓ

(uℓ1) log

(
Q̃V1···Vℓ

(uℓ1)

QV1···Vℓ
(uℓ1)

)
duℓ1 (178)

=

∫
P̃U1···Uℓ

(uℓ1) log
(
P̃U1···Uℓ

(uℓ1)
)
duℓ1 −

∫
PU1···Uℓ

(uℓ1) log

(
P̃U1···Uℓ

(uℓ1)

PU1···Uℓ
(uℓ1)

)
duℓ1
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+

∫
PU1···Uℓ

(uℓ1) log

(
1

Q̃V1···Vℓ
(uℓ1)

)
duℓ1 +

∫
PU1···Uℓ

(uℓ1) log

(
Q̃V1···Vℓ

(uℓ1)

QV1···Vℓ
(uℓ1)

)
duℓ1 (179)

≤ DKL

(
P̃ || Q̃

)
+ sup

uℓ
1∈(Rd)ℓ

log

(
PU1···Uℓ

(uℓ1)

P̃U1···Uℓ
(uℓ1)

)
+ sup

uℓ
1∈(Rd)ℓ

log

(
Q̃V1···Vℓ

(uℓ1)

QV1···Vℓ
(uℓ1)

)
, (180)

as claimed by the lemma.

Third step (bound on the chi-square divergence): Let φ(y; θ, σ2) be the Gaussian PDF with mean
θ ∈ Rd and covariance matrix σ2 · Id. The next lemma bounds the chi-square divergence between
a pair of such distributions with different means. Originally, a bound of this order was established
in [Wu and Zhou, 2019, proof of Lemma 27] on the KL divergence, by splitting the first coordinate
(which is assumed, w.l.o.g., to contain the signal) and the other d− 1 coordinates, using the chain
rule, and then bounding each of the two KL terms with the corresponding chi-square divergence.
Here we provide a direct upper bound on the chi-square divergence, which does not rely on splitting
between the coordinates of the mean vector, and which might be of independent use in future works.

Lemma 15. Let P̃θ = 1
2N(θ, σ2 · Id) + 1

2N(−θ, σ2 · Id) be a balanced Gaussian mixture with
means at ±θ ∈ Rd. Then, if ∥θ0∥= ∥θ1∥= t ≤ σ, then

χ2(P̃θ1 || P̃θ0) ≤
8t2

σ4
· ∥θ0 − θ1∥2. (181)

Proof. For any y ∈ Rd,

P̃θ(y) =
1

2

1

(2πσ2)d/2
e−

∥y−θ∥2

2σ2 +
1

2

1

(2πσ2)d/2
e−

∥y+θ∥2

2σ2 (182)

= φ(y; 0, σ2) · e−
∥θ∥2

2σ2 · cosh
(
θ⊤y

σ2

)
. (183)

Then,

χ2
(
P̃θ1 || P̃θ0

)

=

∫ [
φ(y; 0, σ2)e−

∥θ1∥2

2σ2 · cosh
(

θ⊤
1 y
σ2

)
− φ(y; 0, σ2)e−

∥θ0∥2

2σ2 · cosh
(

θ⊤
0 y
σ2

)]2
φ(y; 0, σ2) · e−

∥θ0∥2

2σ2 cosh
(

θ⊤
0 y
σ2

) · dy (184)

= e
∥θ0∥2

2σ2

∫
φ(y; 0, σ2)

[
e−

∥θ1∥2

2σ2 · cosh
(

θ⊤
1 y
σ2

)
− e−

∥θ0∥2

2σ2 · cosh
(

θ⊤
0 y
σ2

)]2
cosh

(
θ⊤
0 y
σ2

) · dy (185)

(a)

≤ e
∥θ0∥2

2σ2 ·
∫
φ(y; 0, σ2)

[
e−

∥θ1∥2

2σ2 · cosh
(
θ⊤1 y

σ2

)
− e−

∥θ0∥2

2σ2 · cosh
(
θ⊤0 y

σ2

)]2
· dy (186)

= e
∥θ0∥2

2σ2 ·
∫
φ(y; 0, σ2)e−

∥θ1∥2

σ2 · cosh2
(
θ⊤1 y

σ2

)
· dy

− 2e
∥θ0∥2

2σ2 ·
∫
φ(y; 0, σ2)e−

∥θ1∥2+∥θ0∥2

2σ2 cosh

(
θ⊤1 y

σ2

)
cosh

(
θ⊤0 y

σ2

)
· dy

+ e
∥θ0∥2

2σ2 ·
∫
φ(y; 0, σ2)e−

∥θ0∥2

σ2 · cosh2
(
θ⊤0 y

σ2

)
· dy, (187)

where (a) follows since cosh(x) ≥ 1 for all x ∈ R. We next evaluate the integral for each of the
terms. First, for any y ∈ Rd,∫

φ(y; 0, σ2) cosh2
(
θ⊤1 y

σ2

)
dy
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(a)
=

∫
φ(y; 0, 1) · cosh2

(
θ⊤1 y

σ

)
dy (188)

(b)
=

∫
φ(t; 0, 1) · cosh2

(
∥θ1∥
σ

t

)
dt (189)

=

∫
φ(t; 0, 1)

exp
(

∥θ1∥
σ t
)
+ exp

(
−∥θ1∥

σ t
)

2

2

dt (190)

=

∫
φ(t; 0, 1)

exp
(
2∥θ1∥

σ t
)
+ 2 + exp

(
−2∥θ1∥

σ t
)

4
dt (191)

(c)
=

1

2
+

1

2
· e2

∥θ1∥2

σ2 (192)

= e
∥θ1∥2

σ2 cosh

(
∥θ1∥2

σ2

)
, (193)

where (a) follows from the change of variables y → y
σ , (b) follows from the rotational invariance

of the Gaussian PDF φ(y; 0, σ2), we may assume that θ1 = (∥θ1∥, 0, 0, . . . , 0), setting t ∈ R to be
the first coordinate of y, and integrating over all other d− 1 coordinates, and (c) follows from the
Gaussian moment-generating function formula. The third term in the integral is similarly evaluated.
For the second term,

∫
φ(y; 0, σ2)

[
2 cosh

(
θ⊤1 y

σ2

)
cosh

(
θ⊤0 y

σ2

)]
· dy

(a)
=

∫
φ(y; 0, 1)

[
2 cosh

(
θ⊤1 y

σ

)
cosh

(
θ⊤0 y

σ

)]
· dy (194)

(b)
=

∫
φ(y; 0, 1) cosh

(
(θ1 + θ0)

⊤y

σ

)
· dy +

∫
φ(y; 0, 1) cosh

(
(θ1 − θ0)

⊤y

σ

)
· dy (195)

(c)
=

∫
φ(t; 0, 1) cosh

(
∥θ1 + θ0∥t

σ

)
· dt+

∫
φ(t; 0, 1) cosh

(
∥θ1 − θ0∥t

σ

)
· dt (196)

(d)
= e

∥θ1+θ0∥2

2σ2 + e
∥θ1−θ0∥2

2σ2 (197)

= e
∥θ0∥2+∥θ1∥2

2σ2 ·
[
e

θ⊤1 θ0

σ2 + e
−θ⊤1 θ0

σ2

]
(198)

= e
∥θ0∥2+∥θ1∥2

2σ2 · 2 cosh
(
θ⊤1 θ0
σ2

)
. (199)

where (a) follows from the change of variables y → y
σ , (b) follows from the identity

2 cosh(x) cosh(y) = cosh(x+ y) + cosh(x− y), and (c) follows from rotational invariance, and (d)
follows from ∫

φ(t; 0, 1) cosh(at)dt =

∫
φ(t; 0, 1)

eat + e−at

2
dt = e

a2

2 . (200)

Continuing (187), we thus have

χ2
(
P̃θ1 || P̃θ0

)
≤ e

∥θ0∥2

2σ2 ·
[
cosh

(
∥θ1∥2

σ2

)
− 2 cosh

(
θ⊤1 θ0
σ2

)
+ cosh

(
∥θ0∥2

σ2

)]
. (201)

Now, d
dx cosh(x) = sinh(x) and d2

dx2 cosh(x) = cosh(x). In addition, if 0 ≤ x ≤ 1 then it can be
easily verified that sinh(x) ≤ 2x. Thus, if 0 ≤ x ≤ y ≤ 1 then

cosh(y)− cosh(x) =

∫ y

x

d

dr
cosh(r)dr =

∫ y

x

sinh(r)dr ≤
∫ y

x

2rdr = y2 − x2. (202)

Moreover, ex ≤ 1 + 2x for x ∈ [0, 1]. Thus, if we assume ∥θ0∥= ∥θ1∥≤ σ we may further upper
bound (201) as

χ2
(
P̃θ1 || P̃θ0

)
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≤ e
∥θ0∥2

2σ2 ·
[
cosh

(
∥θ0∥2

σ2

)
− cosh

(
|θ⊤1 θ0|
σ2

)
+ cosh

(
∥θ0∥2

σ2

)
− cosh

(
|θ⊤1 θ0|
σ2

)]
(203)

(a)

≤ 2 ·
[
cosh

(
∥θ0∥2

σ2

)
− cosh

(
|θ⊤1 θ0|
σ2

)
+ cosh

(
∥θ0∥2

σ2

)
− cosh

(
|θ⊤1 θ0|
σ2

)]
(204)

(b)

≤ 2 · ∥θ1∥
4−(θ⊤1 θ0)

2 + ∥θ0∥4−(θ⊤1 θ0)
2

σ4
, (205)

where (a) follows since e
∥θ0∥2

2σ2 ≤ 2 under the assumption ∥θ0∥2≤ σ2, (b) follows from (202). Now,
the numerator of (205) is further upper bounded as

∥θ1∥4−2(θ⊤1 θ0)
2 + ∥θ0∥4 (206)

= (θ⊤1 θ1)
2 − (θ⊤1 θ0)(θ

⊤
0 θ1)− (θ⊤0 θ1)(θ

⊤
1 θ0) + (θ⊤0 θ0)

2 (207)

= Tr
[
θ0θ

⊤
0 θ0θ

⊤
0 − θ0θ

⊤
0 θ1θ

⊤
1 − θ1θ

⊤
1 θ0θ

⊤
0 + θ1θ

⊤
1 θ1θ

⊤
1

]
(208)

= Tr[(θ0θ
⊤
0 − θ1θ

⊤
1 )

2] (209)

= ∥θ0θ⊤0 − θ1θ
⊤
1 ∥2F (210)

= ∥θ0θ⊤0 − θ0θ
⊤
1 + θ0θ

⊤
1 − θ1θ

⊤
1 ∥2F (211)

≤ 2∥θ0θ⊤0 − θ0θ
⊤
1 ∥2F+2∥θ0θ⊤1 − θ1θ

⊤
1 ∥2F (212)

= 2∥θ0∥2·∥θ0 − θ1∥2+2∥θ1∥2·∥θ0 − θ1∥2, (213)

where the inequality follows from ∥A + B∥2F≤ 2∥A∥2F+2∥B∥2F . Inserting this bound into (205),
and using ∥θ0∥= ∥θ1∥= t results the bound (181).

With the results of the three steps at hand, we may complete the proof of Theorem 2.

Proof of Theorem 2. Recall that we assume the low-dimension regime 3 ≤ d ≤ δn. The condition
d ≥ 3 can be relaxed to d ≥ 2, as promised in Theorem 2, using a different construction of the
packing set. We leave this refinement to the end of this section. If t ≥

√
δ then the lower bound for the

Gaussian location model (5) implies a bound of Θ(
√

d
n ). This can be verified by separately checking

the only two cases t ≥
√

d
n ≥

√
δ and t ≥

√
δ ≥

√
d
n possible in the low dimension regime. We

thus henceforth may concentrate on the regime t ≤
√
δ. To continue, we henceforth assume the

slightly stronger requirement t ≤
√

δ
logn =

√
1
k , where 1

k is the variance in the genie-aided reduced
model.

Let δ = 1−ρk

2 and recall that P
(ℓ)

θm is the Gaussian model with Markovian signs with flip probability
δ. Further let φ(yℓ1;µ) be the Gaussian PDF for ℓ samples from a d0-dimensional model with mean
µ ∈ (Rd0)ℓ and covariance matrix Σ = 1

k Id0 ⊗ Iℓ ∈ Rd0ℓ×d0ℓ
+ . With this notation, it holds that

P
(ℓ)

θm(yℓ1) =
∑

rℓ1∈{−1,1}ℓ

pδ(r
ℓ
1) · φ(yℓ1; rℓ1 ⊗ θm). (214)

Similarly, let P̃ (ℓ)
θm

be the Gaussian model with Markovian signs with flip probability 1/2, that is, a
Gaussian mixture model (which is, in fact, memoryless),

P̃
(ℓ)
θm

(yℓ1) =
∑

rℓ1∈{−1,1}ℓ

p1/2(r
ℓ
1) · φ(yℓ1; rℓ1 ⊗ θm) (215)

=

ℓ∏
i=1

[
1

2
φ(yi; θm) +

1

2
φ(yi;−θm)

]
. (216)

Now, Lemma 13 implies that

1− 1

n
≤ min

rℓ1∈{−1,1}ℓ

pδ(r
ℓ
1)

p1/2(r
ℓ
1)

≤
P

(ℓ)

θm(yℓ1)

P̃
(ℓ)
θm

(yℓ1)
≤ max

rℓ1∈{−1,1}ℓ

pδ(r
ℓ
1)

p1/2(r
ℓ
1)

≤ 1 +
2

n
, (217)
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and hence

DKL

(
P

(ℓ)

θm || P (ℓ)

θ0

) (a)

≤ DKL

(
P̃

(ℓ)
θm

|| P̃ (ℓ)
θ0

)
+ log

[(
1 +

2

n

)(
1

1− 1
n

)]
(218)

(b)

≤ DKL

(
P̃

(ℓ)
θm

|| P̃ (ℓ)
θ0

)
+ 2 log

(
1 +

2

n

)
(219)

≤ DKL

(
P̃

(ℓ)
θm

|| P̃ (ℓ)
θ0

)
+

4

n
(220)

(c)
= ℓ ·DKL

(
P̃θm || P̃θ0

)
+

4

n
(221)

(d)

≤ ℓ · χ2
(
P̃θm || P̃θ0

)
+

4

n
(222)

(e)

≤ 8
ℓt2

σ4
· ∥θ0 − θ1∥2+

4

n
(223)

(f)

≤ 32 log(n) · nt
4ϵ2

δ
+

4

n
(224)

where (a) follows from Lemma 14, (b) follows since 1
1− 1

n

≤ 1 + 2
n for n ≥ 2, (c) follows from

the tensorization property of the KL divergence, (d) follows from the fact (cf. [Tsybakov, 2008,
Eq. (2.27)]) that DKL(P || Q) ≤ χ2(P || Q) for any pair of probability measures P and Q, (e)
follows from Lemma 15, and (f) follows from property (iv) of the packing set ∥θ0 − θ1∥2≤ 4t2ϵ2

and σ2 = 1
k = δ

logn and ℓ = n
k .

Recall that from Fano’s argument (143), the largest ϵ > 0 so that DKL(P
(ℓ)

θm || P (ℓ)

θ0 ) ≤
d
16 assures

the bound M(n, d, δ, t) ≥ ϵt
128 . Assuming that 4

n ≤ d
32 , that is n ≥ 128

d , this will occur if 32 log(n) ·
nt4ϵ2

δ ≤ d
32 . This can be achieved by the choice ϵ = 1

32
√

log(n)
·min

{
1, 1

t2

√
dδ
n

}
. Using this value

in the Fano’s based bound then completes the proof of the theorem.

Relaxing d ≥ 3 to d ≥ 2 In the above proof, we assumed that d ≥ 3. This condition can be relaxed
to d ≥ 2 by using a more careful construction of the packing set.

Lemma 16. Let d ≥ 2 be an integer and α ∈ (0, π2 ] be an angle. Then there exists a
(
2 sin

(
α
2

))
-

packing on Sd−1 of size at least cos(α)
sind−1(α)

.

Proof. We will greedily construct the desired packing set. Let ∆ = 2 sin
(
α
2

)
. Start with an arbitrary

point on Sd−1. In each of the following steps, put into the packing set another arbitrary point that
is ∆-far from any existing points in the packing set and their antipodal points. Repeat this process
until no more points can be put without violating the distance guarantee. Note that this construction
guarantees that for any pair of distinct points θ, θ′ in the packing set,

loss(θ, θ′) = min{∥θ − θ′∥, ∥θ + θ′∥} > 2 sin
(α
2

)
= ∆. (225)

We then lower bound the cardinality of the above packing set. For α ∈ [0, π2 ], let S(α) denote
the surface area of a spherical cap on Sd−1 of angular radius α. For θ ∈ Sd−1 and α ∈ [0, π2 ], let
K(θ, α) := {θ′ ∈ Sd−1 : |⟨θ, θ′⟩|≥ cos(α)} denote the union of two spherical caps centered around
θ and −θ, respectively, of angular radius α each. Note that each new point θ in the construction
induces a forbidden region on Sd−1 of surface area at most |K(θ, α)|= 2S(α) in which following
points cannot lie, since any point within K(θ, α) has distance at most 2 sin

(
α
2

)
= ∆ to either θ or

−θ. Also, the surface area of the forbidden region is upper bounded by 2S(α) since K(θ, α) may
overlap with K(θ′, α) for some previous θ′. Therefore, by the step at which the greedy construction
terminates, one must have put at least 2S(π

2 )

2S(α) =
S(π

2 )

S(α) many points, where the numerator is nothing
but the surface area of Sd−1. [Blachman and Few, 1963, Eq. (1)] upper bounds the area ratio between
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two spherical caps on Sd−1 as follows:

S(α)

S(β)
=

∫ α

0
sind−2(x)dx∫ β

0
sind−2(x)dx

≤ sec(α) · sin
d−1(α)

sind−1(β)
. (226)

Using this bound, we conclude that the cardinality of the constructed packing set is at least cos(α)
sind−1(α)

,
which finishes the proof.

By Lemma 16, a ∆-packing set can be obtained by setting 2 sin
(
α
2

)
= ∆. Therefore,

sin
(α
2

)
=

∆

2
, cos

(α
2

)
=

√
1− ∆2

4
, (227)

sin(α) = 2 sin
(α
2

)
cos
(α
2

)
= ∆

√
1− ∆2

4
, cos(α) = 1− 2 sin2

(α
2

)
= 1− ∆2

2
, (228)

and the cardinality of the packing set is at least(
1− ∆2

2

)(
∆

√
1− ∆2

4

)−(d−1)

. (229)

Setting ∆
√
1− ∆2

4 = 1
8 , we have ∆ = 1

2

√
8− 3

√
7 ≥ 1

8 and we get a 1
8 -packing set ΘM =

{θm}m∈[M ] of size at least M ≥ 3
√
7

8 · 8−(d−1) ≥ 0.99 · 8−(d−1).

The above construction can be used in place of the one described at the beginning of Appendix B.2.
The resulting lower bound on the minimax error rate follows from similar reasoning with suitably
adjusted numerical constants. We sketch the rest of the proof below. By Fano’s method [Wainwright,
2019, Proposition 15.2] (see also (140)),

M(n, d, δ, t) ≥ ϵt

16

[
1− I(J ;Xn

1 ) + log 2

logM

]
(230)

≥ ϵt

16

[
1−

maxm∈[M ] DKL(P
(n)
θm

|| P (n)
θ0

) + log 2

(d− 1) log 8 + log 0.99

]
(231)

≥ ϵt

16

[
1

2
− 4 ·

maxm∈[M ] DKL(P
(n)
θm

|| P (n)
θ0

)

d

]
, (232)

where the last inequality follows since d ≥ 2 implies (i) (d − 1) log 8 + log 0.99 ≥ d
4 , (ii)

log 2
(d−1) log 8+log 0.99 ≤ log 2

log 8+log 0.99 ≤ 1
2 . The proof of the bound maxm∈[M ] DKL(P

(n)
θm

|| P (n)
θ0

) ≤
d
16 can be completely reused which implies M(n, d, δ, t) ≥ ϵt

64 . The same choice of ϵ then yields the
desired lower bound on the minimax error rate in Theorem 2 for any d ≥ 2.

C Proofs for Section 3: Estimation of δ for a given estimate of θ∗

C.1 Proof of Theorem 4: Analysis of the estimator

Proof of Theorem 4. We first note that since the estimator (19) does not exploit the correlation
betweenXi andXj for |i−j|≥ 2, we may assume that the n/2 pairs of random variables (S2i−1, S2i)
are independent by multiplying each pair of samples (X2i−1, X2i) by an i.i.d. random sign. By
explicitly using Xi = Siθ∗ + Zi in the definition of ρ̂, and using the triangle inequality, we obtain
that

|ρ̂− ρ| ≤

∣∣∣∣∣∣∥θ∗∥
2

∥θ♯∥2
2

n

n/2∑
i=1

S2iS2i−1 − ρ

∣∣∣∣∣∣+
∣∣∣∣∣∣ 2

∥θ♯∥2n

n/2∑
i=1

S2iθ
⊤
∗ Z2i−1

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 2

∥θ♯∥2n

n/2∑
i=1

S2i−1θ
⊤
∗ Z2i

∣∣∣∣∣∣+
∣∣∣∣∣∣ 2

∥θ♯∥2n

n/2∑
i=1

Z⊤
2iZ2i−1

∣∣∣∣∣∣ . (233)

34



We begin with the analysis of the first term. We note that

2

n

n/2∑
i=1

S2iS2i−1
d
=

2

n

n/2∑
i=1

Ri (234)

where

Ri =

{
1, w.p. 1+ρ

2

−1, w.p. 1−ρ
2

(235)

and {Ri}i∈[n/2] are i.i.d. with E[Ri] = 1 − 2δ = ρ and V[Ri] = 4δ(1 − δ) ≤ 4δ. Now, the first
term in (233) is bounded by ∣∣∣∣∣∣∥θ∗∥

2

∥θ♯∥2
2

n

n/2∑
i=1

Ri − ρ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
1 +

∥θ∗∥2−∥θ♯∥2

∥θ♯∥2

)
2

n

n/2∑
i=1

Ri − ρ

∣∣∣∣∣∣ (236)

≤

∣∣∣∣∣∣ 2n
n/2∑
i=1

Ri − ρ

∣∣∣∣∣∣+
∣∣∥θ∗∥2−∥θ♯∥2

∣∣
∥θ♯∥2

, (237)

where the last inequality follows since
∣∣∣ 2n ∑n/2

i=1Ri

∣∣∣ ≤ 1. In this last equation, the last term can
be considered a bias of the estimator due to the mismatch between θ∗ and θ♯. Now, by Bernstein’s
inequality for a sum of independent, zero-mean, bounded random variables Ri − E[Ri] ∈ [−2, 2] (cf.
(323) from [Wainwright, 2019, Propostion 2.14])

P

∣∣∣∣∣∣ 2n
n/2∑
i=1

Ri − E[Ri]

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
−

n
2 t

2

2
(
4δ + 2t

3

)) , (238)

and so with probability larger than 1− ϵ∣∣∣∣∣∣ 2n
n/2∑
i=1

Ri − E[Ri]

∣∣∣∣∣∣ ≤ 4

3n
log

(
2

ϵ

)
+

4

3n

√
9nδ log

(
2

ϵ

)
+ log2

(
2

ϵ

)
(239)

≤

√
16δ log

(
2
ϵ

)
n

+
8 log

(
2
ϵ

)
3n

(240)

≤ 7 log

(
2

ϵ

)√
δ

n
, (241)

since δ ≥ 1
n .

The second term in (233) (and similarly, the third term in (233)) is

2

∥θ♯∥2n

n/2∑
i=1

S2iθ
⊤
♯ Z2i−1 ∼ N

(
0,

2

∥θ♯∥2n

)
. (242)

Thus, by the standard Chernoff bound for Gaussian random variables

P

∣∣∣∣∣∣ 2

∥θ♯∥2n

n/2∑
i=1

S2iθ
⊤
♯ Z2i−1

∣∣∣∣∣∣ > t

 ≤ 2e−
∥θ♯∥

2nt2

4 , (243)

and so with probability larger than 1− ϵ∣∣∣∣∣∣ 2

∥θ♯∥2n

n/2∑
i=1

S2iθ
⊤
♯ Z2i−1

∣∣∣∣∣∣ ≤
√

4

n∥θ♯∥2
log

(
2

ϵ

)
. (244)
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The fourth term in (233) satisfies

2

∥θ♯∥2n

n/2∑
i=1

Z⊤
2iZ2i−1

d
=

2

∥θ♯∥2n

nd/2∑
i=1

WiW̃i (245)

where {Wi}i∈[nd/2] and {W̃i}i∈[nd/2] are i.i.d. and Wi, W̃i ∼ N(0, 1) are independent. It is well
known [Vershynin, 2018, Lemma 2.7.7] that the product of two subGaussian random variables (even
if they are not independent) is sub-exponential. Here, we have a simpler and exact characterization.
Letting

WiW̃i =

(
Wi + W̃i

2

)2

−

(
Wi − W̃i

2

)2

d
= V 2

i − Ṽ 2
i (246)

and since Vi = 1
2 (Wi + W̃i) ∼ N(0, 1) and Ṽi = 1

2 (Wi − W̃i) ∼ N(0, 1) are uncorrelated, they are
independent. Letting χ2

nd/2 and χ̃2
nd/2 be a pair of independent chi-square random variables with

nd/2 degrees of freedom, it then holds that

2

∥θ♯∥2n

n/2∑
i=1

Z⊤
2iZ2i−1

d
=

2

∥θ♯∥2n

(
χ2
nd/2 − χ̃2

nd/2

)
(247)

=
2

∥θ♯∥2n

(
χ2
nd/2 − E[χ2

nd/2] + E[χ̃2
nd/2]− χ̃2

nd/2

)
. (248)

From the chi-square tail bound in (330) and (331) it holds that

P
[∣∣∣χ2

nd/2 − E[χ2
nd/2]

∣∣∣ ≥ 2
√
nd/2t+ 2t

]
≤ 2e−t (249)

and so it holds with probability 1− ϵ that

∣∣∣χ2
nd/2 − E[χ2

nd/2]
∣∣∣ ≤√2nd log

(
2

ϵ

)
+ 2 log

(
2

ϵ

)
≤ 4

√
nd log

(
2

ϵ

)
. (250)

Hence, by the union bond

2

∥θ♯∥2n

n/2∑
i=1

Z⊤
i Zi−1 ≤

16 log
(
2
ϵ

)
∥θ♯∥2

√
d

n
. (251)

with probability 1− ϵ. The claim (20) follows from the analysis of the terms above, the choice of
ϵ = 2

n and a union bound.

C.2 Proof of Proposition 6: Impossibility lower bound

The effect of knowledge of θ∗ To begin, it is apparent that if ∥θ∗∥2= ∥θ♯∥2, the first term in (20)
vanishes, and the loss is bounded by the remaining terms. Furthermore, if ∥θ∗∥≤ 1 then the dominant

term in the brackets is 1
∥θ∗∥2

√
d
n , and evidently, dominant error term suffers from a penalty of

√
d,

even though, essentially, ρ is a one-dimensional parameter. If θ∗ is known exactly up to a sign, that is
θ♯ = ±θ∗ (and it is not just their norms which are equal), then the estimation error can be reduce to
the case of d = 1. This is a simple consequence of the rotational invariance of the distribution of
the Gaussian noise, which implies that the projections (±θ⊤∗ Xi)

n
i=1 are sufficient statistics for the

estimation of ρ. The estimator constructs the projections

Ui :=
θ⊤♯ Xi

∥θ♯∥
= ±∥θ∗∥·Si +

±θ⊤∗ Zi

∥θ∗∥
d
= ∥θ∗∥·Si +Wi, (252)

where Wi ∼ N(0, 1). This is effectively a one-dimensional model with parameter given by ∥θ∗∥,
and so Corollary 5 immediately follows from Theorem 4.
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Tightness of the impossibility lower bound Evidently, Corollary 5 and Proposition 6 match in
their dependence on the number of samples Θ( 1√

n
), but it is not clear what the optimal dependence

on ∥θ∗∥ is. The estimator we propose is based on the moment ρ = E[UiUi−1] and can be contrasted
with likelihood based methods as follows. Letting pδ(sn0 ) denote the probability of the sign sequence
sn0 with flip probability δ, and letting φ(x) denote the standard Gaussian density, the likelihood of un1
is given by

Pδ,θ∗(u
n
1 ) =

∑
sn0 ∈{±1}n+1

pδ(s
n
0 ) ·

∏
i∈[n]

φ(ui − si∥θ∗∥). (253)

This function is a large degree polynomial in δ on the order of n. Even if one sums only over sn0 with
the typical number of flips, then this degree is Θ(δn), which means this polynomial has a degree
which blows up with n. Thus, the MLE may indeed be sensitive to empirical errors. The update of
the Baum-Welch algorithm (or EM) can also be easily computed and contrasted with our proposed
estimator. Letting Pδ,θ∗ denote the probability distribution of the corresponding model with flip
probability δ and mean parameter θ∗, the Baum-Welch estimate δ̂(j) at iteration j is given by

δ̂(j) =
1

n

n∑
i=1

Pδ̂(j−1),θ∗
(Si ̸= Si−1 | un1 ). (254)

Evidently, the inner estimate is the probability that Si ̸= Si−1 conditioned on the entire sample un1 ,
rather than just ui, ui−1 as in our proposed estimator in (19). However, deriving sharp error rate
bounds for this estimator seems to be a challenging task.

In terms of minimax lower bounds, the difficulty arises since a reduction to an (almost) memoryless
GMM as in lower bound for the estimation of θ∗ in Theorem 2 does not seem fruitful. A standard
application of Le-Cam’s method requires bounding the total variation between models Pδ1,θ∗and
Pδ2,θ∗ for some “close” δ1, δ2 (e.g., δ1 = 0 and δ2 = ϵ). The total variation is then typically bounded
by the KL divergence. However, the KL divergence does not tensorize (due to the memory), and
using the chain rule requires evaluating the KL divergence for the process Un

1 which is not a Markov
process (but rather an HMM). Alternatively, further bounding the n-dimensional KL divergence with
a chi-square divergence, which is a convenient choice for mixture models, leads to an excessively
large bound.

The proof’s main ideas The proof is based on Le-Cam’s method that is applied to a genie-
aided model in which the estimator knows every other sign S0, S2, S4, . . . , Sn. The main technical
challenge is then to bound the total variation for this genie-aided model. A complete proof is presented
below.

Proof of Proposition 6. For a given δ ∈ [0, 1] let P (n)
δ denote the probability distribution of Un

1
under the model (252), that is Ui = t ·Si+Wi, i ∈ [n], where t ≡ ∥θ∗∥ and Si is a binary symmetric
Markov chain with flip probability δ, and P[S0 = 1] = 1

2 . It should be noted that P (n)
δ is a distribution

on Rn which is not a product distribution. To lower bound the estimation error of an estimator δ̂(Un
1 ),

we consider a genie-aided estimator which is informed with the values of S0, S2, S4, . . . Sn (assuming
for simplicity that n is even). We then set ϵ ∈ (0, 12 ) and use Le-Cam’s two point method [Wainwright,
2019, Section 15.2] with δ0 = 1

2 and δ1 = 1
2 − ϵ. Let us denote by QUn

1 Sn
0

(resp. PUn
1 Sn

0
) the joint

probability distribution of Un
1 and Sn

0 under δ = 1
2 (resp. δ = 1

2 − ϵ), and marginals and conditional
versions by standard notation, e.g., QU2U4|S0S2

. The proof of the proposition follows from Le-Cam’s
two point method, which states that for any estimator δ̂(Un

1 , S0, S2, S4, . . . , Sn), and thus also for
any less informed estimator δ̂(Un

1 ),

E
[∣∣∣δ̂ − δ

∣∣∣] ≥ ϵ

2
· (1− dTV (PU1U2···UnS0S2S4···Sn , QU1U2···UnS0S2S4···Sn)) . (255)

We next obtain a bound on the total variation distance in Lemma 17 of 4
√
nϵ for t ≤ 1√

2
and choosing

ϵ = 1
8
√
n

in (255) completes the proof of the lower bound.

Lemma 17. If t ≤ 1/
√
2 then

dTV (PU1U2···Un,S0S2S4···Sn , QU1U2···Un,S0S2S4···Sn) ≤
√

5

2
nϵ+

√
8ntϵ. (256)
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Proof. By Pinsker’s inequality (e.g., [Tsybakov, 2008, Lemma 2.5]), it holds for any pair of

probability measures P,Q that dTV(P,Q) ≤
√

1
2DKL(Q,P ). We next upper bound the KL

divergence. To this end, recall the chain rule, that for any joint distributions PXY and QXY

(with conditional distributions PY |X , QY |X) the chain rule for the KL divergence states that
DKL(PXY || QXY ) = DKL(PX || QX) + DKL(PY |X || QY |X | PX) where DKL(PY |X ||
QY |X | PX) :=

∫
DKL(PY |X || QY |X)dPX is the conditional KL divergence [Cover and Thomas,

2006, Theorem 2.5.3]. Thus,

DKL (PU1U2···Un,S0S2S4···Sn
|| QU1U2···Un,S0S2S4···Sn

)

= DKL (PS0S2S4···Sn
|| QS0S2S4···Sn

) (257)

+DKL

(
PU1U2···Un|S0S2S4···Sn

|| QU1U2···Un|S0S2S4···Sn
| PS0S2S4···Sn

)
. (258)

We next bound each of the two KL divergences appearing in (257) and (258). First,

DKL (PS0S2S4···Sn
|| QS0S2S4···Sn

)
(a)

≤ DKL

(
PSn

0
|| QSn

0

)
(259)

=
∑

sn0 ∈{−1,1}n+1

PSn
0
(sn0 ) log

PSn
0
(sn0 )

QSn
0
(sn0 )

(260)

(b)
= (n+ 1) log 2−

∑
sn0 ∈{−1,1}n+1

PSn
0
(sn0 ) log

1

PSn
0
(sn0 )

(261)

(c)
= (n+ 1) log 2−H(S0, S1, . . . , Sn) (262)

(d)
= (n+ 1) log 2−H(S0)−

n∑
i=1

H(Si | Si−1
0 ) (263)

(e)
= n · log 2−

n∑
i=1

H(Si | Si−1) (264)

(f)
= n ·

[
log 2− hb

(
1

2
− ϵ

)]
, (265)

where (a) follows from the convexity of the KL divergence (recall Sn
0 = S0, S1, S2, . . . , Sn), (b)

since QSn
0
(sn0 ) = 2−(n+1) for any sn0 ∈ {±1}n+1, (c) follows by defining the entropy H of Sn

0

(under the probability measure P ), (d) follows from the chain rule of entropy and the definition
of conditional entropy [Cover and Thomas, 2006, Theorem 2.2.1], (e) follows from Markovity
and H(S0) = log 2, (f) follows from H(Si | Si−1) = hb(δ1) = hb(

1
2 − ϵ) where hb(δ) :=

−δ log δ − (1− δ) log(1− δ) is the binary entropy function. Now, for ϵ ∈ (0, 12 ) the power series
expansion of the binary entropy function results the bound

hb

(
1

2
− ϵ

)
= log 2−

∞∑
k=1

(2ϵ)2k

2k(2k − 1)
(266)

≥ log 2− (2ϵ)2
∞∑
k=1

1

2k(2k − 1)
(267)

≥ log 2− 4ϵ2
∞∑
k=1

1

(2k − 1)2
(268)

= log 2− π2

2
ϵ2 (269)

≥ log 2− 5ϵ2. (270)

Inserting this bound into (265) results that the first term in (257) is upper bounded as

DKL (PS0S2S4···Sn
|| QS0S2S4···Sn

) ≤ 5nϵ2. (271)

We now move on to bound the second term in (258). To this end, we note that the distribution of Un
1

conditioned on S0, S2, S4, . . . Sn can be decomposed in a simple way. First, under Q, the signs Sn
0
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are i.i.d., and so Un
1 is a vector of independent samples from a Gaussian mixture model. Furthermore,

Ui depends on the sign Si but otherwise is independent of all other Sn
1 \{Si}. Hence,

QU1U2···Un|S0S2S4···Sn
= QU1

·QU2|S2
·QU3

·QU4|S4
· · ·QUn−1

·QUn|Sn
, (272)

that is, a model of independent samples, where the odd samples are drawn from a Gaussian mixture
model, and the even samples from a Gaussian location model with known sign S2i. Second, under
P , an application of Bayes rule and the Markovity assumption results the decomposition to pairs of
samples given by

PU1U2···Un|S0S2S4···Sn

= PU1U2|S0S2S4···Sn
· PU3U4|S0S2S4···SnU1U2

· · ·PUn−1Un|S0S2S4···SnU
n−2
1

(273)

= PU1U2|S0S2
· PU3U4|S2S4

· · ·PUn−1Un|Sn−2Sn
. (274)

The chain rule for the KL divergence therefore implies that

DKL

(
PU1U2···Un|S0S2S4···Sn

|| QU1U2···Un|S0S2S4···Sn
| PS0S2S4···Sn

)
(a)
= DKL

(
PU1U2|S0S2

|| QU1
·QU2|S2

| PS0S2

)
+DKL

(
PU3U4|S2S4

|| QU3
·QU4|S4

| PS2S4

)
+ · · ·+DKL

(
PUn−1Un|Sn−2Sn

|| QUn−1
·QUn|Sn

| PSn−2Sn

)
(275)

(b)
=
n

2
·DKL

(
PU1U2|S0S2

|| QU1
·QU2|S2

| PS0S2

)
(276)

(c)
=
n

2
·DKL

(
PU1|S0S2

|| QU1
| PS0S2

)
+
n

2
·DKL

(
PU2|S0S2

|| QU2|S2
| PS0S2

)
(277)

(d)
=

n

2
·DKL

(
PU1|S0S2

|| QU1
| PS0S2

)
(278)

(e)
=
n

2
·DKL

(
PU1|S0=1,S2

|| QU1
| PS2|S0=1

)
(279)

where (a) follows from (274) and the chain rule for KL divergence, and (b) follows from
the stationarity of the Markov chain, (c) follows again from the chain rule, (d) follows since
DKL(PU2|S0S2

|| QU2|S2
| PS0S2

) = DKL(PU2|S2
|| QU2|S2

| PS2
) = 0, and (e) follows since by

symmetry, we may condition on S0 = 1. Thus, the last KL divergence in (279) should be averaged
over the cases S2 = −1 and S2 = 1. For the first case, it holds that PS1|S0S2

(· | 1,−1) is a uniform
distribution on {±1}. Hence, conditioned on S0 = 1, S2 = −1, under P , U1 is a sample from a
balanced Gaussian mixture, just as under Q. So,

DKL

(
PU1|S0=1,S2=−1 || QU1

)
= 0. (280)

So, the KL divergence is only comprised of the term in the second case S2 = 1. Continuing to
evaluate the KL divergence in (279), we get

DKL

(
PU1|S0=1,S2

|| QU1
| PS2|S0=1

)
= PS2|S0=1(1) ·DKL

(
PU1|S0=1,S2=1 || QU1

)
(281)

(a)

≤ DKL

(
PU1|S0=1,S2=1 || QU1

)
(282)

(b)

≤ χ2
(
PU1|S0=1,S2=1 || QU1

)
(283)

where (a) follows since PS2|S0
(1 | 1) = (1 − δ1)

2 + δ21 ≤ 1, and (b) follows from the chi-
square divergence bound on the KL divergence (e.g., [Tsybakov, 2008, Eq. (2.27)]). Now, recall
that under QU1 , it holds that U1 ∼ 1

2N(t, 1) + 1
2N(−t, 1), and under PU1|S0=1,S2=1 it holds that

U1 ∼ (1− α) ·N(t, 1) + αN(−t, 1) where

α = PS1|S0S2
(−1 | 1, 1) = δ21

(1− δ1)2 + δ21
. (284)

Thus, the chi-square divergence in (283) is between a balanced Gaussian mixture (with probability
that S1 = 1 being 1

2 ) and an unbalanced Gaussian mixture (with probability that S1 = 1 being
1− α > 1

2 ). Let ψβ(u) denote the probability density function of U = t · S +W with P[S = −1] =

1− P[S = 1] = β and W ∼ N(0, 1). Then, if φ(u) ≡ 1√
2π
e−u2/2 is the standard Gaussian density

function, it holds that

ψβ(u) = β · φ(u+ t) + (1− β) · φ(u+ t) (285)
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= β · 1√
2π
e−(u+t)2/2 + (1− β) · 1√

2π
e−(u−t)2/2 (286)

= e−t2/2 · φ(u) ·
[
β · e−ut + (1− β) · eut

]
. (287)

Specifically, for β = 1
2 it holds that ψ1/2(u) = e−t2/2 · φ(u) · cosh(ut). Therefore, the chi-square

divergence from (283) is upper bounded as

χ2
(
PU1|S0=1,S2=1 || QU1

)
=

∫ ∞

−∞

[
PU1|S0S2

(u | 1, 1)−QU1(u)
]2

QU1
(u)

du (288)

= e−t2/2 ·
∫ ∞

−∞
φ(u)

[
(α− 1

2 ) · e
−ut + (1− α− 1

2 ) · e
ut
]2

cosh(ut)
du (289)

(a)

≤ e−t2/2 ·
∫ ∞

−∞
φ(u)

[(
α− 1

2

)
· e−ut +

(
1− α− 1

2

)
· eut

]2
du (290)

= e−t2/2 ·
∫ ∞

−∞
φ(u)

[(
α− 1

2

)2

· e−2ut + 2

(
α− 1

2

)(
1− α− 1

2

)
+

(
1− α− 1

2

)2

· e2ut
]
du

(291)

= e−t2/2 ·

[(
α− 1

2

)2

e2t
2

+ 2

(
α− 1

2

)(
1− α− 1

2

)
+

(
1− α− 1

2

)2

e2t
2

]
(292)

(b)

≤

[(
α− 1

2

)2

(1 + 4t2) + 2

(
α− 1

2

)(
1− α− 1

2

)
+

(
1− α− 1

2

)2

(1 + 4t2)

]
(293)

= 4t2 ·

[(
α− 1

2

)2

+

(
1− α− 1

2

)2
]

(294)

= 2t2 · [1− 4α(1− α)] (295)

(c)
= 2t2 ·

[
1−

(
2− 8ϵ2

2 + 8ϵ2

)2
]

(296)

= 2t2 ·
[
1− 2− 8ϵ2

2 + 8ϵ2

] [
1 +

2− 8ϵ2

2 + 8ϵ2

]
(297)

= 2t2 ·
[

64ϵ2

(2 + 8ϵ2)2

]
(298)

≤ 32t2ϵ2, (299)

where (a) follows since cosh(x) ≥ 1 for all x ∈ R, (b) follows using the assumption t ≤ 1√
2

, and so

e2t
2 ≤ 1 + 4t2, and (c) is by setting

4α(1− α) = 4
δ21(1− δ1)

2

[(1− δ1)2 + δ21 ]
2 = 4

(
1
2 − ϵ

)2 ( 1
2 + ϵ

)2[(
1
2 + ϵ

)2
+
(
1
2 − ϵ

)2]2 =

(
2− 8ϵ2

2 + 8ϵ2

)2

. (300)

Using the bound (299) in (283), We thus conclude that

DKL

(
PU1|S0=1,S2

|| QU1
| PS2|S0=1

)
≤ 32t2ϵ2 (301)

and then in (279) that the second KL term of (258) is upper bounded as

DKL

(
PU1U2···Un|S0S2S4···Sn

|| QU1U2···Un|S0S2S4···Sn
| PS0S2S4···Sn

)
≤ 16nt2ϵ2. (302)

Combining this bound with the bound on the first KL term of (258) given in (271) we obtain

DKL (PU1U2···Un,S0S2S4···Sn
|| QU1U2···Un,S0S2S4···Sn

) ≤ 5nϵ2 + 16nt2ϵ2. (303)

The aforementioned Pinsker bound on the total variation distance, and the relation
√
a+ b ≤

√
a+

√
b

then completes the proof.
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D Proofs for Section 3: Analysis of Algorithm 1

Proof of Theorem 7. Before presenting the analysis of Algorithm 1, we first specify the choices of
the constants λθ ≥ 1 and λδ ≥ 1. Recall that from Theorem 1 for a Markov model (θ∗, δ) in low
dimension, d ≤ δn, there exists a numerical constant λθ > 0,3 so that the estimator θ̂ ≡ θ̂cov(X

n
1 ; k =

1
8δ ), which assumes a perfect knowledge of δ, achieves with probability 1−O( 1n ),

loss(θ̂, θ∗) ≤ λθ · log(n) ·


∥θ∗∥, ∥θ∗∥≤

(
δd
n

)1/4
1

∥θ∗∥

√
δd
n ,

(
δd
n

)1/4 ≤ ∥θ∗∥≤
√
δ√

d
n , ∥θ∗∥≥

√
δ

(304)

if d ≤ δn, and

loss(θ̂, θ∗) ≤ λθ · log(n) ·

∥θ∗∥, ∥θ∗∥≤
√

d
n√

d
n , ∥θ∗∥≥

√
d
n

(305)

if δn ≤ d ≤ n. We assume that λθ ≥ 1, and otherwise replace λθ by 1.

In addition, it holds from Theorem 4 that for the estimator δ̂ for δ, which is based on a mismatched
mean θ♯, i.e.,

δ̂ ≡ δ̂corr(X
n
1 ; θ♯) :=

1

2
(1− ρ̂corr(X

n
1 ; θ♯)) , (306)

there exists a numerical constant λδ > 0, for which with probability larger than 1−O( 1n ),

loss(δ̂, δ) ≤ λδ

[∣∣∥θ∗∥2−∥θ♯∥2
∣∣

∥θ♯∥2
+

log(n)

∥θ♯∥2

√
d

n

]
(307)

assuming that ∥θ♯∥≤ 2 in order to simplify the bound to the regime of interest. We assume here too
that λδ ≥ 1, and otherwise replace λδ by 1.

For the analysis we assume that all three steps of the algorithm are successful estimation events. By
the union bound, this occurs with probability 1−O( 1n ).

Analysis of Step A:

First, suppose that

∥θ∗∥≤ λθ log(n) ·
(
d

n

)1/4

. (308)

Then, it holds by (304) and (305) that

∥θ̂(A)∥≤ ∥θ∗∥+λθ log(n) ·
(
δd

n

)1/4

≤ 2λθ log(n)

(
d

n

)1/4

(309)

and thus the algorithm will stop and output θ̂ = 0, for which it holds that loss(θ∗, θ̂(A)) = ∥θ∗∥. This
agrees with (26) and (27).

Second, suppose that ∥θ∗∥≥ 1. Now, it holds by (304) and (305)

∥θ̂(A)∥≥ ∥θ∗∥−λθ log(n)
√
d

n
≥ 1

2
, (310)

by the assumption d ≤ 1
4λ2

θ log2(n)
· n. Thus the algorithm will stop and output θ̂ = θ̂(A), for which it

also holds that

loss(θ∗, θ̂
(A)) ≤ λθ · log(n) ·

√
d

n
(311)

3The constants can be deduced from the proof, though they were not optimized. We reiterate that both λθ

and λδ below are universal numerical constants. In particular, they do not depend on θ∗, δ or any other problem
parameters. The subscripts are merely to emphasize that they are obtained in the estimation procedure for θ∗ and
δ, respectively.
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(irrespective of the value of δ). This also agrees with (26) and (27).

Thus, the algorithm will continue to Step B only if

λθ log(n) ·
(
d

n

)1/4

≤ ∥θ∗∥≤ 1 (312)

which we henceforth assume. As a preparation for Step B, in which θ̂(A) will play the rule of θ♯
(the mismatched mean estimator of Section 3) in an estimation of δ, we bound the absolute value∣∣∣∥θ̂(A)∥−∥θ∗∥

∣∣∣ and also show that ∥θ̂(A)∥≥ 1
2∥θ∗∥. To this end, we may repeat the arguments of the

proof of Theorem 1, and specifically, arguments similar to (126) to show that∣∣∣∥θ̂(A)∥−∥θ∗∥
∣∣∣ ≲ log(n) · ψ

(
n, d, δ =

1

2
, k = 1

)
(313)

= log(n) ·

[
2

√
δ

n
· ∥θ∗∥2+2

√
d

n
· ∥θ∗∥+13

√
d

n
+ 10

d

n

]
. (314)

Note that the probability of this event is 1−O( 1n ), and is included in the successful estimation event
mentioned in the beginning of the proof. Under the assumption ∥θ∗∥≤ 1 it then holds that∣∣∣∥θ̂(A)∥−∥θ∗∥

∣∣∣ ≤ λθ log(n) ·
√
d

n
. (315)

Note that we take λθ > 0 to be large enough so that this holds. The assumed case ∥θ∗∥≥ λθ log(n) ·(
d
n

)1/4
, and the assumption of the theorem d ≤ n

16 then imply that

1

2
∥θ∗∥≤ ∥θ̂(A)∥≤ 2∥θ∗∥≤ 2. (316)

Analysis of Step B:

Setting θ♯ = θ̂(A) and utilizing the two properties just derived in (315) and (316), (307) implies that

loss(δ̂(B), δ) ≤ λδ

[∣∣∥θ∗∥2−∥θ♯∥2
∣∣

∥θ♯∥2
+

log(n)

∥θ♯∥2

√
d

n

]
(317)

≤ 4λδλθ
log(n)

∥θ∗∥2

√
d

n
. (318)

There are two cases. First suppose that ∥θ∗∥≥
√

8λδλθ log(n)(
d

δ2n )
1/4. In this case,

loss(δ̂(B), δ) ≤ δ

2
(319)

and so
1

2
δ ≤ δ̂(B) ≤ 2δ. (320)

In addition, from (316) it holds that

64λδλθ
log(n)

∥θ̂(A)∥2

√
d

n
≥ 16λδλθ

log(n)

∥θ∗∥2

√
d

n
≥ 2δ ≥ δ̂(B) (321)

and so the algorithm will continue to Step C. Now, suppose that ∥θ∗∥≤
√

8λδλθ log(n)(
d

δ2n )
1/4.

If the algorithm stops then θ̂ = θ̂(A), and the estimation rates of the Gaussian mixture model are
achieved, which agrees with (26) and (27). If the algorithm does not stop and proceeds to Step C then
it holds that

δ̂(B) ≥ 64λδλθ
log(n)

∥θ̂(A)∥2

√
d

n
≥ 16λδλθ

log(n)

∥θ∗∥2

√
d

n
≥ δ, (322)

by (316) and the assumption ∥θ∗∥≤
√

8λδλθ log(n)(
d

δ2n )
1/4.
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To conclude, there are cases in which the algorithm proceeds to Step C. If ∥θ∗∥≥√
8λδλθ log(n)(

d
δ2n )

1/4 then it proceeds Step C and (320) holds. Otherwise, the algorithm might
proceed to Step C, yet now only δ̂(B) ≥ 1

2δ is assured.

Analysis of Step C:

If the algorithm has proceeded to Step C, then it is guaranteed that δ̂(B) ≥ 1
2δ (in any event). Recall

that, ideally, had δ was known, the choice of the block length k for the estimator θ̂cov(X
3n
2n+1; k) is

k∗ := 1
8δ (Section 2). It can be readily verified that the analysis of Section 2 is valid when using

any smaller blocklength k, and that the error rate improve as k increases from k = 1 to k = k∗. In
accordance to the analysis of Step B, there are two possible cases. If ∥θ∗∥≥

√
8λδλθ log(n)(

d
δ2n )

1/4

then it holds that 1
2δ ≤ δ̂(B) ≤ 2δ. Using k = 1

16δ̂(B)
then assures that k ≤ k∗. In addition, since

the error bound scales linearly with ψ(n, d, δ, k) (see (92)), the error can increase by a factor at
most 2. Thus, θ̂(C) achieves the error rates in (304) and (305), with a factor of 2. There are again
two cases to consider. If d ≥ 1

64λ2
δλ

2
θ log2(n)

δ4n, then the interval (
√
8λδλθ log(n)(

d
δ2n )

1/4,
√
δ) is

empty (its right end point is smaller than its left end point), and plugging k in the error rates of (304)
and (305), the resulting error rates are as in the Gaussian mixture model. If d ≤ 1

64λ2
δλ

2
θ log2(n)

δ4n

then the aforementioned interval is non-empty, and the resulting error rates agree with (26) and
(27). Otherwise, if ∥θ∗∥≤

√
8λδλθ log(n)(

d
δ2n )

1/4, and the estimator θ̂cov(X
3n
2n+1; k) operates with

k ≤ k∗, but k can be as low as 1. Thus, error rates of the Gaussian mixture are again achieved, and
this agrees with (26) and (27).

E Useful results

Bernstein’s inequality Let X1, · · · , Xℓ be independent random variables and |Xi|≤ b almost
surely for every i ∈ [ℓ]. Then [Wainwright, 2019, Proposition 2.14]4 states

P

[∣∣∣∣∣1ℓ
ℓ∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ δ

]
≤ 2 exp

(
− ℓδ2/2

1
ℓ

∑ℓ
i=1 V[Xi] + bδ/3

)
. (323)

Norm of subGaussian random vectors A random vector X ∈ Rd is said to be σ2-subGaussian if
E[X] = 0 and

E
[
exp(tv⊤X)

]
≤ exp

(
σ2t2

2

)
(324)

for every t ∈ R and every v ∈ Sd−1. Let X ∈ Rd be a σ2-subGaussian random vector. Then from
[Rigollet and Hütter, 2019, Theorem 1.19], we have for any δ > 0,

P

[
max
v∈Bd

v⊤X ≤ 4σ
√
d+ 2σ

√
2 log

(
1

δ

)]
= P

[
∥X∥≤ 4σ

√
d+ 2σ

√
2 log

(
1

δ

)]
≥ 1− δ.

(325)

Gaussian covariance estimation Let W ∈ Rℓ×d be a matrix with i.i.d. N(0, 1) entries. Then
[Wainwright, 2019, Example 6.2] implies that for any δ > 0,

P

∥∥∥∥1ℓW⊤W − Id

∥∥∥∥
op

≤ 2

(√
d

n
+ δ

)
+

(√
d

n
+ δ

)2
 ≥ 1− 2e−nδ2/2. (326)

Davis-Kahan’s perturbation bound Let Σ, Σ̂ be symmetric matrices with the same dimensions.
Let λi(Σ) and vi(Σ) denote the ith largest eigenvalue and the associated eigenvector (of unit norm)
of Σ. Fix i and assume that λi(Σ) is well-separated from the rest of the spectrum of Σ:

min
j ̸=i

|λi(Σ)− λj(Σ)| = δ > 0. (327)

4In the original form in [Wainwright, 2019, Proposition 2.14], on the right hand side of the inequality, V[Xi]
is replaced with E[X2

i ] which leads to a seemingly worse concentration bound. However, applying this form of
Bernstein’s inequality to Yi = Xi − E[Xi] allows us to conclude (323).
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Then from [Vershynin, 2018, Theorem 4.5.5], we have

loss(vi(Σ), vi(Σ̂)) ≤ 4
∥Σ− Σ̂∥op

δ
, (328)

where loss(·, ·) was defined in (3).

Packing number Let M(δ;Bd, ∥·∥) and N(δ;Bd, ∥·∥) denote the δ-packing number and δ-
covering number of Bd w.r.t. ∥·∥, respectively. From [Wainwright, 2019, Lemma 5.7 and Example
5.8], we have

M(δ;Bd, ∥·∥) ≥ N(δ;Bd, ∥·∥) ≥
(
1

δ

)d

. (329)

Chi-square tail bounds From the chi-square tail bound in [Boucheron et al., 2013, Remark 2.11]

P
[
χ2
ℓ − ℓ ≥ 2

√
ℓt+ 2t

]
≤ e−t (330)

and
P
[
χ2
ℓ − ℓ ≤ −2

√
ℓt
]
≤ e−t. (331)

F Numerical validation

In this section, we provide numerical validation of the performance of the estimators θ̂cov(X
n
1 ; k)

(cf. (14)), δ̂corr(X
n
1 ; θ♯) =

1
2 (1− ρ̂corr(X

n
1 ; θ♯)) (cf. (19)) and Algorithm 1 proposed and analyzed in

Theorem 1, Theorem 4 and Corollary 5, and Theorem 7, respectively. Numerical results for these
estimators/algorithm are plotted in Figures 3, 4 and 5, respectively.
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Figure 3: Numerical validation of the performance of the θ∗-estimator θ̂cov(X
n
1 ; k) (cf. (14)) used in

the proof of Theorem 1 which assumes a known δ. We take the minimum loss (cf. (3)) achieved by
θ̂cov

(
Xn

1 ; k = 1
8δ

)
and the trivial estimator θ̂0(Xn

1 ) = 0. We plot the loss as a function of t = ∥θ∗∥
for t ∈ [0, 5] with step size 0.05. We take n = 5000, d = 250, δ = 0.05. Therefore, δ > 1

n and
d < δn.

G Open directions

We discuss some open directions pertaining to Remark 3.

1. Suppose Zi ∼ N(0,Σ) i.i.d. for some general covariance Σ ≻ 0. If Σ is unknown, in
contrast to the observation above, then the problem becomes significantly more delicate and
challenging. A well-known and intuitive example (see, e.g., [Ferguson, 1982]) shows that
the maximum likelihood estimator (MLE) does not exist even for estimating the mean µ
and variance σ2 of a Gaussian mixture with two components N(0, 1) and N(µ, σ2) where
µ ∈ R, σ ∈ R+. In fact, fitting both mean and scale parameters was studied in [Dwivedi
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Figure 4: Numerical validation of the performance of the δ-estimator δ̂corr(X
n
1 ; θ♯) = 1

2 (1 −
ρ̂(Xn

1 ; θ♯)) where ρ̂corr(X
n
1 ; θ♯) is given by (19). This estimator is used in Theorem 4 (which

assumes θ♯ is a mismatched estimate of θ∗), Corollary 5 (which assume θ♯ = ±θ∗) and also Theorem
7 (which concerns estimating θ∗ without the knowledge of δ). We take the loss |δ̂ − δ| achieved
by δ̂corr and the trivial estimators δ̂0(Xn

1 ) = 0, δ̂1(X
n
1 ) = 1, δ̂1/2(X

n
1 ) =

1
2 . We plot the loss as a

function of t = ∥θ∗∥ for t ∈ [0, 1] with step size 0.05. We take n = 500, d = 250, δ = 0.1. In the
left panel, we assume the estimator has access to θ♯ with ∥θ♯∥= 1.2 · ∥θ∗∥. In the right panel, we
assume θ♯ = θ∗ and therefore the model (2) is equivalent to the model (252).
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Figure 5: Numerical validation of the performance of Algorithm 1 in Theorem 7. We take the
minimum loss (cf. (3)) achieved by Algorithm 1 and the trivial estimator θ̂0(X3n

1 ) = 0. We plot the
loss as a function of t = ∥θ∗∥ for t ∈ [0, 4] with step size 0.05. We take n = 100, d = 5, δ = 0.1.

et al., 2019, Ren et al., 2022] in the context of the EM algorithm, in a rather restricted setting:
The distribution of the samples is standard Gaussian N(0, Id), yet the estimator is allowed
to (over)fit a two-component Gaussian mixture, with symmetric means ±θ and a covariance
matrix σ2 · Id with any σ > 0. Even in this restricted setting, the result is rather delicate
and there are differences, e.g., between one- and multi-dimensional models. We finally
remark that even method-of-moments based estimators (as the one we use in our paper) the
analysis is also typically made for isotropic noise, e.g., [Hsu and Kakade, 2013, Wu and
Yang, 2020]. Addressing these issues in the context of Markovian model or models with
more sophisticated dependence structures is left as an important yet challenging future task.

2. Another direction beyond Gaussian noise is to look at noise with a heavy-tailed distribution.
There has been some recent progress on this topic in high-dimensional statistics [Hopkins,
2020, Hopkins et al., 2020, Cherapanamjeri et al., 2020]. The estimation error rate is
expected to depend on the decay rate of the tail. Additional ideas and techniques will most
likely be needed in order to handle heavy tails. We leave it for future research.
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