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Abstract

Data-Augmentation (DA) is known to improve performance across tasks and
datasets. We propose a method to theoretically analyze the effect of DA and study
questions such as: how many augmented samples are needed to correctly estimate
the information encoded by that DA? How does the augmentation policy impact
the final parameters of a model? We derive several quantities in close-form, such
as the expectation and variance of an image, loss, and model’s output under a given
DA distribution. Up to our knowledge, we obtain the first explicit regularizer that
corresponds to using DA during training for non-trivial transformations such as
affine transformations, color jittering, or Gaussian blur. Those derivations open
new avenues to quantify the benefits and limitations of DA. For example, given
a loss at hand, we find that common DAs require tens of thousands of samples
for the loss to be correctly estimated and for the model training to converge. We
then show that for a training loss to have reduced variance under DA sampling, the
model’s saliency map (gradient of the loss with respect to the model’s input) must
align with the smallest eigenvector of the sample’s covariance matrix under the
considered DA augmentation; this is exactly the quantity estimated and regularized
by TangentProp. Those findings also hint at a possible explanation on why models
tend to shift their focus from edges to textures when specific DAs are employed.

1 Introduction

Data Augmentation (DA) is a prevalent technique in training deep learning models [1, 2, 3]. These
Deep Networks (DNs) models fγ , governed by some parameters γ ∈ Γ, are trained on the train set
and expected to generalize to unseen samples (test set). To combat the tendency of DNs to overfit [4],
producing a large train-test performance gap, regularization and in particular DA is heavily employed,
amongst other mechanisms such as weight-decay [5, 6]. The benefit of DA over those alternatives is
that defining input transformations that preserve the semantics of their inputs is a relatively simple
task, at least in computer vision or acoustic processing [7, 8, 9]. Furthermore, if the DA is well
designed and rich enough, it can effectively bring the number of non-trivial training samples close
to the theoretical limits ensuring that any performance gap between the train and test set vanishes
[10] as empirically observed in various scenarios [11, 12]. In fact, DA has proven so useful that
novel training methods such as self-supervised learning (SSL) entirely rely on DA [13, 14] to learn
meaningful data representations.

Despite its empirical effectiveness, our understanding of DA has many open questions, three of which
we propose to study: (a) how do different DAs impact the model’s parameters during training?;
(b) how sample-efficient is the DA sampling, i.e., how many DA samples a model must observe
to converge?; and (c) how sensitive is a loss/model to the DA sampling and how this variance
evolves during training as a function of the model’s ability to minimize the loss at hand, and as a
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original image I

zoom θ = 0.6

zoom θ ∼ N (0.6, 0.05)

transformed image I(θ)

expected image Eθ[I(θ)]

We model the transformation of an im-
age through a matrix-vector multipli-
cation of the flattened image (red) and
a sparse matrix (blue) representing the
transform.

Figure 1: We propose a novel way to express Data Augmentation (DA) analytically that allows us to understand
the impact of DA on the learned parameters of a model and quantify DA’s sample efficiency. This allows us to
compute the analytical expectation and variance of the transformed data (or any function computed with it) in
close-form with respect to the transformation parameters.

function of the model’s parameters? Our goal is to analytically derive some preliminary answers and
insights into those three areas enabled by a novel image transformation operator that we introduce in
Section 3.2 coined Data-Space Transform (DST). DST employs a mathematical formulation of input
transformations akin to the one of [15] although slightly more general as we do not require the DA to
form a group. We study the zoom/translation/shearing/rotation DAs in the main text and Gaussian
blur, grayscale, color jitter and random crop in Appendix C; code is available1. We summarize our
contributions below:

(a) we derive the analytical first order moments of augmented samples, and of the losses employing
augmented samples (Section 3.3), effectively providing us with the explicit regularizer induced
by each DA (Section 3.4)

(b) we quantify the number of DA samples that are required for a model/loss to obtain a correct
estimate of the information conveyed by that DA (Section 4.1)

(c) we derive the sensitivity, i.e. variance, of a given loss and model under a DA policy (Section 4.2)
leading us to rediscover from first principles a popular deep network regularizer: TangentProp,
as being the natural regularization to employ to minimize the loss variance (Section 4.3).

Upshot of gained insights: (a) will show us that the explicit DA regularizer corresponds to a gener-
alized Tikhonov regularizer that depends on each sample’s covariance matrix largest eigenvectors; the
kernel space of the model’s Jacobian matrix aligns with the data manifold tangent space as modeled
by the DA; (b) will show us that the number of augmented samples required for a loss/model to
correctly estimate the information provided by a DA of a single sample is on the order of 104. Even
when combining the information of thousands of samples, we find that the entire train set must be
augmented at least 50× for a DA policy to be correctly learned by a model; lastly (c) will quantify
the loss variance as a simple function of the model’s Jacobian matrix, and the eigenvectors of the
augmented sample variance matrix. Regardless of the model or task-at-hand, the loss sensitivity to
random DA sampling goes down as the kernel of a model’s Jacobian matrix aligns with the principal
directions of the data manifold tangent space; as a by-product, we recover TangentProp as the natural
regularizer minimizing the loss sensitivity to DA sampling.

1https://github.com/facebookresearch/analytical_augmentation_moments
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Limitations: all of our image-space results e.g. expectation and variance of images under DA are
exact, no approximation is employed. Results on a model’s output/loss are provided both in the
case of a linear model and of a nonlinear model. For the former, results are exact, for the latter a
third-order Taylor approximations is employed which is common and has been shown to provide
accurate enough approximations to safely rely on the insights/quantities obtained e.g. see Sec. A.2 of
[16]. All the proofs and implementation details are provided in the appendix. We also emphasize
that our primary goal is to provide a theoretical understanding of DA, to quantify its efficiency and
impact onto learned models and to derive and visualize its explicit regularizer; we leave the search
for tractable alternatives to DA based on those insights for future work.

2 Background

Existing Explicit Regularizers From Data-Augmentation. It is widely accepted that data-
augmentation (DA) regularizes a model towards the transformations that are modeled [5, 17], and
that this regularization impacts performances significantly and positively, possibly as much as the
regularization offered by the choice of DN architecture [18] and optimizer [19].
To gain precious insights into the impact of DA onto the learned functional fγ , the most com-
mon strategy is to derive the explicit regularizer that directly acts upon fγ in the same manner
as if one were to use DA during training. This explicit derivation is however challenging and
so far has been limited to DA strategies such as additive white noise or multiplicative binary
noise applied identically and independently throughout the image and/or feature maps, as with
dropout [20, 21]. In those settings, various works have studied in the linear regime the relation
between such DA and its equivalence to using Tikhonov regularization[22] or weight decay [23] as
in minW

∑N
n=1 Eε∼N (0,σ)

[
‖yn −W (xn + ε)‖22

]
= minW

∑N
n=1 ‖yn−Wxn‖22 +λ(σ)‖W ‖2F

[24]. More recently, [25, 26] extended the case of additive white noise to nonlinear models and con-
cluded that additive white noise DA corresponds to adding an explicit Frobenius norm regularization
onto the Jacobian of fθ evaluated at each data sample.
Going to more involved DA strategies e.g. translations or zooms of the input images is challenging
and has so far only been studied from an empirical perspective. For example, [27, 28, 29] performed
thorough ablation studies on the interplay between DAs and a collection of known explicit regularizers
to find correlations between them. It was concluded that weight-decay (the explicit regularizer of
additive white noise) does not relate to those more advanced DAs. This also led other studies to
suggest that norm-based regularization might be insufficient to describe the implicit regularization of
DAs involving advanced image transformations [30]. We debunk this last claim in Sec. 3.3.

Coordinate Space Transformation. Throughout this paper, we will consider a two-dimensional
image I(x, y) to be at least square-integrable I ∈ L2(R2) [31]. Multi-channel images are dealt
with by treating each channel as its own single-channel image, as commonly done in practice [1].
As we are interested in practical cases, we will often assume that I has compact support e.g. has
nonzero values only within a bounded domain such as [0, 1]2. Visualizing this image thus corresponds
to displaying the sampled values of I on a regular grid (pixel positions) of [0, 1]2 [32]. The most
common formulation to apply a transformation on the image I to obtain the transformed image T
is to transform the image coordinates [33, 34, 35]. That is, a mapping t : R2 7→ R2 describes what
coordinate t(u, v) of the original image I maps to the coordinate u, v of the transformed image T as
in

T (u, v) = I(t(u, v)). (1)
This mapping t often comes with some parameters θ governing the underlying transformation as in

tθ(x, y) = [x− θ1, y − θ2]T , tθ(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
, tθ(x, y) = [θ1x, θ2y]T , (2)

for translation, rotation and zoom respectively. We provide a visual depiction of the zoom transfor-
mation applied in coordinate space in Fig. 6, in the appendix.

The formulation of Eq. 1 has two key benefits. First, it allows a simple and intuitive design of
t to obtain novel transformations. Second, it is computationally efficient as the coordinate-space
of images are 2/3-dimensional. Those benefits have led to e.g. the Spatial Transformer Network
[36]. On the other hand, Eq. 1 has one major drawback for our purpose: the exact moments of the
transformed image under random θ parameters are not tractable due to the composition of t with the
nonlinear mapping I . And as it will become clear in Section 3.1, those quantities are needed to derive
DAs’ explicit regularizers.
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original hor.+ver. transl. horizontal shear vertical shear rotation zoom

Figure 2: Top row: sparse matrix Eθ[M(θ)] producing the expected image via Eθ[t(θ)] = Eθ[M(θ)]x
(recall Eq. (7) and the discussion below Theorem 3.3), here with DA distributions ofN (0, 0.04)⊗N (0, 0.04),
N (0, 0.2), N (0, 0.1) and N (1, 0.1) for each column respectively. This sparse matrix is independent of the
image and derived in close-form (Theorem 3.3). Middle & Bottom row: are two images that depict for each
column the “expected image” under each DA. Estimating those images (and any loss employing them) only
through sampling the DA augmentations would require tens of thousands of samples (see Fig. 4). Gaussian blur,
grayscale, color jitter and random crop DA are provided in Appendix C along with discussions on how to extend
our results to CutOut and MixUp.

3 Analytical Moments of Transformed Images Enable Infinite Dataset
Training

We first motivate this study by formulating the training process under DA sampling as doing a
Monte-Carlo estimate of the true (unknown) expected loss under that DA distribution (Section 3.1).
Going beyond this sampling/estimation procedures requires knowledge of the average and variance
of a transformed sample, i.e. the first two centered-moments. This is our motivation to construct a
novel Data-Space Transformation (DST) (Section 3.2) that will enable close-form formula for those
moments (Section 3.3). From those, we will be able to remove the need to sample transformed images
to train a model, by obtaining the close-form expected loss Section 3.4, under which training can be
performed sampling-free.

3.1 Motivation: Current Data-Augmentation Training Performs Monte-Carlo Estimation

Training a model with DA consists in (i) sampling transformed images at each training iteration for
each sample xn as in Tθn(xn) with θn ∼ θ a randomly sampled DA parameter e.g. the amount of
translation to apply, (ii) evaluating the loss L on the transformed sample/mini-batch/dataset, and (iii)
using some flavor of gradient descent to update the parameters γ of the model fγ .

This training procedure corresponds to a one-sample Monte-Carlo (MC) estimate [37, 38] of the
expected loss

N∑
n=1

Eθ [L (fγ(Tθ(xn))] ≈
N∑
n=1

L(fγ(Tθn(xn)), (3)

with θn i.i.d samples of θ repeatedly sampled at each epoch. In a supervised setting, the loss would
also receive a per-sample target yn as input. Although a one-sample estimate might be insufficient to
apply the central limit theorem [39] and guarantee training convergence, the combination of multiple
samples in mini-batch training does provide convergence in most cases. Although, methods such
as Self-Supervised Learning that heavily rely on DA, tend to be more sensitive and unstable [40].
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To avoid such instabilities, and to incorporate all the DA transformations of xn into the model’s
parameter update, one would be tempted to compute the model parameters’ gradient on the expected
loss (left-hand side of Eq. (3)) (see Section 3.4). Knowledge of the expected loss would also prove
useful to measure the quality of the MC estimate (see Section 4.1). Note that even in the least-square
setting, such approximation is employed as the expected loss under DAs is not know. Hence, one
commonly obtain many DA samples, and then apply the least-square formula on this augmented
training set, which is highly inefficient. Alternatively, this study will obtain the optimum least-square
parameters under DA sampling (Theorem 3.4) i.e. only using the given training set, we directly
obtain the parameters that would correspond to sampling infinitely many DA samples and applying
the usual least-square formula on this infinite training set.

The close-form expected loss requires knowledge of the average and variance of the transformed
sample Tθ(xn) taken with respect to the random variable θ. Hence, we first propose to formulate
a novel and tractable augmentation model (Section 3.2) that will allow us to obtain those moments
analytically in Section 3.3.

3.2 Proposed Data-Space Transformation (DST)

Instead of altering the coordinate positions of an image, as done in the coordinate-space transformation
of Eq. (1), we propose to alter the image basis functions.

Going back to the construction of functions, one easily recalls that any (image) function can be
expanded into a basis as in I(u, v) =

∫
I(x, y)δ(u−x, v−y)dxdy with δ the usual Dirac distribution.

Suppose for now that we consider a horizontal translation by a constant θ. Then, one can obtain that
translated image via

Tθ(I)(u, v) =

∫
I(x, y)δ(u− x− θ, v − y)dxdy, (4)

hence, and crucial to our study, we apply the transformation onto the basis functions onto which the
image is evaluated, rather than onto the original image itself. As the image is now constant with
respect to the transformation parameter θ, and as the basis functions have some convenient analytical
forms, the derivation of the transformed images moments, under θ, will become straightforward.
Because the transformed image T is now obtained by combining its pixel values (recall Eq. (4)) we
coin this transform as Data-Space Transform (DST), formally defined below.

Definition 3.1 (Data-Space Transform). We define the DST of an image I ∈ L2(R2) producing the
transformed image Tθ(I) ∈ L2(R2) as

Tθ(I)(u, v) =

∫
I(x, y)hθ(u, v, x, y)dxdy, (5)

with hθ(u, v, ., .) ∈ C∞0 (R2) encoding the transformation.

In Definition 3.1, we only impose for hθ(u, v, ., .) to be with compact support. In fact, one should
interpret hθ(u, v, ., .) as a distribution whose purpose is to evaluate I at a desired (coordinate) position
on its domain. This evaluation –depending on the form of hθ(u, v, ., .)– can extract a single pixel-
value of the image I at a desired location (as in Eq. (4)), or can combine multiple values e.g. with
hθ(u, v, ., .) being a bump function. Additionally, we do not impose any restriction on the invertibility
of this mapping i.e. Tθ(I)(u, v) can disregard parts of the original image.

Coordinate-space transformations as DSTs. The coordinate-space transformation and the pro-
posed DST (Definition 3.1) act in different spaces: the image coordinates and the image pixel values,
respectively. Nevertheless, this does not limit the range of transformations that can be applied to an im-
age. The following statement provides a simple recipe to turn any already employed coordinate-space
transformation into a DST.

Proposition 3.2. Any coordinate-space transformation (1) using tθ : R2 7→ R2 can be expressed as
a data-space transformation (5) by setting hθ(u, v, x, y) = δ(tθ(x, y)− [u, v]T ).

We will focus in the main text on zoom/rotation/translation/shearing, and we propose in Appendix C
the case of Gaussian blur, color jittering, random crop, along with a discussion on extending our results
to CutMix [41] and MixUp [42]. Using Proposition 3.2, we obtain the DST operators hθ(u, v, x, y)
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to be

δ(u− x+ θ1, v − y + θ2), δ(u− x− θ1y, v − y − θ2x), δ(u− θx, v − θy),

δ(u− cos(θ)x+ sin(θ)y, v − sin(θ)x− cos(θ)y), (6)

for the vertical/horizontal translation, vertical/horizontal shearing, zoom and rotation respectively
(compare with Eq. 2). Before focusing on the analytical moments of the DST samples, we describe
how those operators are applied in a discrete setting.

Discretized version. We now describe how any DST of a discrete image, flattened as a vector, can be
expressed as a matrix-vector product with the matrix entries depending on the employed DA and its
parameter θ, as we display in Figs. 1 and 2. The functional form of the DST from Eq. (5) producing
the target image at a specific position Tθ(I)(u, v) is linear in the original image I . Hence, in the
discrete setting, the continuous integral over the image domain is replaced with a summation with
indices based on the desired sampling/resolution of I , i.e. the position of the pixel spatial positions.
Expressing linear operators as matrix-vector products will greatly ease our development, we will
denote by x ∈ Rhw the flattened (h× w) discrete images I . Hence, our data-space transformation,
given some parameters θ, takes the form of

t(θ) = M(θ)x, (7)

with t(θ) ∈ Rhw the flattened transformed image (which can be reshaped as desired) andM(θ) ∈
Rhw×hw the matrix whose rows encode the discrete and flattened hθ(u, v, ., .). For example, and
employing a uniform grid sampling for illustration,M(θ)i,j = hθ(i//w, i%w, j//w, j%w) with //
representing the floor division and % the modulo operation. For the case of multi-channel images, we
consider without loss of generality the application of the matrix-vector operation on each channel
separately. We depict this operation along with the exact form of M(θ) for the case of the zoom
transformation in Fig. 1. A crucial property of the matrixM(θ) lies in its sparsity, in fact, for most
DAs the transformations rely on displacing pixels rather than combining them. Hence, although
M(θ)’s total number of entries grow quadratically with the number of pixels in I , the number of
nonzero entries only grows linearly with it.

3.3 Analytical Expectation and Variance of Transformed Images

The above construction (Definition 3.1) turns out to make the analytical form of the first two moments
of an augmented sample much simpler to derive. As this derivation is at the core of our main
contribution, we propose a step-by-step derivation of Eθ [Tθ(I)] for the case of horizontal translation
(recall Eq. (4)).

Let’s consider again the continuous model (the discrete version is provided after Theorem 3.3). Using
Fubini’s theorem to switch the order of integration and recalling Eq. (5), we have that

Eθ [Tθ(I)(u, v)] =

∫
I(x, y)Eθ [hθ(u, v, x, y)]dxdy. (8)

Using the definition for hθ from Eq. (6) for horizontal translation, Eθ [hθ(u, v, x, y)] becomes

Eθ [δ(u− x− θ, v − y)] =

∫
δ(u− x− θ, v − y)p(θ)dθ = p(u− x)δ(v − y),

with p the density function of θ prescribing how the translation parameter is distributed. As a result,
in this univariate translation case, the expected augmented image at coordinate (u, v) is given by

Eθ [Tθ(I)(u, v)] =

∫
I(x, y)p(u− x)δ(v − y)dxdy =

∫
I(x, v)p(u− x)dx, (9)

which can be further simplified into Eθ [Tθ(I)(., v)] = I(., v) ? p. Hence, the expected horizontally-
translated image is the convolution (on the x-axis only) between the original image I and the
univariate density function p. We formalize this for the transformations of Eq. (6) below.
Theorem 3.3. The analytical form of Eθ [hθ(u, v, x, y)], used to obtain the expected transformed
image (recall Eq. (8)) is given by

p(u− x, v − y) (translation), and p(u/x)δ(u/x− v/y) (rotation), (10)

other cases and second-order moment Eθ[Tθ(xn)Tθ(xn)T ] are deferred to the proof. (Proof in
Appendix F.)
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Figure 3: First column: top eigenvectors (Q matrix in Theorem 3.4) of the sample variance matrix V[T (x)]
for rotation/shear augmentations with U(−15◦, 15◦) and U(−15◦, 15◦)⊗ U(−15◦, 15◦) respectively. As per
Theorem 4.1, training aligns the model’s Jacobian matrix kernel to the largest eigenvectors of V[T (x)] to
reduce the loss variance under the respective DA sampling. Second column: number of nonzero eigenvalues
of V[T (x)] (nonzero elements in Λ in Theorem 3.4) for increasing transformation amplitude (the datum
dimension is 114× 114× 3). We observe that the dimension of the subspace spanned by augmented images
constraint increases linearly with the amplitude of the transformation. Third column: Pixel variance i.e.
diagonal of V[T (x)] reshapes as an image. Fourth column: pixel covariance between one background pixel
and all other pixels, i.e. 700th row of V[T (x)] reshaped as an image for the cat of Fig. 2 under translations
(N (0, 0.1)⊗N (0, 0.1)). As per Theorem 3.4, the variance of the pixel values, seen on the left, being much
higher for the edges of the cat than for its interior body/texture pushes the model to focus on the cat texture, a
phenomenon empirically observed in deep networks [43, 44].

An interesting observation obtained from the above ties the expected image under random 2-
dimensional translations with (2-dimensional) density p to the convolution I ? p; this provides
a new portal to study and interpret convolutions with nonnegative, sum-to-one filters p. Again, and as
per Eq. (7), the discretized version of the expected image takes the form of Eθ[t(θ)] = Eθ[M(θ)]x
with the entries of Eθ[M(θ)] given by discretizing Eq. (10). We depict this expected matrix for
various transformations as well as their application onto two different discrete images in Fig. 2, and
we now proceed on deriving the left-hand side of Eq. (3) i.e. the explicit DA regularizer.

3.4 The Explicit Regularizer of Data-Augmentations

To keep notations as light as possible, we first consider a linear regression model with Mean Squared
Error (MSE), the nonlinear case will be studied in Section 4. In that setting, the expected loss under
DA sampling (recall Eq. (3)) becomes

L =

N∑
n=1

Eθ
[
‖yn −WTθ(xn)− b‖22

]
, (11)

with xn ∈ RD, n = 1, . . . , N the input (flattened) nth image In, yn ∈ RK the nth target vector,
andW ∈ RK×D, b ∈ RK the model’s parameters. Recall from Section 3.1 that to learnW under
DA, the current strategy consists in performing a Monte-Carlo (MC) estimation. Instead, let’s derive
(detailed derivation in Appendix D) the exact loss of Eq. (11) as a function of the sample mean and
variance under the consider DA. We will drop the θ subscript for clarity to obtain

L =

N∑
n=1

‖yn −WE [T (xn)]− b‖22 + ‖WQ(x)Λ(x)
1
2 ‖2F , (12)

with the spectral decomposition Q(x)Λ(x)Q(x)T = V [T (x)]. The right term in Eq. (12) is the
explicit DA regularizer. It pushes the kernel space ofW to align with the largest principal directions
of the data manifold tangent space, as modeled by the DA. In fact, the largest eigenvectors inQ(x)
represent the principal directions of the data manifold tangent space at x, as encoded via V [T (x)].

We propose in Fig. 3 visualization of Q and Λ for different DAs, illustrating how each DA policy
impacts the model’s parameterW through the regularization of Eq. (12). The knowledge of E [T (x)]
and V [T (x)] from Theorem 3.3 finally enables to train a (linear) model on the true expected loss
(Eq. (12)) as we formalize below.
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Theorem 3.4. Training a linear model with MSE and infinite DA sampling is equivalent to minimizing
Eq. (12) and produces the optimalW ∗ model’s parameter

W ∗ =

(
N∑
n=1

(yn − b)E[T (xn)]T

)(
N∑
n=1

E[T (xn)]E[T (xn)]T +

N∑
n=1

V[T (xn)]

)−1

. (13)

Not surprisingly, whenever the DA is identity, E[T (xn)] = xn,V[T (xn)] = 0 and thus Eq. (13)
recovers exactly the standard least-square solution. We visualize V[T (xn)] for the translation DA in
Fig. 3. The same line of result can be derived in the nonlinear setting by assuming that the DA is
restricted to small transformations. In that case, one leverages a truncated Taylor approximation of
the nonlinear model2 and recovers that (local) DA applies the same regularization as in Eq. (12) but
with the model’s Jacobian matrix Jfγ(xn) in-place ofW (more details in Section 4.3).

Given the above derivation of the exact expected loss, we can now turn to precisely measure how
accurate is the MC estimate commonly used to train models under DA sampling.

4 Data-Augmentation Sampling Efficiency and Loss Sensitivity
In this section we study the convergence of the MC estimate (Section 4.1), and provide variance
analysis of that estimate as a function of the model’s Jacobian matrix and the sample variance
eigenvectors (Section 4.2), concluding by the (re-)discovery of TangentProp from first principles
(Section 4.3). Those results hold regardless of the type of DA employed. Additionally, the analysis is
done on a single sample to ease notation, in the i.i.d. setting, simply sum over all the training samples
to analyze the training set.

4.1 Empirical Monte-Carlo Convergence of Transformed Images
Given the close-form average image and average loss, we empirically measure how efficient is the
MC estimation from Eq. (3).
We first propose in Fig. 4 a constructed (64× 64) image for which we compute the expected loss
(Eq. (12)) and the MC estimate (right-hand side of Eq. (3)). Surprisingly, we obtain that even for
such a simple image and translation DA, between 1000 and 10000 samples are required to correctly
estimate the MSE loss from the augmented samples. In a more practical scenario, one could rightfully
argue that the combination of the DA samples from different images allows to obtain a better estimate
with a smaller amount of augmentations per sample. Hence, we provide in Fig. 5 that experiment
using a linear model on MNIST [45] with varying train set size. We observe that as the number
of samples grows as the required number of augmentation per sample reduces. Nevertheless, even
with thousands of samples, at least 50 augmentations per sample are required to provide an accurate
estimate (reproduction with nonlinear models given in Fig. 7).
We now propose to specifically quantify the sensitivity of the MC estimate to DA sampling.

4.2 Loss Sensitivity Under Data-Augmentation Sampling in the Linear and Nonlinear
Regime

Recalling Section 3.1, current DA training is performed on a MC estimate of the loss. The estimator’s
variance [46] is proportional to the variance of the quantity being estimated: V[(L ◦ f)(T (x))]. We
now characterize when, and why, would an MC estimator converge for a given model.

By leveraging the delta method [47, 48] i.e. a truncated Taylor expansion of the model and loss
function mapping as L ◦ f , we have

V[(L ◦ f)(T (x))] ≈‖∇(L ◦ f)(E[T (x)])‖2V[T (x)] , (14)

with ‖u‖2A , uTAu. Noticing that V[T (x)] = E[T (x)T (x)T ]−E[T (x)]E[T (x)]T and using the
close-form moments of DST samples from Theorem 3.3, it is possible to write out Eq. (14) explicitly
for model and DA specific analysis. We visualize V[T (x)] in Fig. 3.

Linear regression case. To gain some insight into Eq. (14), let’s first consider the linear regression
case leading to V[(L ◦ f)(T (x))] ≈ ‖y −WE[T (x)]− b‖2WV[T (x)]WT . Hence, the estimated loss
variance depends (i) on the model predicting the correct output when observing the expected sample
E[T (x)], and (ii) on the smallest right singular vector ofW to align with the largest eigenvectors of
V[T (x)], echoing our observation below Eq. (12).

2as commonly done, see e.g. Sec. A.2 from [16] for justification and approximation error analysis
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original image expected
Eθ [Tθ(x)]

estimated
(N = 100)

estimated
(N = 10000)

`2 between MC estimate of the expected image (left) and expected loss (right)

N (log-scale) N (log-scale)

Figure 4: Analytical expected synthetic image un-
der translation (N (0, 0.1)⊗N (0, 0.1)) against its N -
sample Monte-Carlo estimate (top row), `2 distance be-
tween the true and estimated images (bottom left) and
the true and estimated MSE loss with a random Gaus-
sian y,W (bottom right). In red is depicted the stan-
dard deviation of the independent Monte-Carlo runs.
Clearly we observe that even on a simple (64× 64) im-
age and using the translation transformation, thousands
of sampled images are necessary to provide an accurate
estimate of the loss at hand. That is, sampling based
data-augmentations are a rather inefficient medium to
employ for injecting prior information into a model as
this prior information will only emerge after tens of
thousands of images have been sampled.

Figure 5: MNIST with linear model and trans-
lation DA with varying number of samples (col-
ored lines) against the use of the expected loss
(black line). We depict the MSE loss (left) and
the accuracy (right) on the test set. At first, even
a 50× DA-based increase in dataset size fails to
provide the performances reached by employing
the analytical expected loss. As the training size
increases, as the DA samples get redundant with
the added samples closing the performance gap
(the case of nonlinear model is provided in Fig. 7).
See Tables 2 to 5 for additional table of results
with standard deviation.

General case. Since the result from Eq. (14) holds in the general setting, we can generalize the above
observation and formalize it into the following statement.

Theorem 4.1. The variance of the loss’s MC estimate (recall Eq. (3)) for an input xn goes to 0
if the loss gradient ∇L(f(E[T (x)])) goes to 0, or if the kernel of the model’s Jacobian matrix
Jf(E[T (x)]) aligns with the largest eigenvectors of the sample variance V[T (x)].

The proof of the above statement simply starts from Eq. (14) and applies the Cauchy-Schwarz
inequality two times to obtain

V[(L ◦ f)(T (x))] ≤ ‖∇L(f(E[T (x)]))‖42 × ‖Jf(E[T (x)])Q(x)Λ
1
2 (x)‖4F , (15)

with decomposition V[T (x)] = Q(x)Λ(x)Q(x)T . From Eq. (15), it is quite realistic to assume that
the model’s Jacobian does not collapse to 0 (this would not minimize the training loss in general).
Hence, the most realistic case of Theorem 4.1 concerns the alignment between the model’s Jacobian
matrix kernel space and the top eigenvectors of V[T (x)]. However, for models like ResNet DNs
[49], the loss variance can only reduce to 0 if the model minimizes the loss at the expected input
since the Jacobian matrix is always full-rank. We recall that the above relied on the delta method to
approximate the intractable LHS of Eq. (14) (see footnote on Page 7).

4.3 Explicit Loss Sensitivity Minimization Provably Recovers TangentProp
The expected loss (Eq. (3)) has been derived in the linear regression setting (Eq. (12)). But in a more
general scenario, and as discussed below Theorem 3.4, this expectation might not be tractable and
thus needs to be approximated e.g. based on a Taylor expansion of the loss and model. Alternatively
to using the approximated expectation, one could employ the usual MC estimate of the expectation
(right-hand side of Eq. (3)), and leverage the MC estimator variance obtained in Eq. (15) as a
regularizer. We show here that both approaches are equivalent, and recover a popular regularizer
known as TangentProp [50]. Although various extensions of TangentProp have been introduced
[51, 52] no principled derivation of it has yet been proposed. Using the same argument as in
Section 4.2, the expectation of a nonlinear transformation of a random variable (T (xn)) can be
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Train. size (N) #DA=1 #DA=2 #DA=5 #DA=10 expectation
(#DA=∞)
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∈

[0
.9

,1
.1

]% M
N

IS
T N=100 10.39±1.82 11.70±2.02 10.60 ±1.34 24.30±1.92 33.44

N=1000 21.71±1.61 32.57±1.95 40.61±2.20 45.16±2.38 48.55
N=10000 47.82±2.20 51.98±1.33 54.97±0.92 56.29±0.66 57.16

E
M

N
IS

T N=100 4.48±0.85 4.36±0.57 3.85±0.40 8.38±0.58 13.34
N=1000 8.45±0.53 14.79±0.60 22.51±0.63 27.49±0.60 32.18
N=10000 30.49±0.75 35.63±0.50 39.98±0.49 42.13±0.40 43.30

FM
N

IS
T N=100 11.18±3.31 9.49±1.40 10.65±1.66 23.10±2.17 35.31

N=1000 24.43±2.75 38.71±1.82 47.49±2.07 52.1±1.65 54.92
N=10000 52.60±2.57 54.9±1.70 56.84±1.42 57.29±1.44 57.63

ro
ta
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∈

[-
0.

05
,0

.0
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om
∈
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1.

02
]% M
N

IS
T N=100 12.72±1.95 12.42±2.02 12.45±1.47 45.82±1.53 55.83

N=1000 50.44±1.07 64.96±0.95 72.64±0.67 75.06±0.38 76.15
N=10000 78.54±0.22 79.76±0.24 80.49±0.20 80.85±0.17 80.86

E
M

N
IS

T N=100 4.69±0.73 4.77±0.61 4.43±0.34 12.79±0.51 19.53
N=1000 16.74±0.47 31.10±0.29 40.59±0.39 44.45±0.34 46.53
N=10000 49.13±0.30 51.98±0.13 53.62±0.14 54.30±0.16 54.61

FM
N

IS
T N=100 11.51±2.12 12.43±1.99 11.59±1.40 37.08±1.23 55.22

N=1000 46.97±1.17 66.22±0.51 72.75±0.42 74.56±0.35 75.03
N=10000 75.2±0.33 75.89±0.27 76.49±0.32 76.63±0.18 76.71

Table 1: Reprise of Fig. 4 reporting test set classification performances averaged over 10 runs, with standard
deviation corresponding to different DA realizations. For each specific run and configuration, all scenarios
have access to the exact same training set, #DA represents the number of new samples introduced for each
training sample, total training set size is thus N×(1+#DA). We observe that in the large dataset size regime
(N = 10000) the gap between low number of DA samples and the expected regularizer is marginal which
is expected as the introduced DA variations become redundant with the training set samples. This marginal
gap can be slightly increased by employing stronger DA (compare top half and bottom half of the table).
However, in the small dataset size regime, there is an important gain provided by employing the regularizer
even when compared to observing many DA samples (#DA=10). This indicates a potentially crucial regime
in which introducing the analytical regularizer helps. More surprisingly, this is also the case if part of DA
policy is misaligned with the task at hand (e.g. rotation for FashionMNIST). Additional empirical results with
more training set sizes (N ∈ {100, 200, 500, 1000, 3000, 10000, 20000}) and DA policies (one per table) are
available in Tables 2 to 5 for MNIST, in Tables 6 to 9 for EMNIST, and in Tables 10 to 13 for FashionMNIST

approximated from the expectation of the Taylor expansion (detailed derivations in Appendix E) from
which an upper-bound is obtained by applying the Cauchy-Schwarz inequality

E[(L ◦ f)(T (x))] ≤ (L ◦ f)(E[T (x)]) + κ(x) ‖Jf(E[T (x)])Q(x)Λ(x)
1
2 ‖2F︸ ︷︷ ︸

TangentProp regularization

,

with κ(x) ≥ 0 and the notations from Eq. (15). As a result, the TangentProp regularizer naturally
appears when using a Taylor approximation of the expected loss, and it corresponds to adding an
explicit loss variance regularization term (compare the TangentProp with Eq. (15)). We thus obtained
from first principles that TangentProp emerges naturally when considering the second order Taylor
approximation of the expected loss given a DA.

5 Conclusions and Limitations
In this paper, we proposed a novel set of mathematical tools (Sections 3.2 and 3.3) under which it is
possible to study DA and to provably answer some of the open questions around the efficiency and
impact of DA to train a model. We first obtained the explicit regularizer produced by different DAs in
Section 3.4. This led to the following observation: the kernel space of the W matrix is pushed to
align with the largest eigenvectors of the sample covariance matrix. This was then studied in a more
general setting in Section 4.2 for nonlinear models when characterizing the loss variance under DA
sampling. We also observed that Monte-Carlo sampling of transformed images is highly inefficient
(Section 4.1), even if similar training samples combine their underlying information within a dataset.
Lastly, those derivations led us to provably derive a known regularizer —TangentProp— as being the
natural minimizer of a model’s loss variance. The main limitation of the current analysis concerns
nonlinear models for which we rely on a third-order Taylor expansion.
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