
A Performance of AAE and WAE on Synthetic Dataset1

We illustrate the hole problem of Adversarial Auto-Encoder (AAE) [3] and Wasserstein Auto-Encoder2

(WAE) [4] through a toy experiment on a synthetic dataset, which contains 128 datapoints represented3

as 2-D Gaussian posterior distributions. We compare VAE, AE, AAE, and WAE with our proposed4

DG-VAE in this experiment through latent space visualization, including the visualization of the5

aggregated posterior distribution and the distribution of datapoints’ posterior centers along the training6

process, as depicted in Figure 1. The models have an embedding layer as the encoder and a two-layer7

MLP classifier as the decoder. The batch size is set to 16 and all models are trained with Adam8

optimizer with an initial learning rate of 0.1.9

Figure 1: The visualization of aggregated posterior distribution (red-in-black) and datapoints’
posterior centers distribution (blue-in-white) for VAE, AE, AAE, WAE and DG-VAE along 500
training steps.

It can be observed that the datapoints’ posterior centers in VAE all collapse to the same point, i.e.,10

posterior collapse, while the aggregated posterior fails to match the prior in WAE, AAE, and AE.11

Interestingly, a sampling set from the aggregated posterior distribution of WAE or AAE can already12

simulate that from the prior distribution to some degree; in this state, their sampling sets-based13

discrepancies between the aggregated posterior and the prior can be nearly the optimum.14

In contrast, DG-VAE can solve posterior collapse and form a continuous latent space that matches15

the prior much better, as it optimizes the divergence between the aggregated posterior and the prior16

depicted by their density gap (instead of merely their sampling sets).17

B Configurations18

The configurations for the experiments are as follow: The dimension of word embeddings is 51219

and the weights are randomly initialized by U(−0.1, 0.1), while the other trainable parameters are20

initialized by U(−0.01, 0.01). The encoder and the decoder are both implemented by a single layer21

LSTM [2] with 1024 hidden size. The sampled latent variable z is used to generate the initial hidden22

state of the decoder and concatenated with the word embedding for decoder input at each timestep.123

The default batch size |B| is set to 32, and each batch contains sentences of the same length. The24

latent dimension Dim is set to 32 for both Gaussian VAEs and vMF VAEs.25

Each model is trained on one NVIDIA Tesla v100 by mini-batch SGD for at most 100 epochs except26

it performs overfit according to the valid set for 5 times. Training a model on a short dataset usually27

takes about 40 minutes while training on a long dataset usually takes about 8 hours. The sampling28

times M for Monte Carlo approximation in Eq. 9 and Eq. 11 is set to 32. The averaged training time29

of our model (over all experimental datasets) is only 11% higher than that of the vanilla VAE.30

1Skip-VAE further feeds z into the vocabulary classifier.
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C Language Modeling Metrics31

We include the following metrics for the evaluation of VAEs on language modeling:32

• priorLL(θ) = Ex∼X[logEz∼pθ(z)[pθ(x|z)]]: the prior log likelihood, the log likelihood of33

sentences for the decoder given a latent variable from the prior distribution, which measures34

the unconditional generation ability of the decoder θ.35

• postLL(θ,ϕ) = Ex∼X[logEz∼qϕ(z|x)[pθ(x|z)]]: the posterior log likelihood, the log36

likelihood of sentences for the decoder given a latent variable from the posterior distribution37

of the corresponding sentences, which measures the conditional generation ability of the38

decoder θ and the representation ability of the encoder ϕ;39

• KL(ϕ) = Ex∼X[KL(qϕ(z|x)∥pθ(z))]: the KL term in ELBo, a small KL(ϕ) indicates40

the phenomenon of posterior collapse;41

• MI(ϕ) = H(qϕ(z)) − Ex∼X[H(qϕ(z|x))]: the mutual information of z and n in their42

joint distribution qϕ(n, z), where n = 1, 2, ..., |X|.43

• AU(ϕ): the number of active units, a dimension of z is referred to as an active44

unit when the posterior centers of datapoints has an evident marginal variance, i.e.,45

V arx∼X[Eqϕ(z|x)[zi]] > 0.01 means the ith dimension is an active unit, which is pro-46

posed by Burda et al. [1] to measure the posterior collapse in a dimension-wise perspective.47

A lower value of AU(ϕ) indicates a severer posterior collapse issue;48

• CU(ϕ): the number of consistent units, a dimension of z is referred to as a consistent unit49

when the aggregated posterior is close enough to the prior, i.e., KL(pθ(zi)∥qϕ(zi)) < 0.0350

means the ith dimension is a consistent unit, which is proposed by us to quantify the severity51

of the hole problem in a dimension-wise perspective. A lower value of CU(ϕ) indicates a52

severer hole issue.53

Among those metrics, MI(ϕ) has an upper bound of logN , while AU(ϕ) and CU(ϕ) have an54

upper bound of Dim. Both the prior log likelihood priorLL(θ) and the posterior log likelihood55

postLL(θ,ϕ) are the higher the better. A high value of KL(ϕ), MI(ϕ), AU(ϕ) or CU(ϕ) can not56

assure good performance, but too low a value of them can infer bad performance.57

We approximate the inner expectation term of priorLL(θ) through importance weighted sampling [1],58

where S samples from the prior distribution zs,prior
idd∼ pθ(z) and S samples from the posterior59

distribution zs,post
idd∼ qϕ(z|x) are used for Monte Carlo estimation:60

Ez∼pθ(z)[pθ(x|z)] =
∫

pθ(x|z)pθ(z)dz

=

∫
pθ(x|z)

pθ(z)
1
2 (pθ(z) + qϕ(z|x))

1

2
(pθ(z) + qϕ(z|x))dz

≈ 1

2S
(

S∑
zs,prior

pθ(x|zs,prior)
pθ(zs,prior)

1
2 (pθ(zs,prior) + qϕ(zs,prior|x))

+

S∑
zs,post

pθ(x|zs,post)
pθ(zs,post)

1
2 (pθ(zs,post) + qϕ(zs,post|x))

)

(1)

Similarly, we also apply importance weighted sampling to approximate the inner expectation term61

of postLL(θ,ϕ). We empirically set the sampling size 2S = 16 and conducted evaluations for62

all models across 10 different random seeds under this setting and reported the mean values of63

priorLL(θ) and postLL(θ,ϕ) at the precision of 0.1, where the variances are all less than 0.01.64
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D Full Results of Language Modeling65

We illustrate the language modeling performance of all the Gaussian distribution-based VAEs we66

consider in table 1 (on Short-Yelp), table 2 (on SNLI), table 3 (on Yahoo) and table 4 (on Yelp).67

D.1 On Short-Yelp dataset68

Table 1: Full results of Language Modeling on Short-Yelp dataset. Here we bold up MI(ϕ) ≥ 9.0,
AU(ϕ) ≥ 30 and CU(ϕ) ≥ 30.

Models priorLL(θ) postLL(θ,ϕ) KL(ϕ) MI(ϕ) AU(ϕ) CU(ϕ)

VAE (default) -34.1 -33.1 0.9 0.8 3 323232
cyclic-VAE -34.0 -31.6 2.3 2.3 4 323232
bow-VAE -33.9 -31.4 2.6 2.6 3 323232
skip-VAE -33.9 -29.3 4.2 4.0 14 323232
δ-VAE(0.15) -35.0 -32.8 4.8 1.7 23 2

BN-VAE(0.6) -33.9 -27.4 6.2 5.5 323232 323232
BN-VAE(0.7) -34.0 -25.9 8.5 7.0 323232 323232
BN-VAE(0.9) -34.8 -23.4 13.7 8.6 323232 14
BN-VAE(1.2) -37.3 -20.3 23.3 9.09.09.0 323232 0
BN-VAE(1.5) -42.6 -19.6 35.9 9.19.19.1 323232 0
BN-VAE(1.8) -47.9 -18.7 49.7 9.19.19.1 323232 0

FB-VAE(4) -33.9 -31.0 4.5 3.1 323232 313131
FB-VAE(9) -31.5 -27.9 9.3 6.3 323232 313131
FB-VAE(16) -30.1 -23.6 16.4 8.8 323232 11
FB-VAE(25) -32.2 -19.1 24.6 9.19.19.1 323232 0
FB-VAE(36) -38.7 -15.7 34.8 9.19.19.1 323232 0
FB-VAE(49) -46.6 -13.7 45.0 9.19.19.1 323232 0

β-VAE(0.8) -34.1 -30.3 4.0 4.0 3 323232
β-VAE(0.4) -36.1 -22.9 14.6 9.09.09.0 8 303030
β-VAE(0.2) -44.6 -13.7 34.8 9.19.19.1 21 313131
β-VAE(0.1) -54.7 -9.2 52.5 9.19.19.1 323232 29
β-VAE(0.0) -71.1 -10.3 147.5 9.19.19.1 323232 0

DG-VAE (|b| = 1) -34.1 -32.8 1.2 1.2 2 323232
DG-VAE (|b| = 2) -33.6 -26.8 8.0 7.3 8 323232
DG-VAE (|b| = 4) -35.0 -20.3 18.6 9.19.19.1 23 323232
DG-VAE (|b| = 8) -38.7 -14.2 34.8 9.19.19.1 323232 323232
DG-VAE (|b| = 16) -41.2 -14.1 41.0 9.19.19.1 323232 323232
DG-VAE (|b| = 32) -47.5 -11.2 53.1 9.19.19.1 323232 323232
DG-VAE (default) -47.5 -11.2 53.1 9.19.19.1 323232 323232
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D.2 On SNLI dataset69

Table 2: Full results of Language Modeling on SNLI dataset. Here we bold up MI(ϕ) ≥ 9.0,
AU(ϕ) ≥ 30 and CU(ϕ) ≥ 30.

Models priorLL(θ) postLL(θ,ϕ) KL(ϕ) MI(ϕ) AU(ϕ) CU(ϕ)

VAE (default) -32.8 -31.2 1.3 1.3 2 323232
cyclic-VAE -32.7 -29.9 2.5 2.5 5 323232
bow-VAE -32.8 -30.8 2.0 2.0 2 323232
skip-VAE -32.7 -28.6 3.8 3.7 17 323232
δ-VAE(0.15) -33.6 -31.6 4.8 1.4 28 0

BN-VAE(0.6) -32.6 -25.7 6.3 5.6 323232 323232
BN-VAE(0.7) -32.6 -23.7 8.8 7.3 323232 323232
BN-VAE(0.9) -32.8 -20.5 13.9 8.8 323232 24
BN-VAE(1.2) -36.5 -18.8 24.0 9.29.29.2 323232 0
BN-VAE(1.5) -41.2 -17.4 36.5 9.29.29.2 323232 0
BN-VAE(1.8) -47.1 -16.5 52.1 9.29.29.2 323232 0

FB-VAE(4) -32.6 -30.2 4.0 2.2 323232 323232
FB-VAE(9) -30.4 -27.2 9.0 5.4 323232 28
FB-VAE(16) -28.3 -23.8 15.9 8.4 323232 25
FB-VAE(25) -28.6 -17.1 24.8 9.29.29.2 323232 1
FB-VAE(36) -35.0 -13.9 34.7 9.29.29.2 323232 0
FB-VAE(49) -43.0 -11.5 46.1 9.29.29.2 323232 0

β-VAE(0.8) -32.5 -27.1 5.8 5.6 5 323232
β-VAE(0.4) -35.2 -19.6 17.1 9.29.29.2 15 313131
β-VAE(0.2) -40.4 -13.7 30.8 9.29.29.2 23 313131
β-VAE(0.1) -46.7 -10.6 45.9 9.29.29.2 303030 303030
β-VAE(0.0) -61.5 -9.1 138.3 9.29.29.2 323232 0

DG-VAE (|b| = 1) -32.8 -31.1 1.3 1.3 3 323232
DG-VAE (|b| = 2) -32.0 -25.4 8.0 7.3 8 323232
DG-VAE (|b| = 4) -33.3 -19.5 17.0 9.29.29.2 19 323232
DG-VAE (|b| = 8) -34.9 -15.0 28.6 9.29.29.2 313131 323232
DG-VAE (|b| = 16) -38.9 -12.1 40.8 9.29.29.2 313131 323232
DG-VAE (|b| = 32) -42.7 -11.1 48.6 9.29.29.2 323232 323232
DG-VAE (default) -42.7 -11.1 48.6 9.29.29.2 323232 323232
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D.3 On Yahoo dataset70

Table 3: Full results of Language Modeling on Yahoo dataset. Here we bold up MI(ϕ) ≥ 9.0,
AU(ϕ) ≥ 30 and CU(ϕ) ≥ 30.

Models priorLL(θ) postLL(θ,ϕ) KL(ϕ) MI(ϕ) AU(ϕ) CU(ϕ)

VAE (default) -330.7 -330.7 0.0 0.0 0 323232
cyclic-VAE -329.9 -329.0 1.1 1.1 2 313131
bow-VAE -330.5 -330.5 0.0 0.0 0 323232
skip-VAE -330.2 -325.2 5.1 4.3 8 313131
δ-VAE(0.15) -330.5 -330.7 4.8 0.0 0 0

BN-VAE(0.6) -327.6 -321.1 6.6 6.0 323232 323232
BN-VAE(0.7) -326.8 -318.5 9.1 7.5 323232 323232
BN-VAE(0.9) -327.1 -313.8 15.6 9.09.09.0 323232 323232
BN-VAE(1.2) -330.9 -310.1 26.3 9.29.29.2 323232 0
BN-VAE(1.5) -337.8 -310.3 37.6 9.29.29.2 323232 0
BN-VAE(1.8) -343.6 -308.6 51.4 9.29.29.2 323232 0

FB-VAE(4) -329.8 -328.5 4.0 1.8 323232 323232
FB-VAE(9) -327.9 -326.3 8.9 4.2 323232 12
FB-VAE(16) -325.8 -320.8 16.2 8.5 323232 8
FB-VAE(25) -333.5 -316.3 25.8 9.29.29.2 323232 0
FB-VAE(36) -341.3 -307.1 36.9 9.29.29.2 323232 0
FB-VAE(49) -344.7 -296.1 50.1 9.29.29.2 323232 0

β-VAE(0.8) -330.2 -328.5 2.0 1.9 2 303030
β-VAE(0.4) -330.9 -324.8 7.0 6.7 3 313131
β-VAE(0.2) -338.6 -310.3 30.1 9.29.29.2 22 25
β-VAE(0.1) -370.0 -289.6 83.7 9.29.29.2 323232 0
β-VAE(0.0) -445.3 -280.4 178.8 9.29.29.2 323232 0

DG-VAE (|b| = 1) -330.7 -330.8 0.0 -0.0 0 323232
DG-VAE (|b| = 2) -330.1 -326.5 4.1 4.1 4 323232
DG-VAE (|b| = 4) -330.4 -318.3 14.4 9.19.19.1 11 323232
DG-VAE (|b| = 8) -338.3 -308.3 32.1 9.29.29.2 303030 323232
DG-VAE (|b| = 16) -349.5 -295.1 57.7 9.29.29.2 323232 323232
DG-VAE (|b| = 32) -355.4 -294.1 65.2 9.29.29.2 323232 323232
DG-VAE (default) -358.0 -290.9 70.8 9.29.29.2 323232 323232
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D.4 On Yelp dataset71

As depicted in table 4, it can be observed that BN-VAEs perform abnormally on Yelp dataset when72

γ ≥ 1.2. We investigate this phenomenon and find that their batch normalization layers have already73

crashed in training.74

Normally, the batch normalization layer performs the following operation for input x, where ϵ is a75

small value to avoid division by zero:76

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β (2)

However, in those BN-VAEs that perform abnormally:77

Var[x] ≪ ϵ (3)

So, their batch normalization layers can no longer fix the variance of output y to γ, and thus they can78

no longer ensure a lower bound of the KL term in ELBo.79

Intuitively, the KL term in ELBo tends to minimize Var[y] while the batch normalization layer80

persists in fixing Var[y] to γ. So they finally minimize Var[x] and lead to this phenomenon on Yelp81

dataset when γ ≥ 1.2.82

Table 4: Full results of Language Modeling on Yelp dataset. Here we bold up MI(ϕ) ≥ 9.0,
AU(ϕ) ≥ 30 and CU(ϕ) ≥ 30.

Models priorLL(θ) postLL(θ,ϕ) KL(ϕ) MI(ϕ) AU(ϕ) CU(ϕ)

VAE (default) -360.2 -360.2 0.1 0.0 0 323232
cyclic-VAE -358.9 -358.2 0.5 0.5 2 323232
bow-VAE -359.2 -358.8 0.3 0.3 1 323232
skip-VAE -359.8 -356.6 3.2 2.5 4 303030
δ-VAE(0.15) -359.4 -359.6 4.8 0.0 0 0

BN-VAE(0.6) -356.5 -349.6 7.4 6.1 323232 323232
BN-VAE(0.7) -356.6 -347.8 10.0 7.7 323232 313131
BN-VAE(0.9) -356.5 -343.8 15.8 9.09.09.0 323232 25
BN-VAE(1.2) -362.0 -357.7 7.2 4.0 28 28
BN-VAE(1.5) -359.8 -357.5 4.0 1.7 22 303030
BN-VAE(1.8) -365.5 -360.4 11.3 4.5 303030 17

FB-VAE(4) -358.6 -357.3 4.0 1.8 323232 323232
FB-VAE(9) -358.4 -357.4 8.8 2.8 323232 0
FB-VAE(16) -355.3 -351.3 16.1 7.9 323232 13
FB-VAE(25) -367.9 -355.2 24.3 9.19.19.1 323232 0
FB-VAE(36) -368.8 -338.0 36.6 9.29.29.2 323232 0
FB-VAE(49) -375.1 -329.1 48.9 9.29.29.2 323232 0

β-VAE(0.8) -358.8 -357.4 1.7 1.7 2 313131
β-VAE(0.4) -359.5 -353.9 6.6 6.2 3 313131
β-VAE(0.2) -366.9 -344.1 24.8 9.29.29.2 17 0
β-VAE(0.1) -376.1 -336.8 42.0 9.29.29.2 24 0
β-VAE(0.0) -483.3 -309.4 190.6 9.29.29.2 323232 0

DG-VAE (|b| = 1) -359.3 -358.9 0.3 0.3 1 323232
DG-VAE (|b| = 2) -361.3 -359.0 2.9 2.7 4 313131
DG-VAE (|b| = 4) -359.3 -351.0 9.9 8.4 7 323232
DG-VAE (|b| = 8) -362.7 -344.1 20.9 9.19.19.1 303030 323232
DG-VAE (|b| = 16) -368.1 -337.8 33.4 9.19.19.1 313131 323232
DG-VAE (|b| = 32) -378.2 -331.0 51.2 9.19.19.1 313131 323232
DG-VAE (default) -381.8 -324.6 62.4 9.19.19.1 323232 313131
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E Interpolation Rouge-L F1-score curves83

E.1 On Short-Yelp dataset84

Figure 2: The curves of Rouge-L F1-score and λ for models’ interpolation performance on Short-
Yelp.

E.2 On SNLI dataset85

Figure 3: The curves of Rouge-L F1-score and λ for models’ interpolation performance on SNLI.

It can be observed in Figure 2 and Figure 3 that although DG-VAE outperforms β-VAEs on short86

datasets under nearly all conditions, BN-VAEs and FB-VAEs with proper parameter settings outper-87

form DG-VAE when λ ≈ 0.5. We think this is due to the capacity of DG-VAE may be too big for88

short sentences, as it maximizes the mutual information between the input sentences and the latent89

variables on 32 dimensions respectively while those short sentences contain only about 10 tokens on90

average.91

So, for such short datasets, BN-VAEs and FB-VAEs with proper parameter settings may be better92

choices for latent-guided generation.93
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E.3 On Yahoo dataset94

Figure 4: The curves of Rouge-L F1-score and λ for models’ interpolation performance on Yahoo.

E.4 On Yelp dataset95

Figure 5: The curves of Rouge-L F1-score and λ for models’ interpolation performance on Yelp.

It can be observed in Figure 4 and Figure 5 that DG-VAE outperforms all the other models under96

nearly all conditions on long datasets, which suggests that DG-VAE can be an excellent choice for97

latent-guided text generation for long datasets.98
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F Interpolation Case Study99

As β-VAE(0.1) performs the most competitively according to the previous evaluation, here we do100

case study for interpolation of β-VAE(0.1) and our proposed DG-VAE. For each sentence pair, xa101

and xb, we report the generation results xλ and the corresponding values of density gap DG(zλ)102

(short for DG(θ,ϕ; zλ)) along with λ, as shown in Figure 6, Figure 7, Figure 8, Figure 9, Figure 10103

and Figure 11. We highlight the tokens in the longest common subsequences in yellow (with xa),104

blue (with xb) or green (with both).105

It can be observed that the values of DG(zλ) tend to be more negative in the middle, i.e., λ ≈ 0.5.106

This indicates that the aggregated posterior distribution (where z is sampling from during fitting)107

has much lower probability density than the prior distribution (where z is sampling from during108

unconditional inference) does in the middle.109

Compared with β-VAE(0.1), our proposed DG-VAE has less negative DG(zλ), and thus provides110

smoother interpolation results.111

Figure 6: The (short) interpolation case of β-VAE(0.1) and DG-VAE on Short-Yelp dataset.

Figure 7: The (short) interpolation case of β-VAE(0.1) and DG-VAE on SNLI dataset.
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Figure 8: The (long) interpolation case of β-VAE(0.1) and DG-VAE on Short-Yelp dataset.
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Figure 9: The (long) interpolation case of β-VAE(0.1) and DG-VAE on SNLI dataset.
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Figure 10: The interpolation case of β-VAE(0.1) and DG-VAE on Yahoo dataset.
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Figure 11: The interpolation case of β-VAE(0.1) and DG-VAE on Yelp dataset.
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G Latent Space Visualization112

We visualize the latent space for a model through the following two steps:113

(1) Rank the 32 dimensions by the marginal variance of posterior centers, i.e. V arx∼X[Eqϕ(z|x)[zi]]114

for the ith dimension, from low to high, which in essence ranks the dimensions from inactive to115

active.116

(2) Visualize the aggregated posterior distribution (red-in-black) and the posterior centers (blue-in-117

white) on a group of two adjacent dimensions. Here we illustrate the results on dimensions ranked118

the 0th paired with the 1st, the 6th paired with the 7th, the 12th paired with the 13th, the 18th paired119

with the 19th, the 24th paired with the 25th, and the 30th paired with the 31st.120

G.1 On Yahoo dataset121

Figure 12: The latent space visualization of VAE (default) on Yahoo dataset.

Figure 13: The latent space visualization of cyclic-VAE on Yahoo dataset.

Figure 14: The latent space visualization of bow-VAE on Yahoo dataset.

Figure 15: The latent space visualization of skip-VAE on Yahoo dataset.

Figure 16: The latent space visualization of delta-VAE on Yahoo dataset.
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Figure 17: The latent space visualization of BN-VAEs on Yahoo dataset.

Figure 18: The latent space visualization of FB-VAEs on Yahoo dataset.

Figure 19: The latent space visualization of Beta-VAEs on Yahoo dataset.
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Figure 20: The latent space visualization of DG-VAEs on Yahoo dataset.
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G.2 On Yelp dataset122

Figure 21: The latent space visualization of VAE (default) on Yelp dataset.

Figure 22: The latent space visualization of cyclic-VAE on Yelp dataset.

Figure 23: The latent space visualization of bow-VAE on Yelp dataset.

Figure 24: The latent space visualization of skip-VAE on Yelp dataset.

Figure 25: The latent space visualization of delta-VAE on Yelp dataset.

Figure 26: The latent space visualization of BN-VAEs on Yelp dataset.
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Figure 27: The latent space visualization of FB-VAEs on Yelp dataset.

Figure 28: The latent space visualization of Beta-VAEs on Yelp dataset.

Figure 29: The latent space visualization of DG-VAEs on Yelp dataset.
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G.3 On SNLI dataset123

Figure 30: The latent space visualization of VAE (default) on SNLI dataset.

Figure 31: The latent space visualization of cyclic-VAE on SNLI dataset.

Figure 32: The latent space visualization of bow-VAE on SNLI dataset.

Figure 33: The latent space visualization of skip-VAE on SNLI dataset.

Figure 34: The latent space visualization of delta-VAE on SNLI dataset.

Figure 35: The latent space visualization of BN-VAEs on SNLI dataset.
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Figure 36: The latent space visualization of FB-VAEs on SNLI dataset.

Figure 37: The latent space visualization of Beta-VAEs on SNLI dataset.

Figure 38: The latent space visualization of DG-VAEs on SNLI dataset.
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G.4 On Short-Yelp dataset124

Figure 39: The latent space visualization of VAE (default) on Short-Yelp dataset.

Figure 40: The latent space visualization of cyclic-VAE on Short-Yelp dataset.

Figure 41: The latent space visualization of bow-VAE on Short-Yelp dataset.

Figure 42: The latent space visualization of skip-VAE on Short-Yelp dataset.

Figure 43: The latent space visualization of delta-VAE on Short-Yelp dataset.

Figure 44: The latent space visualization of BN-VAEs on Short-Yelp dataset.

In conclusion, cyclic-VAEs (depicted in Figures 13, 22, 31 and 40), bow-VAEs (depicted in Figures 14,125

23, 32 and 41), skip-VAEs (depicted in Figures 15, 24, 33 and 42) and δ-VAEs (depicted in Figures 16,126

25, 34 and 43) have limited effect on solving posterior collapse as most of their dimensions are still127

inactive (according to the posterior centers distributions).128

Meanwhile, FB-VAEs (depicted in Figures 18, 27, 36 and 45) and β-VAEs (depicted in Figures 19,129

28, 37 and 46) can solve posterior collapse effectively through weakening the KL term in ELBo130

by a large margin, e.g., FB-VAE(49) or β-VAE(0.1), but they also introduce mismatch between the131

aggregated posterior and the prior through doing so.132

According to the visualization, BN-VAEs (depicted in Figures 17, 26, 35 and 44) can form a latent133

space without posterior collapse or significant hole problem with a proper γ, e.g., γ = 0.6, but they134

indeed perform poorly on latent-guided generation in such circumstances according to experiments135
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Figure 45: The latent space visualization of FB-VAEs on Short-Yelp dataset.

Figure 46: The latent space visualization of Beta-VAEs on Short-Yelp dataset.

Figure 47: The latent space visualization of DG-VAEs on Short-Yelp dataset.

on language modeling and interpolation. With the increase of γ, BN-VAEs also introduce mismatch136

between the aggregated posterior and the prior. Moreover, it can be observed in Figure 26 that137

BN-VAEs with high values of γ perform unsteadily on Yelp dataset, as we discuss and explain in138

Appendix D.4.139

In contrast, DG-VAEs (depicted in Figures 20, 29, 38 and 47) can gradually solve posterior collapse140

with the increase of |b|, and avoid the mismatch between the aggregated posterior and the prior141

throughout the process.142
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