
A Relations to Algorithmic Stability of SGD
In this section, we formally introduce notions of algorithmic stability and relate them to results
presented in the paper. Let 𝑍 denote a set of datapoints and Z a distribution over 𝑍 . For two training
sets 𝑆, 𝑆′ ∈ 𝑍𝑛, we write 𝑆 ≃ 𝑆′ if they differ in exactly one datapoint. For a learning algorithm
A : 𝑍∗ → ℝ𝑑 , we define the uniform argument stability (UAS) of A by

ϵAstab (𝑛) B max
𝑆≃𝑆′, |𝑆 |=𝑛



A(𝑆) −A(𝑆′)

, (4)

and the average argument stability (AAS) of A by

ϵAavgstab (𝑛) B max
Z

{
1
𝑛

𝑛∑︁
𝑖=1

𝔼𝑆∼Z𝑛 ,𝑧′
𝑖
∼Z



A(𝑆) −A(𝑆 (𝑖) )

} , (5)

where 𝑆 (𝑖) is formed by taking 𝑆 and replacing 𝑧𝑖 with 𝑧′
𝑖
.

It is well known (e.g., [9, 32]) that for any distribution Z and algorithm A, the following relations
holds between the generalization gap, AAS, and UAS;���𝔼𝑆∼Z𝑛 [𝐹 (A(𝑆)) − 𝐹 (A(𝑆))] ��� ≤ ϵAavgstab (𝑛) ≤ ϵAstab (𝑛). (6)

In [7] it was established the UAS of both with and without-replacement SGD is Ω(η
√
𝑛) for 𝑛 steps

of size η with 𝑛 training examples. However, considering Eq. (6), it remained unclear whether the
AAS and generalization gap of these algorithms exhibit rates of similar order, in which case the
UAS accurately captures the rate of the generalization gap. Interestingly, the answer to this question
depends on whether sampling is done with or without replacement, as we discuss next.
Stability of without-replacement SGD. As an immediate corollary of our Theorem 1, we have that
the AAS of without-replacement SGD is alsoΩ(η

√
𝑛). This follows from Eq. (6) and since the theorem

establishes the generalization gap to be Ω(η
√
𝑛). Similarly, the lower bound given by Theorem 3

demonstrates that the AAS of SGD in the strongly convex case is Ω(1/λ
√
𝑛). Combined with the

naive upper bound argument for uniform stability of 𝑂 (1/λ
√
𝑛) (which follows by convergence of

SGD iterates to the minimizer in parameter space), we get a tight characterization of stability for
strongly convex losses for the standard step size schedule.
Stability of with-replacement (one-pass) SGD. In Section 4, specifically in Corollary 2, we establish
a generalization gap of 𝑂 (1/

√
𝑛) for with-replacement SGD with a particular averaging scheme and a

properly tuned step size. However, as it turns out, the average argument stability of this version of
SGD is nonetheless of order Ω(η

√
𝑛) as we demonstrate in Theorem 7 below. This shows that this

version of with-replacement SGD is an algorithm that is not stable in any sense but the most general
one (namely, the one being equivalent to the generalization gap).
Theorem 7. Let 𝑛 ∈ ℕ, 𝑛 ≥ 200, 𝑑 ≥ 23𝑛,𝑊 = B𝑑

0 (1). Further, let {β𝑡 }𝑛𝑡=1 be an iterate averaging
scheme that does not decay too quickly;

∑𝑛
𝑠=𝑡+1 β𝑛 ≥ 𝐶 ((𝑛 − 𝑡)/𝑛)2 for some constant 𝐶 > 0. Then

there exists a distribution over the instance set 𝑍 = {0, 1}𝑑 and a 2-Lipschitz, convex loss function
𝑓 : 𝑊 × 𝑍 → ℝ such that for all 𝑘 ∈ [𝑛],

𝔼𝑆∼Z𝑛 ,𝑧′
𝑘
∼Z



𝑤 − 𝑤 (𝑘)

 ≥ Ω(η√𝑛),
where 𝑤, 𝑤 (𝑘) denote the {β𝑛}-averaged iterates {𝑤𝑡 }, {𝑤′𝑡 } of 𝑛 with-replacement SGD iterations
(initialized at 𝑤′1 = 𝑤1 = 0) with step size η > 0 over the training sets 𝑆 and 𝑆 (𝑘) respectively;

𝑤 B

𝑛∑︁
𝑡=1

β𝑛𝑤𝑡 ; 𝑤 (𝑘) B
𝑛∑︁
𝑡=1

β𝑛𝑤
′
𝑡 .

Note that the averaging scheme employed in Theorem 4 decays sufficiently slow so as to satisfy
requirements of Theorem 7, hence the stability lower bound follows.
Proof. Let Z be defined by 𝑧(𝑖) ∼ Ber(1/2), and set

𝑓 (𝑤; 𝑧) := −ϵ
𝑑∑︁
𝑖=1

α𝑧 (𝑖)𝑤(𝑖) + max
𝑖∈[𝑑 ]
{𝑤(𝑖)}.
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We will take ϵ B β𝑛/(16𝑛3𝑑), and define

α𝑧 (𝑖) =
{
−𝑛 𝑧(𝑖) = 1,
1 𝑧(𝑖) = 0.

In addition, let

𝐼 (𝑤) B arg min
𝑖∈[𝑑 ]

{
𝑖 | 𝑤(𝑖) = max

𝑗
{𝑤( 𝑗)}

}
,

set
𝑖𝑡 B 𝐼 (𝑤𝑡 ), 𝑖′𝑡 B 𝐼 (𝑤′𝑡 ), (7)

and define
𝑔(𝑤; 𝑧) B −ϵα𝑧 + 𝑒𝐼 (𝑤) , (8)

where 𝑒𝑖 denotes the 𝑖’th standard basis vector. It follows that 𝑔(𝑤; 𝑧) ∈ 𝜕 𝑓 (𝑤; 𝑧) and ∥𝑔(𝑤; 𝑧)∥ ≤
𝑛𝑑ϵ + 1 ≤ 2 for all 𝑧 ∈ 𝑍, 𝑤 ∈ 𝑊 . Proceeding, we denote

𝑆 = {𝑧1, . . . , 𝑧𝑛}, 𝑆′ = {𝑧′1, . . . , 𝑧
′
𝑛},

and note that 𝑧𝑙 = 𝑧′𝑙 for all 𝑙 ≠ 𝑘 . Further, we denote the training examples sampled by SGD by

𝑧̂𝑡 B 𝑧𝑘𝑡 ∈ 𝑆, 𝑧̂′𝑡 B 𝑧′𝑘𝑡 ∈ 𝑆
(𝑘) ,

where {𝑘𝑡 } ∼ Unif [𝑛] are uniformly random and independent training indices. For the remainder of
the proof, we condition on the event

E = {(𝑧1, . . . , 𝑧𝑛, 𝑧′𝑘) | 𝑍 (𝑆) ≥ 𝑛, and 𝑍 (𝑆′) ≥ 𝑛}, (9)
where 𝑍 (𝑆) B |{𝑖 | ∀𝑟 ∈ [𝑛], 𝑧𝑟 (𝑖) = 0}| and similarly 𝑍 (𝑆′) B |{𝑖 | ∀𝑟 ∈ [𝑛], 𝑧′𝑟 (𝑖) = 0}|. Owed
to our assumption that 𝑑 ≥ 23𝑛, a standard concentration argument shows this event occurs with
probability ≥ 1/2.
We will now proceed to track how the SGD iterates evolve. Observe that for all 𝑡 ∈ [𝑛], we have by
direct computations of the gradient steps with Eq. (8);

𝑖 ∉ {𝑖1, . . . , 𝑖𝑡 } =⇒ 𝑤𝑡+1 (𝑖) = ηϵ

𝑡∑︁
𝑠=1

α𝑧̂𝑠 (𝑖)

=⇒
{
𝑤𝑡+1 (𝑖) = ηϵ𝑡 ∀𝑠 ≤ 𝑡, 𝑧̂𝑠 (𝑖) = 0,
𝑤𝑡+1 (𝑖) ∈ [−ηϵ𝑛2, 0] ∃𝑠 ≤ 𝑡, 𝑧̂𝑠 (𝑖) = 1.

In addition, from similar computations;
𝑖 ∈ {𝑖1, . . . , 𝑖𝑡 } =⇒ 𝑤𝑡+1 (𝑖) ≤ −η + ηϵ𝑛.

Summarizing, and applying identical calculations for 𝑤′
𝑡+1, we have:

𝑡 < 𝑠 =⇒ 𝑤𝑠 (𝑖𝑡 ) ≤ −η + ηϵ𝑛, 𝑖 ∉ {𝑖1, . . . , 𝑖𝑛} =⇒ ∀𝑠, 𝑤𝑠 (𝑖) ∈ [−ηϵ𝑛2, ηϵ𝑛]
𝑡 < 𝑠 =⇒ 𝑤′𝑠 (𝑖′𝑡 )≤ −η + ηϵ𝑛, 𝑖′ ∉ {𝑖′1, . . . , 𝑖

′
𝑛} =⇒ ∀𝑠, 𝑤′𝑠 (𝑖′)∈ [−ηϵ𝑛2, ηϵ𝑛] . (10)

By Eq. (10) above, for all 𝑡 ∈ [𝑛] we have;

𝑤(𝑖𝑡 ) =
𝑛∑︁
𝑠=1

β𝑠𝑤𝑠 (𝑖𝑡 ) ≤
𝑡∑︁
𝑠=1

β𝑠η𝑠ϵ −
𝑛∑︁

𝑠=𝑡+1
β𝑠 (η − ηϵ𝑛)

≤ −η
𝑛∑︁

𝑠=𝑡+1
β𝑠 + η𝑛ϵ

𝑛∑︁
𝑠=1

β𝑠 ≤ −
3
4
η

𝑛∑︁
𝑠=𝑡+1

β𝑠 , (11)

where the last inequality follows from our choice of ϵ. In addition, if 𝑖𝑡 ∉ {𝑖′1, . . . 𝑖
′
𝑛}, again by Eq. (10)

and our choice of ϵ it follows that;

𝑤 (𝑘) (𝑖𝑡 ) =
𝑛∑︁
𝑠=1

β𝑠𝑤
′
𝑠 (𝑖𝑡 ) ≥

𝑛∑︁
𝑠=1

β𝑠η𝑛
2ϵ ≥ −η

4
β𝑛. (12)

15



Now, set 𝑡0 B min{𝑡 | 𝑘𝑡 = 𝑘} to be the first time that index 𝑘 (in which training examples differ)
is chosen, and let 𝑡 > 𝑡0. Note that 𝑧′

𝑘
(𝑖𝑡 ) = 1 implies 𝑖𝑡 ∉ {𝑖′1, . . . , 𝑖

′
𝑛}; to see this, observe that for

τ ≤ 𝑡0, 𝑖′τ = 𝑖τ, while τ > 𝑡0 implies 𝑖′τ ≠ 𝑖𝑡 , since the event Eq. (9) we condition on ensures

𝑖𝑡 = min{𝑖 ∈ [𝑑] | ∀𝑠 < 𝑡, 𝑧̂𝑠 (𝑖) = 0},
𝑖′𝑡 = min{𝑖 ∈ [𝑑] | ∀𝑠 < 𝑡, 𝑧̂′𝑠 (𝑖) = 0}.

(From the above it also must hold that 𝑖𝑡 ≠ 𝑖τ, 𝑖′𝑡 ≠ 𝑖′τ for all 𝑡 ≠ τ.) Thus, putting together Eq. (11),
Eq. (12) and the fact that 𝑧′

𝑘
(𝑖𝑡 ) = 1 implies 𝑖𝑡 ∉ {𝑖′1, . . . , 𝑖

′
𝑛}, we obtain for all 𝑡0 < 𝑡;

|𝑤(𝑖𝑡 ) − 𝑤 (𝑘) (𝑖𝑡 ) | ≥ 1
{
𝑧′𝑘 (𝑖𝑡 ) = 1

} η

2

𝑛∑︁
𝑠=𝑡+1

β𝑠 ≥ 1
{
𝑧′𝑘 (𝑖𝑡 ) = 1

} η𝐶 (𝑛 − 𝑡)2
2𝑛2 ,

where the second inequality follows from our assumption on {β𝑡 }. Thus, for 𝑡0 < 𝑡 ≤ 3𝑛/4, we get
that

|𝑤(𝑖𝑡 ) − 𝑤 (𝑘) (𝑖𝑡 ) | ≥ 1
{
𝑧′𝑘 (𝑖𝑡 ) = 1

} 𝐶
4
η,

and taking expectations we obtain;

𝔼
[


𝑤 − 𝑤 (𝑘)


 | 𝑡0] ≥ 𝔼


√√√ 𝑛∑︁

𝑡=1
(𝑤(𝑖𝑡 ) − 𝑤′(𝑖𝑡 ))2 | 𝑡0


≥ 𝐶η

4
𝔼


√√√√ 3𝑛/4∑︁
𝑡=𝑡0+1

1
{
𝑧′
𝑘
(𝑖𝑡 ) = 1

}
| 𝑡0

 .
Now, observe that 𝑧′

𝑘
is independent of 𝑖𝑡 for all 𝑡, hence the expectation above is of the form

𝔼

√√√ 𝑚∑︁
𝑙=1

𝑌𝑙 ,

where 𝑚 B 3𝑛/4 − 𝑡0 and 𝑌𝑙 ∼ Ber(1/2) are independent. Thus,

Pr

(
𝑚/2 −

𝑚∑︁
𝑙=1

𝑌𝑡 > 𝑚/4
)
≤ 𝑒−𝑚/16 ≤ 1/2,

for 𝑚 > 100, and then

𝔼
[


𝑤 − 𝑤 (𝑘)


 | 𝑡0] ≥ 𝐶η4 1

2
√︁

3𝑛/4 − 𝑡0 =
𝐶η

8
√︁

3𝑛/4 − 𝑡0.

To conclude, we use the fact that 𝑡0 follows a geometric distribution with parameter 1/𝑛, therefore

Pr(𝑡0 ≤ 𝑛/2) =
1
𝑛

𝑛/2∑︁
𝑡=1
(1 − 1/𝑛)𝑡 = 1 − (1 − 1/𝑛)𝑛/2 ≥ 1 − 𝑒−1/2 ≥ 1/3.

This implies,

𝔼




𝑤 − 𝑤 (𝑘)


 ≥ 𝐶η32
√︁

3𝑛/4 − 𝑛/2 =
𝐶η

64
√
𝑛,

and completes the proof. □

B Proof of Theorem 1
Our first proof below applies for step sizes η ≤ 1/

√
𝑛. The extension for larger step sizes is rather

technical and requires care of the projection step — we provide it in the supplementary. The statement
of Theorem 1 is repeated below for the case of the small step size regime.
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Theorem 8 (Small step size case of Theorem 1). Let 𝑛 ∈ ℕ, 𝑛 ≥ 4, 𝑑 ≥ 24𝑛 log 𝑛, and𝑊 = B2𝑑
0 (1).

Then there exists a distribution over instance set 𝑍 and a 4-Lipschitz convex loss function 𝑓 : 𝑊×𝑍 → ℝ
such that

(i) the optimization error is large; 𝔼𝑆∼Z𝑛
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤★𝑆)

]
= Ω

(
η
√
𝑛
)
,

(ii) the generalization gap is large; 𝔼𝑆∼Z𝑛
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

]
= Ω

(
η
√
𝑛
)
,

where 𝑤 is any suffix average of SGD with step size η ≤ 1/
√
𝑛.

Proof. Our construction is parameterized by ϵ, δ > 0, which will be chosen later. We will work with
the datapoints set 𝑍 = {0, 1}2𝑑 and define the distribution Z = Z(δ) over 𝑍 by

∀𝑖 ≤ 𝑑; 𝑧(𝑖) =
{
1 w.p. δ;
0 w.p. (1 − δ),

∀𝑖 > 𝑑; 𝑧(𝑖) = 𝑧(𝑖 − 𝑑).
Our loss function is a combination of two components; the “push” function φ is in charge of driving
the SGD iterate towards areas in the 𝐿2 ball where the “penalty” function ν inflicts a norm-like loss.

φ(𝑤; 𝑧) B −ϵ
2𝑑∑︁

𝑖=𝑑+1
𝑧(𝑖)𝑤(𝑖) + max

1≤𝑖≤𝑑
{𝑤(𝑖) + 𝑤(𝑖 + 𝑑)} , (13)

ν𝑧 (𝑤) B

√√√
𝑑∑︁
𝑖=1

𝑧(𝑖)𝑤(𝑖)2, (14)

𝑓 (𝑤; 𝑧) B φ(𝑤; 𝑧) + ν𝑧 (𝑤).
The lower bound arguments all go through with any sub-gradient oracle 𝑔(𝑤; 𝑧) ∈ 𝜕𝑤 𝑓 (𝑤; 𝑧). For
clarity of exposition, we make use of the gradient oracle 𝑔 that returns the minimal coordinate
sub-gradient for the max component in φ;

𝑔φ(𝑤; 𝑧) (𝑖) B
{
1 {𝑖 = 𝐼 (𝑤)} 𝑖 ≤ 𝑑
−ϵ𝑧(𝑖) + 1 {𝑖 = 𝐼 (𝑤) + 𝑑} 𝑖 ≥ 𝑑 , (15)

where 𝐼 (𝑤) B min
{
𝑖 ∈ [𝑑] | 𝑖 ∈ arg max

1≤ 𝑗≤𝑑
{𝑤( 𝑗) + 𝑤( 𝑗 + 𝑑)}

}
. (16)

We additionally denote the index picked by 𝑔 on round 𝑡 ∈ [𝑛] by
𝑖𝑡 B 𝐼 (𝑤𝑡 ). (17)

We then set 𝑔(𝑤; 𝑧) B 𝑔φ(𝑤; 𝑧)+∇ν𝑧 (𝑤). It now follows that for all𝑤, 𝑧 ∈ ℝ2𝑑 , 𝑔φ(𝑤; 𝑧) ∈ 𝜕𝑤φ(𝑤; 𝑧),
thus 𝑔(𝑤; 𝑧) ∈ 𝜕𝑤 𝑓 (𝑤; 𝑧). Choosing ϵ = 1/𝑑, we get that 𝑓 is 4-Lipschitz;

∥𝑔(𝑤; 𝑧)∥ ≤ ϵ
√
𝑑 + 2 + 1

2 ∥𝑤∥ ∥𝑤∥ ≤ 3 + 1/
√
𝑑 ≤ 4.

With the above construction in place, we first claim that with sufficiently large probability, the training
set will contain the desired collection of “bad” coordinates which will be picked up by our gradient
oracle. Indeed, with the dimension 𝑑 large enough, a proper choice of δ ensures that for every 𝑡 ∈ [𝑛],
there will be a certain coordinate with a prefix of 𝑡 − 1 ones followed by a zero only suffix.
Lemma 2. For δ = 1/4𝑛2, with probability ≥ 1/2 over the random draw of 𝑆 = {𝑧1, . . . , 𝑧𝑛} ∼ Z𝑛, it
holds that for all 𝑡 ∈ [𝑛]:

1. There exist prefix of ones coordinates 𝐸 (1,𝑡) B { 𝑗 ∈ [𝑑] | 𝑠 < 𝑡 =⇒ 𝑧𝑠 ( 𝑗) = 1} ≠ ∅, and

2. the minimal such coordinate 𝐽𝑡 B min
{
𝑗 ∈ 𝐸 (1,𝑡)

}
also has a zero suffix; 𝑠 ≥ 𝑡 =⇒

𝑧𝑠 (𝐽𝑡 ) = 0.

From this point onward fix δ B 1/4𝑛2. By definition of our gradient oracle, a relatively straightforward
argument given in our next lemma establishes SGD will take gradient steps precisely on those bad
coordinates of Lemma 2. Notably, we have designed the construction so that these steps are made only
after the samples penalizing those coordinates have been processed. This eliminates the possibility
for SGD to correct these coordinates in future steps.
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Lemma 3. We have with probability ≥ 1/2 that for all 𝑡 ∈ [𝑛], 𝑖𝑡 = 𝐽𝑡 (see Eq. 17), and for all
τ ∈ [𝑛], τ > 𝑡, 𝑤τ (𝑖𝑡 ) = −η.

To complete the proof, we assume the event from the lemma occurs. Since it occurs with constant
probability, a lower bound derived conditioned on it implies a lower bound in expectation. First we
argue the population loss of all iterates is upper bounded as

𝐹 (𝑤𝑡 ) = −ϵ
2𝑑∑︁

𝑖=𝑑+1
δ𝑤𝑡 (𝑖) + ϵ𝑛η + 𝔼


√√√

𝑑∑︁
𝑖=1

𝑧(𝑖)𝑤𝑡 (𝑖)2


≤ −ϵδ
𝑡−1∑︁
𝑠=1

𝑤𝑡 (𝑖𝑠) + ϵ𝑛η +

√√√
𝑑∑︁
𝑖=1

𝔼[𝑧(𝑖)]𝑤𝑡 (𝑖)2

= ϵδ(𝑡 − 1)η + ϵ𝑛η +

√√√
δ

𝑑∑︁
𝑖=1

𝑤𝑡 (𝑖)2

≤ 2ϵ𝑛η +

√√√
δ

𝑡∑︁
𝑠=1

𝑤𝑡 (𝑖𝑠)2

≤ 2ϵ𝑛η +
√︃
δη2𝑛 =

2𝑛η
𝑑
+ η
√
𝑛

2𝑛
≤ η
√
𝑛
.

By convexity of the population loss, the above implies that any suffix average satisfies 𝐹 (𝑤) ≤ η/
√
𝑛.

In addition, note that 𝐹 (𝑤★
𝑆
) ≤ 𝐹 (0) ≤ 0, hence the Ω(η

√
𝑛) bound we will now establish on the

empirical risk of SGD implies our claimed optimization and generalization lower bounds. Indeed, let
τ ∈ [𝑛] and denote 𝑤τ B

1
𝑛−τ+2

∑𝑛+1
𝑡=τ 𝑤𝑡 . Observe that for 1 ≤ 𝑡 ≤ 𝑛/2, by Lemma 3 at least half of

the iterates have the −η value in coordinate 𝑖𝑡 ;

𝑤τ (𝑖𝑡 ) =
1

𝑛 − τ + 2

𝑛+1∑︁
𝑠=τ

𝑤𝑠 (𝑖𝑡 ) ≤
1

𝑛 − τ + 2

𝑛+1∑︁
𝑠=max{τ,𝑛/2}

𝑤𝑠 (𝑖𝑡 )

≤ 𝑛 −max {τ, 𝑛/2} + 2
𝑛 − τ + 2

(−η) ≤ −η
2
.

(We ignore the fact that the last iterate, formally speaking, may have a slightly greater value due to the
projection on the last step.) Now, for any 𝑤 ∈ 𝑊 ,

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑠=1

𝑓 (𝑤; 𝑧𝑠) =
1
𝑛

𝑛∑︁
𝑠=1

φ(𝑤; 𝑧𝑠) +
1
𝑛

𝑛∑︁
𝑠=1

√√√ 𝑛∑︁
𝑡=𝑠+1

𝑤(𝑖𝑡 )2

≥ 1
𝑛

𝑛∑︁
𝑠=1

φ(𝑤; 𝑧𝑠) +
1

5
√
𝑛

𝑛∑︁
𝑡=𝑛/4

|𝑤(𝑖𝑡 ) | ,

where the second inequality follows from Lemma 15. Noting that φ(𝑤τ; 𝑧𝑠) ≥ −ϵ2𝑑𝑛η ≥ −η and
combining the last two displays we get that

𝐹 (𝑤τ:𝑛) ≥
1

5
√
𝑛

𝑛/2∑︁
𝑡=𝑛/4

η

2
− η =

η(
√
𝑛 − 1)
40

,

which completes the proof. □

Proof of Lemma 2. Fix 𝑡 ∈ [𝑛], denote
𝐸 (1,𝑡) B

{
𝑖 ∈ [𝑑] | 𝑧𝑠 (𝑖) = 1 ∀𝑠 < 𝑡

}
,

𝐸 (𝑡 ,0) B
{
𝑖 ∈ [𝑑] | 𝑧𝑠 (𝑖) = 0 ∀𝑠 ≥ 𝑡

}
,

and let 𝐽𝑡 ∈ 𝐸 (1,𝑡) be the minimal element if it is not empty. Note that

Pr(𝐸 (1,𝑡) = ∅) = Pr (∀𝑖 ∈ [𝑑], ∃𝑠 < 𝑡, 𝑧𝑠 (𝑖) = 0) =
(
1 − δ𝑡−1

)𝑑
≤ (1 − δ𝑛)𝑑 .
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In addition, since the contents of 𝐸 (1,𝑡) are independent of 𝑧𝑡 , . . . , 𝑧𝑛, we have that for any 𝑖 ∈ 𝐸 (1,𝑡) ,

Pr(𝑖 ∈ 𝐸 (𝑡 ,0) ) = (1 − δ)𝑛−𝑡+1 ≥ (1 − δ)𝑛.

Therefore,

Pr
(
𝐸 (1,𝑡) = ∅ OR

(
𝐸 (1,𝑡) ≠ ∅ but 𝐽𝑡 ∉ 𝐸 (𝑡 ,0)

))
≤ (1 − δ𝑛)𝑑 + 1 − (1 − δ)𝑛.

Now, by the union bound over all values of 𝑡 ∈ [𝑛] we obtain

Pr
(
∀𝑡 ∈ [𝑛], 𝐸 (1,𝑡) ≠ ∅ AND 𝐽𝑡 ∈ 𝐸 (𝑡 ,0)

)
≥ 1 − 𝑛

(
(1 − δ𝑛)𝑑 + 1 − (1 − δ)𝑛

)
. (18)

Now, since δ = 1/4𝑛2 we have

(1 − δ𝑛)𝑑 =

(
1 − 𝑑δ

𝑛

𝑑

)𝑑
≤ 𝑒−𝑑δ𝑛 ≤ 1

4𝑛
,

where the last inequality follows for 𝑑 ≥ δ−𝑛 log(4𝑛) = 4𝑛𝑛2𝑛 log(4𝑛) (recall that by the assumption
in the theorem statement 𝑑 ≥ 24𝑛 log 𝑛 ≥ 4𝑛𝑛2𝑛4𝑛). In addition;

(1 − δ)𝑛 =
(
1 − 1

4𝑛2

)𝑛
≥ 1 − 1

4𝑛
=⇒ 1 − (1 − δ)𝑛 ≤ 1

4𝑛
.

Back to Eq. (18), applying the inequalities from the last two displays we obtain the desired event
occurs with probability

≥ 1 − 𝑛
(
(1 − δ𝑛)𝑑 + 1 − (1 − δ)𝑛

)
≥ 1 − 𝑛

(
1
4𝑛
+ 1

4𝑛

)
=

1
2
, (19)

and the result follows. □

Proof of Lemma 3. Following a direct computation, we get that

𝑔(𝑤; 𝑧) (𝑖) =
{
1 {𝑖 = 𝐼 (𝑤)} + 𝑧 (𝑖)𝑤 (𝑖)

ν𝑧 (𝑤) 𝑖 ≤ 𝑑,
1 {𝑖 = 𝐼 (𝑤) + 𝑑} − ϵ𝑧(𝑖) 𝑖 > 𝑑.

(20)

From the above we see that the value of 𝑤(𝑖 + 𝑑) for every coordinate 𝑖 + 𝑑 ∈ {𝑑 + 1, . . . , 2𝑑} gains
ηϵ when 𝑧(𝑖) = 1, while the value of coordinate 𝑖 only decreases. Thus 𝐼 (𝑤𝑡 ) will be a coordinate
with an all ones prefix if one exists. Formally, let 𝑡 ∈ [𝑛], and observe that our gradient oracle will
return the minimal coordinate 𝑖𝑡 ∈ [𝑑] with the maximum value of 𝑤𝑡 (𝑖𝑡 ) + 𝑤𝑡 (𝑖𝑡 + 𝑑). Assuming
the event from Lemma 2 occurs, note that the coordinate 𝐽𝑡 ∈ [𝑑] with 𝑧1 (𝐽𝑡 ) = . . . = 𝑧𝑡−1 (𝐽𝑡 ) = 1
exists. Now, observe that any coordinate 𝑗 ∈ [𝑑] is bound to satisfy

𝑤𝑡 ( 𝑗) + 𝑤𝑡 ( 𝑗 + 𝑑) ≤ 𝑤𝑡 (𝐽𝑡 ) + 𝑤𝑡 (𝐽𝑡 + 𝑑).

To see this, note that 𝑤𝑡 (𝐽𝑡 ) = 0, because 𝐽𝑡 ≠ 𝑖𝑠 for all 𝑠 < 𝑡 (formally this follows by induction). In
addition, by Eq. (20);

∀𝑠 < 𝑡, 𝑧𝑠 (𝐽𝑡 ) = 1 =⇒ ∀𝑠 < 𝑡, −η𝑔(𝑤; 𝑧𝑠) (𝐽𝑡 + 𝑑) = ϵη =⇒ 𝑤𝑡 (𝐽𝑡 + 𝑑) = (𝑡 − 1)ϵη.

On the other hand, for any 𝑗 ′ ∈ [𝑑] we have 𝑤𝑡 ( 𝑗 ′) ≤ 0, and 𝑤𝑡 ( 𝑗 ′ + 𝑑) ≤ (𝑡 − 1)ϵη. Concluding, it
follows the gradient oracle will pick 𝑖𝑡 = 𝐼 (𝑤𝑡 ) = 𝐽𝑡 , therefore 𝑤′

𝑡+1 (𝑖𝑡 ) = −η for 𝑤′
𝑡+1 B 𝑤𝑡 − η𝑔𝑡 .

To see that 𝑤𝑡+1 = Π𝑊 (𝑤′𝑡+1) = 𝑤
′
𝑡+1, note that by assumption η ≤ 1/

√
𝑛, hence



𝑤′𝑡+1

2
=

2𝑑∑︁
𝑖=1

𝑤′𝑡+1 (𝑖)
2 ≤

𝑡∑︁
𝑡=1

𝑤′𝑡+1 (𝑖𝑡 )
2 + 𝑑 (𝑛ϵη)2 = η2 (𝑡 + 𝑛/𝑑) ≤ (𝑡 + 1)/𝑛,

and 𝑤′
𝑡+1 remains inside𝑊 for all 𝑡 < 𝑛. Finally, since the desired event occurs with probability 1/2

by Lemma 2, we are done. □
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B.1 Lower bound for large step sizes
When the step size is large, the projections actually alleviate the problematic nature of our construction,
to the point where they can be exploited to obtain any convergence rate with the full iterate averaging.
Notably though, concatenating our construction with a standard lower bound (e.g., Lemma 14) the
best convergence rate possible is 𝑛−1/4 with η = 𝑛−1/4 which is the same as what would be achieved
by the somewhat more reasonable choice of η = 𝑛−3/4 that does not rely on the projections.
Theorem 9 (Large step size case of Theorem 1). Let 𝑛 ∈ ℕ, 𝑛 ≥ 4, 𝑑 ≥ 24𝑛 log 𝑛, and𝑊 = B2𝑑

0 (1).
Then there exists a distribution over instance set 𝑍 and a 4-Lipschitz convex loss function 𝑓 : 𝑊×𝑍 → ℝ
such that

(i) the optimization error is large; 𝔼𝑆∼Z𝑛
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤★𝑆)

]
= Ω

(
1

η
√
𝑛

)
,

(ii) the generalization gap is large; 𝔼𝑆∼Z𝑛
[
𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)

]
= Ω

(
1

η
√
𝑛

)
,

where 𝑤 is any suffix average of SGD with step size η > 1/
√
𝑛.

Proof. The analysis parts ways from the small step size case after Lemma 2. Instead of Lemma 3, we
make the claim below.
Lemma 4. For all τ ∈ [𝑛], it holds that 𝑡 < τ =⇒ 𝑤τ (𝑖𝑡 ) ≤ −η(1 + η2)𝑡−τ, where 𝑖𝑡 B 𝐼 (𝑤𝑡 ) and
τ ≤ 𝑛 + 1. In addition, for any suffix average 𝑤, it holds that

𝑛∑︁
𝑡=𝑛/4

|𝑤(𝑖𝑡 ) | ≥
1

20η
.

The important consequence of the above lemma is that whichever suffix average we take, we will end
up with an Ω(1/η) mass in the total bad coordinate summation. We now show this translates to an
empirical risk lower bound as claimed. Ignoring the negligible contribution of ϵ, by Lemma 15 we
have;

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑠=1

𝑓 (𝑤; 𝑧𝑠) ≥
1
𝑛

𝑛∑︁
𝑠=1

√√√ 𝑛∑︁
𝑡=𝑠+1

𝑤(𝑖𝑡 )2 ≥
1

5
√
𝑛

𝑛∑︁
𝑡=𝑛/4

|𝑤(𝑖𝑡 ) | ≥
1

100η
√
𝑛
,

where the last inequality follows from Lemma 4. This completes the proof. □
Proof of Lemma 4. For 𝑡 ∈ [𝑛], denote 𝑤′𝑡 B 𝑤𝑡 − η𝑔(𝑤𝑡 , 𝑧𝑡 ) so that now 𝑤𝑡+1 ← Π𝑊

(
𝑤′𝑡

)
.

Informally, we have


𝑤′𝑡

2 ≤ 1 + η2 for all 𝑡, when we ignore the negligible ϵ component. Formally,

let

ζ𝑡 (𝑖) =
{
0 𝑖 ≤ 𝑑,
−ϵ𝑧𝑡 (𝑖) 𝑖 > 𝑑,

so that 𝑔(𝑤𝑡 ; 𝑧𝑡 ) = ζ𝑡 + 𝑒𝑖𝑡 + 𝑒 (𝑖𝑡+𝑑) , and observe

𝑤′𝑡+1

2
=



𝑤𝑡 − ηζ𝑡 − η𝑒𝑖𝑡 − η𝑒 (𝑡𝑡+𝑑)

2

≤ 1 + 𝑑𝑛η2ϵ2 + 2η2

≤ 1 + (𝑛/𝑑)η2 + 2η2

≤ 1 + 3η2.

Now, set γ B 3η2, let 𝑡 < τ ∈ [𝑛], and observe;

𝑤τ (𝑖𝑡 ) = Π𝑊
(
𝑤′τ

)
(𝑖𝑡 ) =

𝑤′τ (𝑖𝑡 )
∥𝑤′τ∥

≤ 𝑤′τ (𝑖𝑡 ) (1 + γ)−1

where the inequality follows from the norm bound and since 𝑤′
𝑙
(𝑖𝑡 ) ≤ 0 for all 𝑙 ∈ [𝑑]. In addition,

for τ − 1 > 𝑡, we have 𝑤′τ (𝑖𝑡 ) = 𝑤τ−1 (𝑖𝑡 ), hence
𝑤′τ (𝑖𝑡 ) (1 + γ)−1 = 𝑤τ−1 (𝑖𝑡 ) (1 + γ)−1 ≤ · · · ≤ 𝑤′𝑡+1 (𝑖𝑡 ) (1 + γ)

𝑡−τ = −η(1 + γ)𝑡−τ,
therefore,

𝑡 < τ =⇒ 𝑤τ (𝑖𝑡 ) ≤ −η(1 + γ)𝑡−τ, (21)
which proves the first part. For the second part, we begin by computing the values in each individual
coordinate.
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The individual coordiantes 𝒘(𝒊𝒕). let 𝑤 be the average of the last 𝑘 iterates 𝑤𝑛−𝑘+2, . . . , 𝑤𝑛+1, and
set τ0 B 𝑛 − 𝑘 . Fix 𝑡 ∈ [𝑛], set 𝑙 B max(τ0 + 1, 𝑡 + 1), and observe

|𝑤(𝑖𝑡 ) | ≥
1
𝑘

𝑛+1∑︁
τ=𝑙

|𝑤τ (𝑖𝑡 ) | ≥
η

𝑘

𝑛+1∑︁
τ=𝑙

(1 + η2)𝑡−τ,

where the first inequality follows since all values are negative and the second from Eq. (21). We have
𝑛+1∑︁
τ=𝑙

(1 + γ)𝑡−τ =
𝑛+1−𝑡∑︁
𝑘=𝑙−𝑡
(1 + γ)−𝑘

= (1 + γ)−(𝑙−𝑡)
(
1 − (1 + γ)−(𝑛+2−𝑙)

) 1
1 − (1 + γ)−1

= (1 + γ)𝑡−𝑙
(
1 − (1 + γ)𝑙−𝑛−2

) (1 + γ)
(1 + γ) − 1

= (1 + γ)𝑡−𝑙+1
(
1 − (1 + γ)𝑙−𝑛−2

) 1
γ

C (∗).
Now,

𝑡 ≤ τ0 =⇒ (∗) = (1 + γ)𝑡+𝑘−𝑛−1
(
1 − (1 + γ)−𝑘

) 1
γ

=⇒ |𝑤(𝑖𝑡 ) | ≥
η

γ𝑘
(1 + γ)𝑡+𝑘−𝑛−1

(
1 − (1 + γ)−𝑘

)
(22)

and 𝑡 > τ0 =⇒ (∗) =
(
1 − (1 + γ)𝑡−𝑛−1

) 1
γ

=⇒ |𝑤(𝑖𝑡 ) | ≥
η

γ𝑘

(
1 − (1 + γ)𝑡−𝑛−1

)
. (23)

Before moving on to bound the sum of values in the coordinates, we record the following basic facts
which will be used repeatedly. By Bernoulli’s inequality and our assumption that η > 1/

√
𝑛, we have

(1 + γ)𝑚 = (1 + 3η2)𝑚 ≥ 1 + 3η2𝑚 ≥ 1 + 3𝑚/𝑛. Hence,

(1 + γ)−𝑚 =
1

(1 + γ)𝑚 ≤
1

1 + 3𝑚/𝑛

=⇒ 1 − (1 + γ)−𝑚 ≥ 3𝑚/𝑛
1 + 3𝑚/𝑛 ,

and then,
𝑚 ≥ 𝑛/4 =⇒ 1 − (1 + γ)−𝑚 ≥ (3/4)/4 ≥ 1/6, (24)

and
𝑚∑︁
𝑗=0
(1 + γ)− 𝑗 ≥ 1 − (1 + γ)−𝑚

1 − (1 + γ)−1 ≥
1/6

1 − 1
1+γ

=
1
6γ
. (25)

Bounding the sum of coordinate values. We first consider the case that τ0 < 𝑛/2;
𝑛∑︁

𝑡=𝑛/4
|𝑤(𝑖𝑡 ) | ≥

η

γ𝑘

3𝑛/4∑︁
𝑡=𝑛/2

(
1 − (1 + η2)𝑡−𝑛−1

)
(by Eq. (23))

≥ η

γ𝑘

3𝑛/4∑︁
𝑡=𝑛/2

1
6

(by Eq. (24))

=
η

6γ𝑘
(3𝑛/4 − 𝑛/2)

=
𝑛η

24γ𝑘

≥ 𝑛

100η𝑘
≥ 1

100η
,
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which proves the desired result (recall that γ = 3η2). Assume now τ0 ≥ 𝑛/2, and observe;
𝑛∑︁

𝑡=τ0+1
|𝑤(𝑖𝑡 ) | ≥

η

γ𝑘

𝑛∑︁
𝑡=τ0+1

(
1 − (1 + γ)𝑡−𝑛−1

)
(by Eq. (23))

=
η

γ𝑘

𝑘−1∑︁
𝑗=1

(
1 − (1 + γ)− 𝑗

)
=

η

γ𝑘

©­«𝑘 − 1 −
𝑘−1∑︁
𝑗=1
(1 + γ)− 𝑗ª®¬

=
η

γ𝑘

(
𝑘 − 1 − (1 + γ)−1 1 − (1 + γ)1−𝑘

1 − (1 + γ)−1

)
=

η

γ𝑘

(
𝑘 − 1 − 1 − (1 + γ)1−𝑘

γ

)
=

η

γ2𝑘

(
γ(𝑘 − 1) − (1 − (1 + γ)1−𝑘)

)
=

η

γ2𝑘

(
γ(𝑘 − 1) + (1 + γ)1−𝑘

)
. (26)

In addition,
τ0∑︁

𝑡=𝑛/4
|𝑤(𝑖𝑡 ) | ≥

η

γ𝑘

(
1 − (1 + γ)−𝑘

) τ0∑︁
𝑡=𝑛/4
(1 + γ)𝑡+𝑘−𝑛−1 (by Eq. (22))

=
η

γ𝑘

(
1 − (1 + γ)−𝑘

) τ0∑︁
𝑡=𝑛/4
(1 + γ)𝑡−τ0 (by Eq. (22))

=
η

γ𝑘

(
1 − (1 + γ)−𝑘

) τ0−𝑛/4∑︁
𝑗=0
(1 + γ)− 𝑗

≥ η

γ𝑘

(
1 − (1 + γ)−𝑘

) 𝑛/4∑︁
𝑗=0
(1 + γ)− 𝑗

≥ η

6γ2𝑘

(
1 − (1 + γ)−𝑘

)
, (27)

where in the last inequality we have applied Eq. (25). Now, combining Eq. (26) and Eq. (27), we
obtain

𝑛∑︁
𝑡=𝑛/4

|𝑤(𝑖𝑡 ) | ≥
η

γ2𝑘

(
γ𝑘 − γ − 1 + (1 + γ)1−𝑘

)
+ η

6γ2𝑘

(
1 − (1 + γ)−𝑘

)
≥ η

6γ2𝑘

(
γ𝑘 − γ − 1 + (1 + γ)1−𝑘 + 1 − (1 + γ)−𝑘

)
=

η

6γ2𝑘

(
γ𝑘 − γ + (1 + γ)1−𝑘 − (1 + γ)−𝑘

)
≥ η

6γ𝑘
(𝑘 − 1)

≥ η

12γ

=
1

36η
,

which proves the desired result also in the second case, and completes the proof. □

22



B.2 SCO with non convex components
Proof of Theorem 2. We define the distribution Z = Z(δ) over the set of datapoints 𝑍 by

∀𝑖 ≤ 𝑑; 𝑧(𝑖) =

−1 w.p. δ
1 w.p. δ
0 w.p. (1 − 2δ),

∀𝑖 > 𝑑; 𝑧(𝑖) = 1 {𝑧(𝑖 − 𝑑) = −1} .

We consider the same loss function of Theorem 1, but leave the norm-like component without the
square-root;

𝑓 (𝑤; 𝑧) B φ(𝑤; 𝑧) + ν𝑧 (𝑤), ν𝑧 (𝑤) B
𝑑∑︁
𝑖=1

𝑧(𝑖)𝑤(𝑖)2,

where φ is defined as in Eq. (13). We also define the gradient oracle for φ as we have done in the
convex case Eq. (15), Eq. (16), and Eq. (17), repeated here for convenience;

𝑔φ(𝑤; 𝑧) (𝑖) B
{
1 {𝑖 = 𝐼 (𝑤)} 𝑖 ≤ 𝑑
−ϵ𝑧(𝑖) + 1 {𝑖 = 𝐼 (𝑤) + 𝑑} 𝑖 ≥ 𝑑 ,

𝐼 (𝑤) B min
{
𝑖 ∈ [𝑑] | 𝑖 ∈ arg max

1≤ 𝑗≤𝑑
{𝑤( 𝑗) + 𝑤( 𝑗 + 𝑑)}

}
,

𝑖𝑡 B 𝐼 (𝑤𝑡 ).

Here, unlike the construction in Theorem 1 we need ϵ to depend on η, and set ϵ B η/𝑑. The next
lemma establishes the SGD iterates end up “overfitting” the empirical objective, and follows from
a proof that is essentially identical to Lemma 2 and Lemma 3. The only difference is that here the
training examples have −1 rather than 1 in the critical coordinates.
Lemma 5. For δ = 1/4𝑛2, we have with probability ≥ 1/2 that for all τ ∈ [𝑛] and 𝑡 < τ;

• 𝑤τ (𝑖𝑡 ) = −η,

• 1 ≤ 𝑠 < 𝑡 =⇒ 𝑧𝑠 (𝑖𝑡 ) = −1, and

• 𝑡 ≤ 𝑠 ≤ 𝑛 =⇒ 𝑧𝑠 (𝑖𝑡 ) ≤ 0.

Thus, let τ ≤ 𝑛 + 1, and denote 𝑤τ B
1

𝑛−τ+2
∑𝑛+1
𝑡=τ 𝑤𝑡 . By a derivation identical to that of the convex

case, we obtain for all 1 ≤ 𝑡 ≤ 𝑛/2, 𝑤τ (𝑖𝑡 ) ≤ − η

2 . Hence, for 𝑠 ≤ 𝑛/4,

ν𝑧𝑠 (𝑤τ) ≤ −
𝑛/2∑︁

𝑡=𝑛/4+1
𝑤τ (𝑖𝑡 )2 = −𝑛η

2

16
,

therefore

𝐹 (𝑤τ) =
1
𝑛

𝑛∑︁
𝑡=1

φ(𝑤τ; 𝑧𝑡 ) +
1
𝑛

𝑛∑︁
𝑡=1

ν𝑧𝑡 (𝑤τ)

≤ 2ϵη𝑛 − 1
𝑛

𝑛

2
𝑛η2

16

≤ −𝑛η
2

64
.

To conclude the proof, we note that

𝐹 (𝑤τ) ≥ −ϵ
2𝑑∑︁

𝑖=𝑑+1
δ(ηϵ𝑛) = −ϵ2𝑑δ𝑛η ≥ −η2/𝑛,

and the result follows. □
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B.3 SCO with strongly convex components
Proof of Theorem 3. We first make the argument for an unbounded domain, so that no projections
take place. Let

𝑓 (𝑤; 𝑧) B φ(𝑤; 𝑧) + ν𝑧 (𝑤) +
λ

2
∥𝑤∥2 ,

where φ and ν are defined by

φ(𝑤; 𝑧) B −ϵ
2𝑑∑︁

𝑖=𝑑+1
𝑧(𝑖)𝑤(𝑖) + max

1≤𝑖≤𝑑
{𝑤(𝑖) + ϵ𝑤(𝑖 + 𝑑)} , (28)

ν𝑧 (𝑤) B

√√√
𝑑∑︁
𝑖=1

𝑧(𝑖)𝑤(𝑖)2, (29)

and ϵ B 1/𝑑. These are essentially the same definitions as in our main construction Eq. (13) and
Eq. (14), but with an added ϵ factor inside the max component of φ. This only makes our formal
argument simpler, but otherwise does not make any significant difference. For the gradient oracle, we
define

𝑔φ(𝑤; 𝑧) (𝑖) B
{
1 {𝑖 = 𝐼 (𝑤)} 𝑖 ≤ 𝑑
−ϵ𝑧(𝑖) + ϵ1 {𝑖 = 𝐼 (𝑤) + 𝑑} 𝑖 ≥ 𝑑 , (30)

where 𝐼 (𝑤) B min
{
𝑖 ∈ [𝑑] | 𝑖 ∈ arg max

1≤ 𝑗≤𝑑
{𝑤( 𝑗) + ϵ𝑤( 𝑗 + 𝑑)}

}
, (31)

and again denote the index picked by 𝑔 on round 𝑡 ∈ [𝑛] by
𝑖𝑡 B 𝐼 (𝑤𝑡 ). (32)

We then set
𝑔(𝑤; 𝑧) B 𝑔φ(𝑤; 𝑧) + ∇ν𝑧 (𝑤) + λ𝑤.

Clearly, for all 𝑤, 𝑧 ∈ ℝ2𝑑 , 𝑔(𝑤; 𝑧) ∈ 𝜕𝑤 𝑓 (𝑤; 𝑧). Following a direct computation, we get that

𝑔(𝑤; 𝑧) (𝑖) =
{
1 {𝑖 = 𝐼 (𝑤)} + 𝑧 (𝑖)𝑤 (𝑖)

ν𝑧 (𝑤) + λ𝑤(𝑖) 𝑖 ≤ 𝑑,
ϵ1 {𝑖 = 𝐼 (𝑤) + 𝑑} − ϵ𝑧(𝑖) + λ𝑤(𝑖) 𝑖 > 𝑑,

where 𝐼 is defined in Eq. (16). Hence, the stochastic gradient steps 𝑤𝑡+1 ← 𝑤𝑡 − η𝑡𝑔(𝑤𝑡 , 𝑧𝑡 ) are
given by

𝑤𝑡+1 (𝑖) =
{(

1 − η𝑡 (𝑧𝑡 (𝑖)ν𝑧𝑡 (𝑤)−1 + λ)
)
𝑤𝑡 (𝑖) − η𝑡1 {𝑖 = 𝐼 (𝑤)} 𝑖 ≤ 𝑑

(1 − η𝑡λ) 𝑤𝑡 (𝑖) + ϵη𝑡 𝑧𝑡 (𝑖) − η𝑡ϵ1 {𝑖 = 𝐼 (𝑤) + 𝑑} 𝑖 > 𝑑.
(33)

The next lemma makes a similar assertion as Lemma 3 and follows from similar arguments.
Lemma 6. With probability ≥ 1/2, for all τ ∈ [𝑛] we have

𝑤τ+1 (𝑖) =
{
−η𝑡

∏τ
𝑠=𝑡+1 (1 − η𝑠λ) 𝑖 = 𝑖𝑡 , 𝑡 ∈ [τ],

0 𝑖 ∈ [𝑑] \ {𝑖1, . . . 𝑖τ} ,
where 𝑧1 (𝑖𝑡 ) = . . . = 𝑧𝑡−1 (𝑖𝑡 ) = 1, and 𝑧𝑡 (𝑖𝑡 ) = . . . = 𝑧𝑛 (𝑖𝑡 ) = 0.

Next, a simple derivation shows the empirical risk is large for any suffix average. Thus, let τ ≤ 𝑛 + 1,
and denote 𝑤τ B

1
𝑛−τ+2

∑𝑛+1
𝑡=τ 𝑤𝑡 . By Lemma 6, assuming the event from the lemma occurs we have

𝑡 ≤ 𝑛/2 =⇒ |𝑤τ (𝑖𝑡 ) | ≥
1
2
|𝑤𝑛+1 (𝑖𝑡 ) | =

η𝑡

2

𝑛∏
𝑠=𝑡+1
(1 − η𝑠λ).

Therefore, noting that φ(𝑤τ; 𝑧𝑠) ≥ −ϵ2𝑑𝑛/λ ≥ −ϵ𝑛/λ ≥ −1/(λ𝑛), by Lemma 15 we obtain;

𝐹 (𝑤τ:𝑛) ≥
λ

2
∥𝑤τ:𝑛∥2 −

1
λ𝑛
+ 1

10
√
𝑛

𝑛/2∑︁
𝑡=𝑛/4

η𝑡

𝑛∏
𝑠=𝑡+1
(1 − η𝑠λ)

≥ λ

2
∥𝑤τ:𝑛∥2 −

1
λ𝑛
+ 1

40λ
√
𝑛
. (for η𝑡 = 1/λ𝑡)
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Noting that 𝐹 (0) = 0, we obtain the claim on the optimization error. For the generalization gap, first
note that for any 𝑡 ≤ 𝑛 + 1,

𝔼𝑧φ(𝑤𝑡 ; 𝑧) ≤ −ϵ
2𝑑∑︁

𝑖=𝑑+1
δ𝑤𝑡 (𝑖) + ϵ𝑛/λ

≤ ϵδ𝑛/λ + ϵ𝑛/λ
≤ 2ϵ𝑛/λ,

and observe;

𝐹 (𝑤τ) ≤
2ϵ𝑛
λ
+ λ

2
∥𝑤τ∥2 + 𝔼𝑧∼Z


√√√ 𝑛∑︁

𝑡=1
𝑧(𝑖𝑡 )𝑤τ (𝑖𝑡 )2


≤ 2ϵ𝑛

λ
+ λ

2
∥𝑤τ∥2 +

√√√
δ

𝑛∑︁
𝑡=1

𝑤τ (𝑖𝑡 )2 (by Jensen’s inequality)

≤ 2ϵ𝑛
λ
+ λ

2
∥𝑤τ∥2 +

1
2𝑛

𝑛∑︁
𝑡=1
|𝑤τ (𝑖𝑡 ) |

≤ 2ϵ𝑛
λ
+ λ

2
∥𝑤τ∥2 +

log 𝑛
2λ𝑛

(for η𝑡 = 1/λ𝑡)

≤ λ

2
∥𝑤τ∥2 +

log 𝑛
λ𝑛

. (since 2ϵ𝑛/λ ≤ log 𝑛/(2λ𝑛))

Combining the inequalities in the last two displays completes the proof.
Bounded domain case with λ ≥ 1/

√
𝑛. In this case projections happen, but owed to our assumption

on λwe will see their effect is negligible. Denote𝑤′𝑠 B 𝑤𝑠−η𝑔(𝑤𝑠 , 𝑧𝑠) so that now𝑤𝑠+1 ← Π𝑊
(
𝑤′𝑠

)
.

Observe that by Eq. (33) under the event of Lemma 6, we have

𝑤′τ+1 (𝑖) =


0 𝑖 ∈ [𝑑] \ {𝑖1, . . . , 𝑖τ},
(1 − ητλ)𝑤τ (𝑖) + ητ1 {𝑖 = 𝑖τ} 𝑖 ∈ {𝑖1, . . . , 𝑖τ},
(1 − ητλ)𝑤τ (𝑖) + ϵητ𝑧𝑡 (𝑖) (−1 + 1 {𝑖 = 𝑖τ + 𝑑}) 𝑖 ∈ [𝑑 + 1, 2𝑑],

thus

𝑤′τ+1 (𝑖)
2 ≤


0 𝑖 ∈ [𝑑] \ {𝑖1, . . . , 𝑖τ},
(1 − ητλ)2𝑤τ (𝑖)2 𝑖 ∈ {𝑖1, . . . , 𝑖τ−1},
η2
τ 𝑖 = 𝑖τ,

(𝑛ϵ/λ)2 𝑖 ∈ [𝑑 + 1, 2𝑑] .

Note that by our assumption that λ ≥ 1/
√
𝑛 and our choice of ϵ = 1/𝑑, we have 𝑛2ϵ2/λ2 ≤ 𝑛/𝑑2.

Now, fix τ ≥ 2𝑛/3, and observe;

𝑤′τ+1

2 ≤ η2
τ + 𝑑 (𝑛/𝑑2) + (1 − ητλ)2

2𝑑∑︁
𝑖=1

𝑤τ (𝑖)2

= η2
τ + 𝑛/𝑑 + (1 − ητλ)2 ∥𝑤τ∥2

≤ η2
τ + 𝑛/𝑑 + (1 − ητλ)2

=
1

λ2τ2 +
𝑛

𝑑
− 2
τ
+ 1
τ2

≤ 2
λ2𝑛τ

+ 1 + 𝑛
𝑑
+ 9

4𝑛2 −
2
τ

≤ 3
2τ
+ 1 + 10

4𝑛2 −
2
τ

≤ 1.
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In the above, we have used that 𝑛/𝑑 ≤ 1/4𝑛2, and that 1/2τ ≥ 1/(2𝑛) ≥ 10/4𝑛2 for 𝑛 ≥ 10. Hence,
from round 2𝑛/3 onwards projections do not occur anymore. To conclude the proof, we note that we
can lower bound the empirical loss precisely as we did before but over rounds 4𝑛/6 to 5𝑛/6, rather
than 𝑛/4 to 𝑛/2. In addition, the population loss has only improved since the per coordinate values in
all iterates have only decreased in magnitude as a result of the projections. □

Proof of Lemma 6. Note that for all 𝑡 ∈ [𝑛] and any 𝑖 ∈ [𝑑 + 1, 2𝑑] \ {𝑖1 + 𝑑, . . . , 𝑖𝑡 + 𝑑}, by Eq. (33)
we have

𝑤𝑡+1 (𝑖) = (1 − η𝑡λ) 𝑤𝑡 (𝑖) + ϵη𝑡 𝑧𝑡 (𝑖)

=

𝑡∑︁
𝑠=1

ϵη𝑠𝑧𝑠 (𝑖)
𝑡∏

𝑙=𝑠+1
(1 − η𝑙λ) . (34)

Hence, the number of times 𝑧𝑠 (𝑖) = 1 for 𝑠 ≤ 𝑡 determines the maximality of 𝑤𝑡+1 (𝑖). In other words,
the extra component in the gradient update effects all coordinates equally, and the situation here is no
different than the convex case. Thus, by Lemma 2 and the same arguments as given in Lemma 3, we
have that with probability ≥ 1/2, for all 𝑡 ∈ [𝑛], 𝑖𝑡 = 𝐼 (𝑤𝑡 ) = 𝐽𝑡 . Therefore, by Eq. (33);

𝑤𝑡+1 (𝑖) =

−η𝑡 𝑖 = 𝑖𝑡 ;
−η𝑠

∏𝑡
𝑙=𝑠+1 (1 − η𝑙λ) 𝑖 = 𝑖𝑠 , 𝑠 < 𝑡;

0 𝑖 ∈ [𝑑] \ {𝑖1, . . . , 𝑖𝑡 } .

Note that the 𝑧𝑡 (𝑖)ν𝑧𝑡 (𝑤)−1 component in Eq. (33) does not contribute since 𝑧𝑡 (𝑖𝑠) = 0 for all 𝑡 ≥ 𝑠,
given our event. □

C Proofs for Section 4
In what follows we provide the standard analysis of SGD with the iterate averaging scheme specified
in Theorem 4. The theorem stated and proved below provides the rate of convergence on the target
objective function from which gradients are sampled (as similar analyses normally do); note that we
use it in the context where the target objective is the empirical loss given by the training set. This
should be contrasted with the goal of Theorem 4, which is to establish the convergence rate on the
population objective. Our only motivation for proving the below theorem is to argue the generalization
gap upper bound established in Corollary 2.

Theorem 10. Let 𝑊 ⊂ ℝ𝑑 with diameter 𝐷, and 𝑓1, . . . , 𝑓𝑛 be a sequence of convex, 𝐺-Lipschitz
losses sampled i.i.d. from some distribution F. Further, let 𝑤★ B min𝑤∈𝑊 𝔼 𝑓∼F 𝑓 (𝑤) denote the
minimizer of the expected function. Then, the weighted average 𝑤 B 2

𝑛+1
∑𝑛
𝑡=1

𝑛−𝑡+1
𝑛
𝑤𝑡 of the iterates

produced by SGD with step size η = 𝐷

𝐺
√
𝑛

obtains the following upper bound:

𝔼 𝑓1 ,..., 𝑓𝑛 , 𝑓∼F
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ 4𝐺𝐷
√
𝑛
.

Proof. Observe,

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ 2
𝑛 + 1

𝑛∑︁
𝑡=1

𝑛 − 𝑡 + 1
𝑛

𝔼
[
𝑓 (𝑤𝑡 ) − 𝑓 (𝑤★)

]
=

2
𝑛 + 1

𝔼

[
𝑛∑︁
𝑡=1

𝑛 − 𝑡 + 1
𝑛

(
𝑓𝑡 (𝑤𝑡 ) − 𝑓𝑡 (𝑤★)

) ]
. (35)

By the standard SGD analysis,

𝑓𝑡 (𝑤𝑡 ) − 𝑓𝑡 (𝑤★) ≤ ∇ 𝑓𝑡 (𝑤𝑡 )T (𝑤𝑡 − 𝑤★) ≤
1
2η

(
𝐷2
𝑡 − 𝐷2

𝑡+1

)
+ η

2
𝐺2,

26



where 𝐷𝑡 B ∥𝑤𝑡 − 𝑤★∥. Now,
𝑛∑︁
𝑡=1

𝑛 − 𝑡 + 1
𝑛

(
𝑓𝑡 (𝑤𝑡 ) − 𝑓𝑡 (𝑤★)

)
≤ 1

2η

𝑛∑︁
𝑡=1

𝑛 − 𝑡 + 1
𝑛

(
𝐷2
𝑡 − 𝐷2

𝑡+1

)
+ η𝐺

2𝑛

2

=
𝐷2

1
2η
+ 1

2η

𝑛∑︁
𝑡=2

𝐷2
𝑡

(
𝑛 − 𝑡 + 1

𝑛
− 𝑛 − 𝑡

𝑛

)
+ η𝐺

2𝑛

2

=
𝐷2

1
2η
+ 1

2η𝑛

𝑛∑︁
𝑡=2

𝐷2
𝑡 +

η𝐺2𝑛

2

≤ 𝐷2

η
+ η𝐺

2𝑛

2
≤ 2𝐺𝐷

√
𝑛.

Plugging the above inequality into Eq. (35), we obtain

𝔼
[
𝑓 (𝑤) − 𝑓 (𝑤★)

]
≤ 4𝐺𝐷
√
𝑛
,

which completes the proof. □

D Proofs for Section 5
D.1 Lower bound for multi-epoch SGD
Proof of Theorem 5. First, note that without modifications, the strategy of Theorem 1 breaks after
the first epoch; it will just keep pointing the gradient on coordinates with an all ones sequence. We
use the idea we can fully “record” into the iterate 𝑤𝑘𝑡 the precise samples we have stepped through
so far, and define a gradient oracle that will cause the iterate to advance on fresh bad coordinates
in every new epoch. We will work with the datapoints set 𝑍 = {0, 1}𝑑 and define the distribution
Z = Z(δ) over 𝑍 by letting 𝑧(𝑖) ∼ Ber(δ) for all 𝑖 ∈ [𝑑]. We consider two separate portions of a
vector 𝑤 ∈ ℝ𝑑′ , which we denote by 𝑤 [·; 0] ∈ ℝ𝑑 and 𝑤 [·, ·; 1] ∈ ℝ𝑑×𝑛𝐾 . The first portion with 𝑑
entries is where the bad gradient steps will be made and where we will eventually suffer the loss
from. The second consists of 𝑑𝑛𝐾 entries and is used to encode the samples observed during the
optimization process. Our loss function is defined as follows;

ν𝑧 (𝑤) B

√√√
𝑑∑︁
𝑖=1

𝑧(𝑖)𝑤 [𝑖; 0]2,

φ(𝑤; 𝑧) B ϵ

𝑑∑︁
𝑖=1
(1 + 𝑧(𝑖)) max

𝑗∈[𝑛𝐾 ]
{𝑤 [𝑖, 𝑗 ; 1]} + max

𝑖∈[𝑑 ]
{𝑤 [𝑖; 0])}, (36)

𝑓 (𝑤; 𝑧) B φ(𝑤; 𝑧) + ν𝑧 (𝑤).

Again, we choose ϵ > 0 sufficiently small so that the loss induced by it is negligible, and so that 𝑓 is
4-Lipschitz. The gradient oracle we use is specified by that of the φ function;

𝑔φ(𝑤; 𝑧) [𝑖, 𝑗 ; 1] = ϵ(1 + 𝑧(𝑖))1 { 𝑗 = 𝐼1 (𝑤 [𝑖, ·; 1])}
𝑔φ(𝑤; 𝑧) [·; 0] = 𝑒𝐼0 (𝑤)

where 𝐼1 (𝑥) B min

{
𝑗 ∈ [𝑛𝐾]

��� 𝑗 ∈ arg max
𝑙∈[𝑛𝐾 ]

{𝑥(𝑙)}
}

for 𝑥 ∈ ℝ𝑛𝐾 ,

𝐼0 (𝑤) B min

{
𝑖 ∈ [𝑑]

��� 𝑖 ∈ arg max
𝑙∈[𝑑 ]

{𝑤 [𝑙; 0]} , and 𝑖 ∈ arg min
𝑙∈[𝑑 ]

{
𝑉 (𝑤) (𝑙)

}}
,

and 𝑉 (𝑤) B
𝑛𝐾∑︁

𝑗=𝑡0 (𝑤)
𝑤 [·, 𝑗 ; 1],
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where 𝑡0 (𝑤) denotes the first global iteration index of the current epoch. This index is easy to infer
from 𝑤 [·, ·; 1] since the 𝑡’th SGD iteration in epoch 𝑘 results in values strictly smaller than 0 in all
entries of 𝑤 [·, τ; 1], where τ = 𝑛(𝑘 − 1) + 𝑡 (and 0 remains from initialization for τ′ > τ). In words,
we design our “adversarial” gradient oracle so that it will choose the coordinate for max𝑖∈[𝑑 ]{𝑤 [𝑖; 0]},
by “looking” in 𝑤 [·, ·; 1] and choosing the coordinate 𝑖𝑘𝑡 B 𝐼0 (𝑤𝑘𝑡 ) ∈ [𝑑] such that the number if
times 𝑧𝑘𝑠 (𝑖𝑘𝑡 ) = 1 for 𝑠 < 𝑡 is largest. An illustration is provided in Fig. 1.

Figure 1: Illustration of gradient oracle mechanism

In similar spirit to the the basic construction from Theorem 1, we will ensure that with high probability,
the coordinates selected by our gradient oracle are such that 𝑧𝑘𝑠 (𝑖𝑘𝑡 ) = 1 for all 𝑠 < 𝑡, and 𝑧𝑘𝑠 (𝑖𝑘𝑡 ) = 0
for all 𝑠 ≥ 𝑡. To that end, we first assert the existence of a set of datapoints 𝑍 ⊂ {0, 1}𝑑 where a
desired property described next holds with sufficiently high probability. Consider some arbitrary
ordered set 𝑆 = {𝑧1, . . . , 𝑧𝑛} ⊂ {0, 1}𝑑 . For 𝑡 ∈ [𝑛], denote

𝐸 (1,𝑡) B
{
𝑖 ∈ [𝑑] | 𝑧𝑠 (𝑖) = 1 ∀𝑠 < 𝑡

}
,

𝐸 (1,𝑡;𝐾) B
{
𝐽1
𝑡 , . . . , 𝐽

𝐾
𝑡 | 𝐽𝑘𝑡 is the k’th smallest ∈ 𝐸 (1,𝑡)

}
,

𝐸 (𝑡 ,0) B
{
𝑖 ∈ [𝑑] | 𝑧𝑠 (𝑖) = 0 ∀𝑠 ≥ 𝑡

}
.

So 𝐸 (1,𝑡;𝐾) is just the first 𝐾 elements of 𝐸 (1,𝑡) , where we enumerate the coordinates by the superscript
in increasing order. We say the event E holds for the set 𝑆, or equivalently that 𝑆 ∈ E if for all
𝑡 ∈ [𝑛], we have |𝐸 (1,𝑡;𝐾) | = 𝐾, and 𝐸 (1,𝑡;𝐾) ⊆ 𝐸 (𝑡 ,0) . In words, 𝑆 ∈ E if for every 𝑡 ∈ [𝑛], the first
𝐾 coordinates

{
𝐽1
𝑡 , . . . , 𝐽

𝐾
𝑡

}
that have a prefix of (𝑡 − 1) ones; 𝑠 < 𝑡 =⇒ 𝑧𝑠 (𝐽𝑘𝑡 ) = 1, also satisfy

that they have a suffix of zeros; 𝑠 ≥ 𝑡 =⇒ 𝑧𝑠 (𝐽𝑘𝑡 ) = 0.

Lemma 7. There exists a set of datapoints 𝑍 = {ζ1, . . . , ζ𝑛} ⊂ {0, 1}𝑑 , such that

Prπ1 ,...,π𝐾∼Π( [𝑛])
(
∀𝑘 ∈ [𝐾],

{
𝑧𝑘1 , . . . , 𝑧

𝑘
𝑛

}
∈ E

)
≥ 1/2,

where π𝑘 is sampled by either single-shuffle or multi-shuffle, and 𝑧𝑘𝑡 B ζπ𝑘 (𝑡) .

With Lemma 7 in place, we can be sure bad coordinate sets will turn up in every epoch. Let 𝑘 ∈ [𝐾]
and 𝑡 ∈ [𝑛], and assume the event from the lemma occurs. By the definition of our gradient oracle, it
is bound to select one of the first 𝑘 coordinates that have a prefix of all ones, which we are assured
by the lemma will also have a suffix of zeros. Formally, we argue by induction on 𝑘, 𝑡. The base
case follows from the definition of 𝑔φ and our assumption that the event occurs. For the inductive
step, assume the selected coordinates 𝑖𝑘′

𝑡′ of all prior rounds satisfy the inductive hypothesis. Then at
most 𝑘 − 1 of the first coordinates in 𝐸 (1,𝑡 ,𝐾) could have been selected previously, since the inductive
hypothesis implies every selected coordinate 𝑖𝑘′

𝑡′ has exactly 𝑡 ′ − 1 ones. Hence, the gradient oracle
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will choose a coordinate from 𝐸 (1,𝑡 ,𝐾) , the elements of which are coordinates that also enjoy a suffix
of zeros, as assured by the event from the lemma. In addition, note that our initialization at 𝑤1

1 = 0
and our assumption that η ≤ 1/

√
2𝑛𝐾 (and that ϵ is negligibly small) ensure the iterate never leaves

the domain𝑊 thus no projections occur. Summarizing, we have that for every 𝑘 ∈ [𝐾], 𝑡 ≤ 𝑛 + 1, it
holds that:

𝑡 < 𝑡 ′ =⇒ 𝑤𝑘𝑡′ (𝑖𝑘𝑡 ) = −η
and 𝑠 < 𝑡 =⇒ 𝑧𝑘𝑠 (𝑖𝑘𝑡 ) = 1.

To complete the proof, we will now prove a lower bound of Ω(η
√︁
𝑛/𝐽) for the average iterate of the

last 𝐽 epochs. The other terms in the bounds of the theorem statement follow from concatenating our
problem instance dimension-wise with standard constructions — see Lemma 14. Proceeding, we
slightly overload notation and denote 𝑤(𝑖) for 𝑤 [𝑖, 0]. Let 𝑤 be the average of the iterates in the last
𝐽 ∈ [𝐾] epochs;

𝑤 B
1
𝑛𝐽

𝐾∑︁
𝑘=𝐾−𝐽+1

𝑛+1∑︁
𝑡=1

𝑤𝑘𝑡 .

For all 𝑛/4 ≤ 𝑡 ≤ 3𝑛/4 and 𝐾 − 𝐽 + 1 ≤ 𝑘 ≤ 𝐾 , we have��𝑤(𝑖𝑘𝑡 )�� ≥ 1
𝑛𝐽

𝑛∑︁
𝑡′=3𝑛/4

��𝑤𝑘𝑡′ (𝑖𝑘𝑡 )�� ≥ η

𝑛𝐽
(𝑛/4) = η

4𝐽
, (37)

since 𝑤𝑘
𝑡′ (𝑖𝑘𝑡 ) = −η for all 𝑡 ′ ≥ 𝑡.

Single-shuffle case. Ignoring the negligible ϵ terms, we now have

1 ≤ 𝑠 ≤ 𝑛/4 =⇒ 𝑓 (𝑤; 𝑧1𝑠) ≥

√√√
𝐾∑︁
𝑘=1

𝑛/2∑︁
𝑡=𝑠

𝑧1𝑠 (𝑖𝑘𝑡 )𝑤(𝑖𝑘𝑡 )2

≥

√√√√ 𝐾∑︁
𝑘=𝐾−𝐽+1

𝑛/2∑︁
𝑡=𝑛/4+1

𝑧1𝑠 (𝑖𝑘𝑡 )𝑤(𝑖𝑘𝑡 )2 =

√︄
(𝑛𝐽/4) η2

16𝐽2 =

√︂
𝑛

64𝐽
η,

since 𝑧𝑘𝑠 (𝑖𝑘𝑡 ) = 𝑧1𝑠 (𝑖𝑘𝑡 ) = 1 ∀𝑠 < 𝑡, 𝑘 ∈ [𝐾]. Therefore

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑠=1

𝑓 (𝑤; 𝑧1𝑠) ≥
𝑛/4
𝑛

√︂
𝑛

64𝐽
η ≥

√︂
𝑛

𝐽

η

32
,

concluding the proof for this case.
Multi-shuffle case. For ζ𝑖 ∈ 𝑍 denote

𝐼𝑘 (ζ𝑖) B 1 {𝑧𝑡 = ζ𝑖 , 𝑡 ∈ [𝑛/4, 3𝑛/4]} ,

𝐼 (ζ𝑖) B
𝐾∑︁

𝑘=𝐾−𝐽+1
𝐼𝑘 (ζ𝑖),

𝑍 B {ζ𝑖 ∈ 𝑍 | 𝐼 (ζ𝑖) ≥ 𝐽/4} .

We wish to lower bound the size of 𝑍 , to show that enough ζ𝑖’s where incident in the [𝑛/4, 3𝑛/4]
iteration range in a sufficiently large number of epochs. (Our interest in this range stems from the
desire to apply Eq. (37).) Observe;

𝐾∑︁
𝑘=𝐾−𝐽+1

𝑛∑︁
𝑖=1

𝐼𝑘 (ζ𝑖) = 𝐽
𝑛

2

=⇒
𝑛∑︁
𝑖=1

𝐼 (ζ𝑖) =
𝑛𝐽

2
.
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Since 𝐼 (ζ𝑖) ≤ 𝐽 for all 𝑖 ∈ [𝑛], by the pegionhole principle we get that
��𝑍 �� ≥ 𝑛/4. Otherwise, we

would have
𝑛∑︁
𝑖=1

𝐼 (ζ𝑖) ≤
��𝑍 ��𝐽 + (

𝑛 −
��𝑍 ��) 𝐽

4
< 𝐽

𝑛

4
+ 𝐽

4
𝑛 =

𝑛𝐽

2
.

Now,

𝐹 (𝑤) ≥ 1
𝑛

∑︁
𝑧∈𝑍

𝑓 (𝑤; 𝑧) ≥ 1
𝑛

∑︁
𝑧∈𝑍

√√√ ∑︁
𝑘=𝐾−𝐽+1

𝐼𝑘 (𝑧)
𝑛∑︁

𝑡=3𝑛/4
𝑤(𝑖𝑘𝑡 )2

≥ 1
𝑛

∑︁
𝑧∈𝑍

√√√
𝐽

4

𝑛∑︁
𝑡=3𝑛/4

η2

16𝐽2

=
1
𝑛

∑︁
𝑧∈𝑍

√︄
𝑛η2

162𝐽

≥ η
√
𝑛

64
√
𝐽
,

which concludes the multi-shuffle case and the proof as a whole. □
Proof of Lemma 7. We will make our argument for an i.i.d. sampled instance set 𝑍 , and convert it
to the stated result as follows. Assume Z is a distribution over {0, 1}𝑑 for which we establish the
following;

Pr𝑍∼Z𝑛 (𝑍 ∈ E) ≥
1

21/𝐾 . (38)

Clearly, applying a random permuation on 𝑍 ∼ Z𝑛 does not change its distribution, therefore
1

21/𝐾 ≤ Pr𝑍∼Z𝑛 (𝑍 ∈ E) = Pr𝑍∼Z𝑛 ,π∼Π( [𝑛]) (π(𝑍) ∈ E)

=
∑︁
𝑍 ∈𝑍𝑛

PrZ𝑛 (𝑍)Prπ∼Π( [𝑛]) (π(𝑍) ∈ E)

≤ max
𝑍 ∈𝑍𝑛

{
Prπ∼Π( [𝑛]) (π(𝑍) ∈ E)

}
.

The above derivation implies the existence of 𝑍★ ∈ 𝑍𝑛 with the property that

Prπ1 ,...,π𝐾∼Π( [𝑛]) (∀𝑘 ≤ 𝐾, π𝑘 (𝑍★) ∈ E) ≥
(

1
21/𝐾

)𝐾
=

1
2
, (multi-shuffle)

and Prπ1∼Π( [𝑛]) (∀𝑘 ≤ 𝐾, π𝑘 (𝑍★) ∈ E) ≥
1

21/𝐾 ≥
1
2
, where π1 = . . . = π𝐾 . (single-shuffle)

Therefore, for the rest of the proof we focus on proving the distribution Z as defined next satisfies
the desired property Eq. (38). Let δ > 0 which will be chosen in hindsight, and consider Z = Z(δ)
where 𝑧(𝑖) ∼ Ber(δ) for each 𝑖 ∈ [𝑑] independently. Fix 𝑡 ∈ [𝑛], and let E𝑡 denote the event that
|𝐸 (1,𝑡) | ≤ 𝐾 , and 𝐸 (1,𝑡;𝐾) ⊆ 𝐸 (𝑡 ,0) . We will prove E𝑡 holds with sufficiently high probability, so that
E = ∩𝑡 ∈[𝑛]E𝑡 holds w.p. ≥ 1/21/𝐾 . Proceeding, assuming we choose δ and 𝑑 so that 𝐾 < 𝑑δ𝑛, by
Hoeffding’s inequality we have that

Pr
(
|𝐸 (1,𝑡) | ≤ 𝐾

)
= Pr

(
𝑑∑︁
𝑖=1

1
{
𝑖 ∈ 𝐸 (1,𝑡)

}
≤ 𝐾

)
= Pr

(
𝑑∑︁
𝑖=1

1
{
𝑖 ∈ 𝐸 (1,𝑡)

}
− 𝑑δ𝑡−1 ≤ 𝐾 − 𝑑δ𝑡−1

)
= Pr

(
𝑑δ𝑡−1 −

𝑑∑︁
𝑖=1

1
{
𝑖 ∈ 𝐸 (1,𝑡)

}
≥ 𝑑δ𝑡−1 − 𝐾

)
≤ 𝑒−(𝑑δ𝑡−1−𝐾)2/𝑑 ≤ 𝑒−(𝑑δ𝑛−𝐾)2/𝑑 . (39)
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In addition, for 𝑖 ∈
{
𝐽1
𝑡 , . . . , 𝐽

𝐾
𝑡

}
= 𝐸 (1,𝑡;𝐾) , we have

Pr(𝑖 ∈ 𝐸 (𝑡 ,0) ) = Pr(∀𝑠 ≥ 𝑡, 𝑧𝑠 (𝑖) = 0) ≥ (1 − δ)𝑛.

Therefore,

Pr(𝐸 (1,𝑡;𝐾) ⊆ 𝐸 (𝑡 ,0) ) ≥ (1 − δ)𝑛𝐾 .

From the above and Eq. (39) we obtain

Pr(not E𝑡 ) = Pr
(
𝐸 (1,𝑡;𝐾) ⊈ 𝐸 (𝑡 ,0) or |𝐸 (1,𝑡) | < 𝐾

)
≤ 𝑒−(𝑑δ𝑛−𝐾)2/𝑑 + 1 − (1 − δ)𝑛𝐾 ,

hence,

Pr
(
∩𝑡 ∈[𝑛]E𝑡

)
≥ 1 − 𝑛(𝑒−(𝑑δ𝑛−𝐾)2/𝑑 + 1 − (1 − δ)𝑛𝐾 ). (40)

To finish the proof, we choose δ and 𝑑 as follows. Set δ B 1/𝑐𝑛2𝐾 , and note that

(1 − δ)𝑛𝐾 =

(
1 − 1

𝑐𝑛2𝐾

)𝑛𝐾
≥ 1 − 1

𝑐𝑛
=⇒ 1 − (1 − δ)𝑛𝐾 ≤ 1

𝑐𝑛
.

In addition, note that −(𝑑δ𝑛 − 𝐾)2/𝑑 ≤ −𝑑δ2𝑛 + 2𝐾δ𝑛, hence

𝑒−(𝑑δ
𝑛−𝐾)2/𝑑 ≤ 1

𝑐𝑛

⇐= 𝑒−𝑑δ
2𝑛+2𝐾δ𝑛 ≤ 1

𝑐𝑛

⇐⇒ log(𝑐𝑛) + 2𝐾δ𝑛 ≤ 𝑑δ2𝑛

⇐⇒ (log(𝑐𝑛) + 2𝐾δ𝑛) (𝑐𝑛2𝐾)2𝑛 ≤ 𝑑,

which holds for any 𝑑 ≥ 26𝑛 log(𝑐𝑛𝐾) = (𝑐𝑛𝐾)6𝑛 ≥ 2 log(𝑐𝑛) (𝑐𝑛2𝐾)2𝑛. Back to Eq. (40) we obtain
for 𝑐 = 4

21/𝐾−1 ;

Pr
(
∩𝑡 ∈[𝑛]E𝑡

)
≥ 1 − 𝑛

(
1
𝑐𝑛
+ 1
𝑐𝑛

)
= 1 − 2

𝑐
≥ 1

21/𝐾 ,

and we are done. □

D.2 Upper bound for single-shuffle multi-epoch SGD
First, we slightly generalize the notion of uniform argument stability and prove some supporting
lemmas. We extend the definition of uniform-argument-stability Eq. (4) to one that enables more than
one difference in the training sets. We give the definition below in notation suitable for SGD and the
lemmas that follow;

ϵSGD
stab (τ; 𝐽) B max

𝑓1 ,..., 𝑓τ , 𝑓
′
1 ,..., 𝑓

′
𝐽

max
𝑖1 ,...,𝑖𝐽 ∈[τ]



𝑤τ+1 − 𝑤′τ+1


, (41)

where 𝑤′
τ+1 is the output of GD after swapping 𝑓1, . . . , 𝑓τ in locations 𝑖1, . . . , 𝑖𝐽 with the other losses

𝑓 ′1 , . . . , 𝑓
′
𝐽
. Lemma 8 given next generalizes Lemma 10 for the stability notion we have introduced

above. The proof provided below is based on similar lemmas given in [20].
Lemma 8. Let { 𝑓 (𝑤; 𝑡)}𝑛𝑡=1 be a set of 𝑛, 𝐺-Lipschitz losses, and 𝐹 (𝑤) = 1

𝑛

∑𝑛
𝑡=1 𝑓 (𝑤; 𝑡). Then, for

a uniformly random permutation π : [𝑛] ↔ [𝑛], 𝑓 𝑘𝑡 = 𝑓 (·;π(𝑡))∀𝑘 , it holds that for single-shuffle
SGD;

𝔼
[
𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 )

]
≤ 𝐺ϵSGD

stab (𝑛(𝑘 − 1) + 𝑡 − 1; 2𝑘),

where 𝑤𝑘𝑡 the 𝑡’th SGD iterate of the 𝑘’th epoch.
Proof. Fix 𝑡, 𝑖 ∈ [𝑛], and let π( 𝑓𝑡 ← 𝑓 (·; 𝑖)) denote the distribution obtained from a random
permutation followed by replacing 𝑓𝑡 with 𝑓 (·; 𝑖). In addition, denote by π | 𝑓𝑡 = 𝑓 (·; 𝑖) a uniformly
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distributed permutation conditioned on 𝑓𝑡 = 𝑓 (·; 𝑖). It is easily verified both distributions coincide.
Now, by the law of total expectation;

𝔼 𝑓1... 𝑓𝑛
[
𝑓𝑡 (𝑤𝑘𝑡 )

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝔼 𝑓1... 𝑓𝑛
[
𝑓 (𝑤𝑘𝑡 ; 𝑖) | 𝑓𝑡 = 𝑓 (·; 𝑖)

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝔼 𝑓1... 𝑓𝑛∼π | 𝑓𝑡= 𝑓 ( ·;𝑖)
[
𝑓 (𝑤𝑘𝑡 ; 𝑖)

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝔼 𝑓1... 𝑓𝑛∼π( 𝑓𝑡← 𝑓 ( ·;𝑖))
[
𝑓 (𝑤𝑘𝑡 ; 𝑖)

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝔼 𝑓1... 𝑓𝑛

[
𝑓 (𝑤𝑘, (𝑖)𝑡 ; 𝑖)

]
,

where 𝑤𝑘, (𝑖)𝑡 denotes the SGD iterate obtained for the datapoint sequence after replacing 𝑓
𝑗
𝑡 with

𝑓 (·; 𝑖) in all epochs 𝑗 ≤ 𝑘 . Note this means each epoch differs from its original version in either 0 or
2 indexes. Now

𝔼 𝑓1... 𝑓𝑛
[
𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 )

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝔼 𝑓1... 𝑓𝑛

[
𝑓 (𝑤𝑘𝑡 ; 𝑖) − 𝑓 (𝑤

𝑘, (𝑖)
𝑡 ; 𝑖)

]
≤ max
𝑖∈[𝑛]

𝐺




𝑤𝑘𝑡 − 𝑤𝑘, (𝑖)𝑡





≤ ϵSGD

stab (𝑛(𝑘 − 1) + 𝑡 − 1; 2𝑘),

which completes the proof. □

We will also make use of a generalization of Lemma 11 given in [7, Lemma 3.1]. The next lemma is
a direct implication of it.
Lemma 9. The generalized uniform-argument-stability (see Eq. (41)) rate of SGD with step-size
η > 0 for 𝐺-Lipschitz convex functions satisfies

ϵSGD
stab (τ; 𝐽) ≤ 2𝐺η

√
τ + 4η𝐺𝐽.

We are now ready to prove the single-shuffle convergence upper bound.
Proof of Theorem 6 (single-shuffle case). Similarly to the multi-shuffle case, we have;

𝐹 (𝑤) − 𝐹 (𝑤★) ≤ 1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝐹 (𝑤★)

=
1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤★)

=
1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 ) +
1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝑓 𝑘𝑡 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤★)

≤ 1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 ) +
𝐷2

2η𝑛𝐾
+ η𝐺

2

2
,

with the last inequality following from the standard 𝑛𝐾 round regret bound for gradient descent [see
e.g., 15]. To bound the other term, we now apply Lemma 8 and Lemma 9 to obtain;

𝔼
[
𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 ))

]
≤ 𝐺ϵSGD

stab (𝑛𝑘 + 𝑡; 2𝑘)

≤ 2η𝐺2 (
√︁
𝑛(𝑘 − 1) + 𝑡 + 4𝑘)

≤ 2η𝐺2 (
√
𝑛𝐾 + 4𝐾).
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Now,

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1

𝔼
[
𝐹 (𝑤𝑘𝑡 ) − 𝑓 𝑘𝑡 (𝑤𝑘𝑡 )

]
+ 𝐷2

2η𝑛𝐾
+ η𝐺

2

2

≤ 1
𝑛𝐾

𝐾∑︁
𝑘=1

𝑛∑︁
𝑡=1
(2η𝐺2 (

√
𝑛𝐾 + 4𝐾)) + 𝐷2

2η𝑛𝐾
+ η𝐺

2

2

≤ 8η𝐺2 (
√
𝑛𝐾 + 𝐾) + 𝐷2

2η𝑛𝐾
+ η𝐺

2

2

≤ 6𝐺𝐷
𝑛1/4𝐾1/4 +

4𝐾1/4

𝑛3/4 ,

where the last inequality follows from a choice of η = 𝐷/(2𝐺𝑛3/4𝐾3/4). When 𝑛 ≥ 𝐾, the above
implies

𝔼
[
𝐹 (𝑤) − 𝐹 (𝑤★)

]
≤ 10𝐺𝐷
𝑛1/4𝐾1/4 ,

and concludes the proof. □

E Stability Lemmas
In this section, we provide statements and proofs for several known results relating to stability
properties of SGD. For convenience, we repeat the definition of UAS Eq. (4) with notation suitable
for SGD;

ϵSGD
stab (𝑡) B max

𝑓1 ,..., 𝑓𝑡 , 𝑓 ′
max
𝑖∈[𝑡 ]



𝑤𝑡+1 − 𝑤 (𝑖)𝑡+1

, (42)

where 𝑓1, . . . , 𝑓𝑡 , 𝑓 ′ are any sequence of convex Lipschitz losses, 𝑤𝑡+1 the iterate produced by gradient
descent from 𝑤1 ∈ 𝑊 on 𝑓1, . . . , 𝑓𝑡 , and 𝑤 (𝑖)

𝑡+1 the iterate produced from 𝑤1 on the same sequence
after replacing 𝑓𝑖 with 𝑓 ′.
The next lemma relates the difference between the without-replacement loss distribution and the full
batch objective to the uniform stability rate Eq. (42) of the optimization algorithm in question. For a
proof see [35] (where it was originally stated for average stability, which is a weaker notion and thus
implies the uniform stability case as well).
Lemma 10. Let { 𝑓 (𝑤; 𝑡)}𝑛𝑡=1 be a set of 𝑛, 𝐺-Lipschitz losses, and 𝐹 (𝑤) = 1

𝑛

∑𝑛
𝑡=1 𝑓 (𝑤; 𝑡). Then,

for a uniformly random permutation π : [𝑛] ↔ [𝑛], and 𝑤1 independent of π, it holds that

𝔼π [𝐹 (𝑤𝑡 ) − 𝑓 (𝑤𝑡 ;π(𝑡))] ≤
(𝑡 − 1)𝐺

𝑛
ϵSGD

stab (𝑡 − 1),

where ϵSGD
stab is the stability rate of SGD defined in Eq. (42), and 𝑤𝑡 the output of SGD on { 𝑓 (𝑤; 𝑠)}𝑡−1

𝑠=1.

Following are two lemmas providing uniform stability upper bounds for SGD.
Lemma 11. The uniform argument stability of SGD with step size η > 0 on convex 𝐺-Lipschitz losses
is bounded as;

ϵSGD
stab (𝑡) ≤ 2𝐺η

√
𝑡.

For proof of the above lemma, see [7].
Next, we have standard lemmas providing stability of ERM and regularized ERM in respectively
strongly convex and general convex problems.
Lemma 12 (Strongly Convex ERM Stability). Let 𝑓 : 𝑊 × 𝑍 → ℝ be λ-strongly convex and
𝐺-Lipschitz for all 𝑧 ∈ 𝑍 . Then ���𝔼𝑆∼Z𝑛 [

𝐹 (𝑤★𝑆) − 𝐹 (𝑤
★
𝑆)

] ��� ≤ 𝐺2

λ𝑛
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Proof. Let 𝑤𝑆 B 𝑤★
𝑆

denote the empirical risk minimizer, and 𝑤𝑆𝑖 the ERM for the training set with
the 𝑖’th index swapped with a fresh sample 𝑧′

𝑖
. We have���𝔼𝑆∼Z𝑛 [

𝐹 (𝑤𝑆) − 𝐹 (𝑤𝑆)
] ��� = �����1𝑛 𝑛∑︁

𝑖=1
𝔼

[
𝑓 (𝑤𝑆; 𝑧′𝑖) − 𝑓 (𝑤𝑆𝑖 ; 𝑧′𝑖)

] �����
≤ 𝐺
𝑛

𝑛∑︁
𝑖=1

𝔼 ∥𝑤𝑆 − 𝑤𝑆𝑖 ∥ ≤
4𝐺2

λ𝑛
,

where the first inequality is the generalization equals average stability (see e.g., [32]), and the
last inequality follows since 𝑤𝑆 and 𝑤𝑆𝑖 minimize (1/λ𝑛)-objectives that differ in a 2𝐺-Lipschitz
term. □

Lemma 13 (Regularized ERM Stability). Let 𝑓 : 𝑊 × 𝑍 → ℝ be 𝐺-Lipschitz for all 𝑧 ∈ 𝑍 , and
denote the regularized empirical risk minimizer by 𝑤λ

𝑆
B arg min𝑤∈𝑊

{
𝐹 (𝑤) + λ

2 ∥𝑤∥
2
}
. Then���𝔼𝑆∼Z𝑛 [

𝐹 (𝑤λ
𝑆) − 𝐹 (𝑤

λ
𝑆)

] ��� ≤ 𝐺2

λ𝑛

Proof. Let 𝐹λ(𝑤) B 𝐹 (𝑤) + λ
2 ∥𝑤∥

2 and define the regularized empirical loss 𝐹λ accordingly. Then
we have a λ-strongly convex problem and by Lemma 12,���𝔼𝑆∼Z𝑛 [

𝐹 (𝑤λ
𝑆) − 𝐹 (𝑤

λ
𝑆)

] ��� = ���𝔼𝑆∼Z𝑛 [
𝐹λ(𝑤λ

𝑆) − 𝐹
λ(𝑤λ

𝑆)
] ��� ≤ 4𝐺2

λ𝑛
.

□

F Auxiliary Lemmas
The following provides standard step size dependent lower bounds for convex optimization. See also
[1] where similar claims are made in their Lemma 6.2 and implicit in the proof of their Theorem 6.1.
Lemma 14. For any step-size η > 0, 𝑇 ∈ ℕ and 𝑑 B ⌈16η2𝑇2⌉, there exists a convex optimization
problem ℎ : 𝑊 → ℝ where𝑊 ⊆ ℝ𝑑+1 is of constant diameter such that

ℎ(𝑤) − min
𝑤∈𝑊

ℎ(𝑤) ≥ 1
8

min
{

1
η𝑇
+ η, 1

}
,

and 𝑤 is any suffix average of 𝑇 gradient descent step iterates.
Proof. We shall concatenate two objectives; the first is single dimensional and will contribute the η
term, the second is 𝑑 dimensional and will contribute the 1/η𝑇 term.
First objective. Set 𝑓1 (𝑤) B |𝑤 − η/4|. Since we initialize at 0, the iterates will “zig-zag” between
0 and −η. Clearly, any average of iterates is at best η/4 away from zero loss.

Second objective. Set 𝑓 (𝑤) B max𝑖∈[𝑑 ] {𝑤(𝑖)} , and note 𝑤★ = − 1√
𝑑

1 where 1 denotes the all ones
vector ∈ ℝ𝑑 . We initialize SGD at 𝑤1 = 0 ∈ ℝ𝑑 , and follow the gradient steps ∇ 𝑓 (𝑤𝑡 ) = 𝑒𝑖 where
𝑖 ∈ [𝑑] is one of the coordinates that satisfy 𝑤𝑡 (𝑖) ≥ 𝑤𝑡 ( 𝑗) ∀ 𝑗 ∈ [𝑑]. Hence, for any 𝑡 ∈ [𝑇],

∥𝑤𝑡+1∥1 ≤ ∥𝑤𝑡 ∥1 + η ∥∇ 𝑓 (𝑤𝑡 )∥1 = ∥𝑤𝑡 ∥1 + η ≤ · · · ≤ η𝑡 ≤ η𝑇.

By the pigeonhole principle, this implies there must exist some coordinate 𝑖 such that𝑤𝑇+1 (𝑖) ≥ −η𝑇/𝑑.
In addition, for any 𝑖, 𝑤τ:𝑇 (𝑖) ≥ 𝑤𝑇+1 (𝑖). Therefore, assuming 8η2𝑇2 ≥ 1 we conclude;

𝑓 (𝑤τ:𝑇 ) − 𝑓 (𝑤★) ≥ −
η𝑇

𝑑
+ 1
√
𝑑
≥ − η𝑇

8η2𝑇2 +
1

4η𝑇
=

1
8η𝑇

.

In the case where 8η2𝑇2 < 1,

𝑓 (𝑤τ:𝑇 ) − 𝑓 (𝑤★) ≥ −η𝑇 +
1
2
≥ 1

2
− 1

2
√

2
≥ 1

4
,

and the result follows. □
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