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Abstract

Few-shot image generation (FSIG) aims to learn to generate new and diverse sam-
ples given an extremely limited number of samples from a domain, e.g., 10 training
samples. Recent work has addressed the problem using transfer learning approach,
leveraging a GAN pretrained on a large-scale source domain dataset and adapting
that model to the target domain based on very limited target domain samples.
Central to recent FSIG methods are knowledge preserving criteria, which aim to
select a subset of source model’s knowledge to be preserved into the adapted model.
However, a major limitation of existing methods is that their knowledge preserving
criteria consider only source domain/source task, and they fail to consider target
domain/adaptation task in selecting source model’s knowledge, casting doubt on
their suitability for setups of different proximity between source and target domain.
Our work makes two contributions. As our first contribution, we revisit recent
FSIG works and their experiments. Our important finding is that, under setups
which assumption of close proximity between source and target domains is relaxed,
existing state-of-the-art (SOTA) methods which consider only source domain in
knowledge preserving perform no better than a baseline fine-tuning method. To
address the limitation of existing methods, as our second contribution, we propose
Adaptation-Aware kernel Modulation (AdAM) to address general FSIG of different
source-target domain proximity. Extensive experimental results show that the
proposed method consistently achieves SOTA performance across source/target
domains of different proximity, including challenging setups when source and
target domains are more apart. Project Page: https://yunqing-me.github.io/AdAM/

1 Introduction

Generative Adversarial Networks (GANs) [1, 2, 3] have been applied to a range of important
applications including image generation [4, 3, 5], image-to-image translation [6, 7], image editing
[8, 9], anomaly detection [10], and data augmentation [11, 12]. However, a critical issue is that these
GANs often require large-scale datasets and computationally expensive resources to achieve good
performance. For example, StyleGAN [4] is trained on Flickr-Faces-HQ (FFHQ) [4] that contains
70,000 images. However, in many practical applications only a few samples are available (e.g.,
photos of rare animal species / skin diseases). Training a generative model is problematic in this
low-data regime, where the generator often suffers from mode collapse or blurred generated images
[13, 14, 15]. To address this, few-shot image generation (FSIG) studies the possibility of generating
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Table 1: Transfer learning for few-shot image generation: Various criteria are proposed to augment
baseline transfer learning to preserve subset of source model’s knowledge into the adapted model.

Method Knowledge preserving criteria Source
domain/task

aware

Target
domain/adaptation

aware
TGAN [16] Not available – –
FreezeD
[17]

Preservation of lower layers of the discriminator pre-trained on the
source domain. ✓ ✗

EWC [18] Preservation of weights important to the source generative model
pre-trained on the source domain. ✓ ✗

CDC [14] Preservation of pairwise distances of generated images by the source
generative model pre-trained on the source domain. ✓ ✗

DCL [19] Preservation of multilevel semantic diversity of the generated images
by the source generative model pre-trained on the source domain. ✓ ✗

AdAM
(Our work)

Preservation of kernels important in adaptation of source model to
target. ✓ ✓

sufficiently diverse and high quality images, given very limited training data (e.g., 10 samples). FSIG
also attracts an increasing interest for some downstream tasks, e.g., few-shot classification [12].

FSIG with Transfer Learning. Recent works in FSIG are based on transfer learning approach [20]
i.e., leveraging the prior knowledge of a GAN pretrained on a large-scale, diverse source dataset
(e.g., FFHQ [4] or ImageNet [21]) and adapting it to a target domain with very limited samples (e.g.,
face paintings [22]). As only very limited samples are provided to define the underlying distribution,
standard fine-tuning of a pre-trained GAN suffers from mode collapse: the adapted model can
only generate samples closely resembling the given few shot target samples [16, 14]. Therefore,
recent works [18, 14, 19] have proposed to augment standard fine-tuning with different criteria to
carefully preserve subset of source model’s knowledge into the adapted model. Various criteria has
been proposed (Table 1), and these knowledge preserving criteria have been central in recent FSIG
research. In general, these criteria aim to preserve subset of source model’s knowledge which is
deemed to be useful for target-domain sample generation, e.g., improving the diversity of target
sample generation.

Research Gaps. One major limitation of existing methods is that they consider only source domain in
preserving subset of source model’s knowledge into the adapted model. In particular, these methods
fail to consider target domain/adaptation task in selection of source model’s knowledge (Table 1).
For example, EWC [18] applies Fisher Information [23] to select important weights entirely based on
the pretrained source model, and it aims to preserve these selected weights regardless of the target
domain in adaptation. Similar to EWC [18], CDC [14] proposes an additional constraint to preserve
pairwise distances of generated images by the source model, and there is no consideration of target
domain/adaptation. These target/adaptation-agnostic knowledge preserving criteria in recent works
raise question regarding their suitability in different source/target domain setups. It should be noted
that existing FSIG works (under very limited target samples) focus largely on setups where source
and target domains are in close proximity (semantically) e.g., Human faces (FFHQ)ÑBaby faces
[14, 19], or CarsÑAbandoned Cars [14, 19]. It is unclear about their performance when source/target
domains are more apart (e.g., Human faces (FFHQ) Ñ Animal faces [5]).

Contributions. In this paper we take an important step to address these research gaps for FSIG.
Specifically, our work makes two contributions. As our first contribution, we revisit existing
state-of-the-art (SOTA) algorithms and their experiments. Importantly, we observe that when the
close proximity assumption is relaxed in experiment setups and source/target domains are more
apart, existing SOTA methods perform no better than a baseline fine-tuning method. Our observation
suggests that recent methods considering only source domain/source task in knowledge preserving
may not be suitable for general FSIG when source and target domains are more apart. To validate
our claims, we introduce additional experiments with different source/target domains, analyze their
proximity qualitatively and quantitatively, and examine existing methods under a unified framework.

Informed by our analysis, as our second contribution, we propose an adaptation-aware kernel
modulation approach to address general FSIG of different source/target domain proximity. In
marked contrast to existing works which preserve knowledge important to source task, our method
aims to preserve subset of source model’s knowledge that are important to the target domain and
the adaptation task. More specifically, we propose an importance probing algorithm to identify
kernels which encode important knowledge for adaptation to the target domain. Then, we preserve
the knowledge of these kernels using a parameter-efficient rank-constrained kernel modulation.
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Figure 1: Overview and our contributions. 1⃝: We consider the problem of FSIG with Transfer
Learning using very limited target samples (i.e.10-shot). 2⃝: Our work makes two contributions,
‚ We discover that when the close proximity assumption between source-target domain is relaxed,
SOTA FSIG methods (EWC [18], CDC [14], DCL [19]) which consider only source domain/source
task in knowledge preserving perform no better than a baseline fine-tuning method (TGAN [16])
(Sec 3). ‚ We propose a novel adaptation-aware kernel modulation for FSIG that achieves SOTA
performance across source / target domains with different proximity (Sec 4). 3⃝ Schematic diagram
of our proposed Importance Probing Mechanism: We measure the importance of each kernel for
the target domain after probing and preserve source domain knowledge that is important for target
domain adaptation (Sec 4). The same operations are applied to discriminator.

We conduct extensive experiments to show that our proposed method consistently achieves SOTA
performance across source/target domains of different proximity, including challenging setups when
source/target domains are more apart. Our main contributions are summarized as follows:

• We revisit existing FSIG methods and experiment setups. Our study uncovers issues with
existing methods when applied to source/target domains of different proximity.

• We propose Adaptation-Aware kernel Modulation (AdAM) for FSIG. Our method consis-
tently achieves SOTA performance both visually and quantitatively across source/target
domains with different proximity.

2 Related Work

Few-shot image generation. Conventional few-shot learning [24, 25, 26] aims at learning a discrim-
inative classifier for classification [27, 28, 29, 30], segmentation [31, 32] or detection [33, 34, 35]
tasks. Differently, few-shot image generation (FSIG) [14, 18, 19] aims at learning a generator for
new and diverse samples given extremely limited samples (e.g., 10 shots). Transfer learning has
been applied to FSIG. For example, Transferring GAN [16] (TGAN) applies simple GAN loss [1] to
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FFHQ Babies Sunglasses MetFaces Cat Dog Wild

Target Domain Size FID Ó LPIPS Ó

FFHQ [4] 70.0K - -

Babies [14] 2.49K 147 0.274

Sunglasses [14] 2.68K 108 0.347

MetFaces [36] 1.33K 107 0.358

Cat [5] 5.15K 227 0.479

Dog [5] 4.74K 210 0.442

Wild [5] 4.74K 272 0.484

Figure 2: Qualitative / Quantitative analysis of source-target domain proximity: We use FFHQ
[3] as the source domain. We show source-target domain proximity qualitatively by visualizing
Inception-v3 (Left) [37] and LPIPS (Middle) [38] – using AlexNet [39] backbone – features, and
quantitatively using FID / LPIPS metrics (Right). For feature visualization, we use t-SNE [40]
and show centroids (△) for all domains. FID / LPIPS is measured with respect to FFHQ. There
are two important observations: 1⃝ Common target domains used in existing FSIG works (Babies,
Sunglasses, MetFaces) are notably proximal to the source domain (FFHQ). This can be observed
from the feature visualization and verified by FID / LPIPS measurements. 2⃝ We clearly show
using feature visualizations and FID / LPIPS measurements that additional setups – Cat [5], Dog
[5] and Wild [5] – represent target domains that are distant from the source domain (FFHQ). We
remark that large FID values in this analysis are reasonable due to the distance between the source
(FFHQ) and different target domains as observed from centroid distance / feature variance. The
effect of limited sample size (target domains) for FID / LPIPS measurements are minimal and we
include rich supportive studies in Supplementary. Additional experiments and source/target setups in
Supplementary to further support our analysis.

fine-tune all parameters of both the generator and the discriminator. FreezeD [17] fixes a few high-
resolution discriminator layers during fine-tuning. To augment and improve simple fine-tuning, more
recent works have focused on preserving specific knowledge from the source models. Elastic weight
consolidation (EWC) [18] identifies important weights for the source model and tries to preserve
these weights. Cross-domain Correspondence (CDC) [14] preserves pair-wise distance of generated
images from the source model to alleviate mode collapse. Dual Contrastive Learning (DCL) [19]
applies mutual information maximization to preserve multi-level diversity of the generated images by
the source model. In this work, we observe that these SOTA methods perform poorly when source and
target domains are more apart. Therefore, their proposed source knowledge preservation criteria may
not be generalizable. Based on our analysis, we propose an adaptation-aware knowledge selection
which is more generalizable for source/target domains with different proximity.

3 Revisiting FSIG through the Lens of Source–Target Domain Proximity

In this section, we revisit existing FSIG methods (10-shot) [16, 17, 18, 14, 19] through the lens of
source-target domain proximity. Specifically, we scrutinize the experimental setups of existing FSIG
methods and observe that SOTA [18, 14, 19] largely focus on adapting to target domains that are
(semantically) proximal to the source domain: Human Faces (FFHQ) Ñ Baby Faces; Human Faces
(FFHQ) Ñ Sunglasses; Cars Ñ Abandoned Cars; Church Ñ Haunted Houses [18, 14, 19]. This raises
the question as to whether existing source-target domain setups sufficiently represent general FSIG
scenarios. Particularly, real-world FSIG applications may not contain target domains that are always
proximal to the source domain (e.g.,: Human Faces (FFHQ) Ñ Animal Faces). Motivated by this, we
conduct an in-depth qualitative and quantitative analysis on source-target domain proximity where we
introduce target domains that are distant from the source domain (Sec 3.1). Our analysis uncovers an
important finding: Under our additional setups where the assumption of close proximity between
source and target domain is relaxed, existing SOTA FSIG methods [18, 14, 19] which consider
only source domain/source task in knowledge preserving perform no better than a baseline
fine-tuning method. We show this is due to the strong focus of existing SOTA methods in preserving
source domain knowledge, thereby not being able to adapt well to distant target domains (Sec 3.2) .
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3.1 Source–Target Domain Proximity Analysis

Introducing target domains with varying degrees of proximity to the source domain. In this
section, we formally introduce source-target domain proximity with in-depth analysis to scrutinize
existing FSIG methods under different degrees of source-target domain proximity. Following prior
FSIG works [16, 17, 18, 14, 19], we use FFHQ [3] as the source domain in this analysis. We remark
that existing works largely consider different types of human faces as target domain (i.e.: Babies [14],
Sunglasses [14], MetFaces [36]), To relax the close proximity assumption and study general FSIG
problems, we introduce more distant target domains namely Cat, Dog and Wild (from AFHQ [5],
consisting of 15,000 high-quality animal face images at 512 × 512 resolution) for our analysis.

Characterizing source-target domain proximity. Given the wide success of deep neural network
features in representing meaningful semantic concepts [41, 42, 43], we visualize Inception-v3 [37]
and LPIPS [38] features for source and target domains to qualitatively characterize domain proximity.
Further, we use FID [44] and LPIPS distance to quantitatively characterize source-target domain
proximity. We remark that FID involves distribution estimation (first, second order moments) [44]
and LPIPS computes pairwise distances (learned embeddings) [38] between source / target domains.

Analysis. Feature visualization and FID/ LPIPS measurement results are shown in Figure 2. Our
results both qualitatively (columns 1, 2) and quantitatively (column 3) show that target domains used
in existing works (Babies [3], Sunglasses [3], MetFaces [36]) are notably proximal to the source
domain (FFHQ), and our additionally introduced target domains (Dog, Cat and Wild [5]) are distant
from the source domain thereby relaxing the close proximity assumption in existing FSIG works.

3.2 FSIG methods under Relaxation of Close Domain Proximity Assumption

Motivated by our analysis in Section 3.1, we investigate the performance of existing FSIG meth-
ods [16, 17, 18, 14, 19] by relaxing the close proximity assumption between source and target
domains. We investigate the performance of these FSIG methods across target domains of different
proximity to the source domain, which includes our additionally introduced target domains: Dog,
Cat and Wild. The FID results for FFHQ Ñ Cat are: TGAN (simple fine-tuning) [16]: 64.68,
EWC [18]: 74.61, CDC [14]: 176.21, DCL [19]: 156.82. Full results can be found in Table 2.

CDC

EWC

DCL

AdAM 

(Ours)

  Gs

  z1   z2   z3   z4

Figure 3: Gs is the source generator (FFHQ).
Adapting from the source domain (FFHQ) to a
distant target domain (Cat) using SOTA FSIG
methods EWC [18], CDC [14], DCL [19] (rows
2, 3, 4) results in observable knowledge trans-
fer that is not useful to the target domain. i.e.:
Source task knowledge such as Caps (z1, z4),
Hair styles/color – brown (z2), red-hair (z3),
Eye glasses (z3) from FFHQ are transferred to
Cats during adaptation which is not appropriate.
Our method (last row) can alleviate these issues.

We emphasize that our investigation uncovers an im-
portant finding: Under setups which the assumption of
close proximity between source and target domain is
relaxed (Dog, Cat, Wild), existing SOTA FSIG methods
[18, 14, 19] perform no better than a baseline method
[16]. This can be consistently observed in Table 2.

This finding is critical as it exposes a serious drawback
of SOTA FSIG methods [18, 14, 19] when close do-
main proximity (between source and target) assumption
is relaxed. We further analyse generated images from
SOTA FSIG methods and observe that these methods
are unable to adapt well to distant target domains due
to only considering source domain / task in knowledge
preservation. This can be clearly observed from Fig-
ure 3. We remark that TGAN (simple baseline) [16]
also suffers from severe mode collapse. Given that our
investigation uncovers an important problem in SOTA
FSIG methods, we tackle this problem in Sec 4. Figure
3 (last row) shows a glimpse of our proposed method.

4 Adaptation-Aware Kernel Modulation

We focus on this question: “Given a pretrained GAN on
a source domain Ds, and a few-samples from a target
domain Dt, which part of the source model’s knowledge
should be preserved, and which part should be updated,
during the adaptation from Ds to Dt?” In contrast to
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Algorithm 1: Few-Shot Image Generation via Adaptation-Aware Kernel Modulation (AdAM)
Require: Pre-trained GAN: Gs and Ds, iterprobe, iteradapt, threshold quantile t, learning rate α
Importance Probing:

1 Freeze all kernels tWiu
N
i“1 in pre-trained networks Gs, and Ds

2 Randomly initialize a modulation matrix Mi for each kernel Wi

3 for k “ 0, k``, while k ă iterprobe do
4 Perform kernel modulation for all kernels using Eqn.1 to obtain modulated weights Ŵ
5 Update M Ð M ´ α∇MLpGpzq;Ŵq /* lightweight, i.e., iterprobe ăă iteradapt */
6 end
7 Measure importance of each kernel Wi by computing FI for the corresponding Mi using Eqn.3
8 Compute the index set A of important kernels using quantile t of FI values as threshold

Main Adaptation:
9 if j P A then

10 Initialize the kernel by Wj and freeze the kernel, randomly initialize Mj

11 else
12 Initialize the kernel by Wj

13 end
14 for k “ 0, k``, while k ă iteradapt do
15 if j P A then
16 Modulate kernel using Eqn.1 to obtain modulated weights Ŵj

17 Update Mj Ð Mj ´ α∇MjLpGpzq;Ŵq

18 else
19 Update Wj Ð Wj ´ α∇Wj

LpGpzq;Ŵq

20 end
21 end

SOTA FSIG methods [18, 14, 19], we propose an adaptation-aware FSIG that also considers the target
domain / adaptation task in deciding which part of the source model’s knowledge to be preserved. In
a CNN, each kernel is responsible for a specific part of knowledge (e.g., pattern or texture). Similar
behaviour is also observed for both generator [45] and discriminator [46] in GANs. Therefore, in this
work, we make this knowledge preservation decision at the kernel level, i.e., casting the knowledge
preservation to a decision problem of whether a kernel is important when adapting from Ds to Dt.

Our FSIG algorithm has two main steps: (i) a lightweight importance probing step, and (ii) main
adaptation step. In the first step, i.e., importance probing, we adapt the model using a parameter-
efficient design to the target domain for a limited number of iterations, and during this adaptation, we
measure the importance of each individual kernel for the target domain. The output of importance
probing are decisions of importance / unimportance of individual kernels. Then, in the second step,
i.e., main adaptation, we preserve the knowledge of important kernels and update the knowledge of
unimportant kernels. The overview of the proposed system is shown in Figure 1 and the pseudocode
is shown in Algorithm 1.

Proposed Importance Probing for FSIG. Our intuition for the proposed importance probing is:
“The source GAN kernels have different levels of importance for each target domain.” For example,
different subsets of kernels could be important when adapting a pretrained GAN on FFHQ to
Babies [14] compared to adapting the same pretrained GAN to Cat [5]. Therefore, we aim for a
knowledge preservation criterion that is target domain/adaptation-aware (Table 1). In order to achieve
adaptation-awareness, we propose a light-weight importance probing algorithm which considers
adaptation from source to target domain. There are two important design considerations: probing
under (i) extremely limited number of target data and (ii) low computation overhead.

As discussed, in this importance probing step, we adapt the source model to the target domain for a
limited number of iterations and with a few available target samples. During this short adaptation
step, we measure the importance of kernel for the adaptation task. To measure the importance, we use
Fisher information (FI) which gives the informative knowledge of that kernel in handling adaptation
task [47]. Then, based on FI measurement, we classify kernels into important / unimportant. These
kernel-level importance decisions are then used in the next step, i.e., main adaptation.
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In the main adaptation step, we propose to apply kernel modulation to achieve restrained update
for the important kernels, and simple fine-tuning for the unimportant kernels. As will be discussed,
the modulation is rank-constrained and has restricted degree-of-freedom; therefore, it is capable to
preserve knowledge of the important kernels. On the other hand, simple fine-tuning has large degree-
of-freedom for updating knowledge of the unimportant kernels. Furthermore, the rank-constrained
kernel modulation is parameter-efficient. Therefore, we also apply this rank-constrained kernel
modulation in the probing step to determine the importance of kernels.

Kernel Modulation. The kernel modulation is used in the main adaptation step to preserve knowledge
of important kernels into the adapted model. Furthermore, it is also used in the probing step as a
parameter-efficient technique to determine importance of kernels. Specifically, we apply Kernel
ModuLation (KML) which is proposed very recently [29]. In [29], KML is proposed for multimodal
few-shot classification (FSC). In particular, in [29], KML has been found to be effective for knowledge
transfer between different classification tasks of different modes under few-shot constraint. Therefore,
in our work, we apply KML for knowledge transfer between different generation tasks of different
domains under limited target domain samples.

Specifically, in each convolutional layer of a CNN, the ith kernel of that layer Wi P Rcinˆkˆk is
convolved with the input feature X P Rcinˆhˆw to the layer to produce the ith output channel (feature
map) Yi P Rh1

ˆw1

, i.e., Yi “ Wi ˚ X ` bi, where bi P R denotes the bias term. Then, KML [29]
modulates Wi by multiplying it with the modulation matrix Mi P Rcinˆkˆk plus an all-ones matrix
J P Rcinˆkˆk:

Ŵi “ Wi d pJ ` Miq (1)

where d denotes Hadamard multiplication. In Eqn. 1, using J allows to learn the modulation matrix
in a residual format. Therefore, the modulation weights are learned as perturbations around the
pretrained kernels which helps to preserve source knowledge. The exact pretrained kernel can also
be transferred to the target model if it is optimal. There are some important differences between
discriminative version of KML in [29] and our version, please see Supplementary for details.

This baseline KML learns an individual modulation parameter for each coefficient of the kernel.
Therefore, it could suffer from parameter explosion when using in recent GAN architectures (e.g.,
more than 58M parameters in StyleGAN-V2 [3] 1) . To address this issue, instead of learning the
modulation matrix, we learn a low-rank version of it [29, 48]. More specifically, for a Conv layer
within CNN, with a total number of dout kernels to be modulated, instead of learning M “ tMiu

dout
i“1 ,

we learn two proxy vectors m1 P Rdout , and m2 P Rpcinˆkˆkq, and construct the modulation matrix
using the outer product of these vectors, i.e., M “ m1 b m2. Furthermore, as we are using KML
for adaptable knowledge preservation, we freeze the base kernel Wi during adaptation. Therefore,
trainable parameters are m1,m2. This reduces the number of trainable parameters significantly, and
has better performance on restraining the update of important kernels (see Supplementary). As it
will be discussed later, the value of dout equals to the total number of kernels in a layer (cout) during
probing, and for main adaptation, it is determined by the output of our probing method (dout ď cout).

Importance Measurement. Recall our FSIG has two main steps: (i) importance probing step (Lines
1-8 in Algorithm 1), and (ii) main adaptation step (Lines 9-21 in Algorithm 1). In probing, we also
apply KML as a parameter-efficient technique to determine importance of individual kernels. In
particular, for probing, we propose to apply KML to all kernels (in both generator and discriminator)
to identify which of the modulated kernels are important for the adaptation task. To measure the
importance of the modulated kernels, we apply Fisher information (FI) to the modulation parameters.
In our FSIG setup, for a modulated GAN with parameters Θ, Fisher information F can be computed
as:

FpΘq “ E
“

´
B2

BΘ2
Lpx|Θq

‰

(2)

where Lpx|Θq is the binary cross-entropy loss computed using the output of the discriminator, and x
includes few-shot target samples, and fake samples generated by GAN. Then, FI for a modulation
matrix FpMiq can be computed by averaging over FI values of parameters within that matrix. As we
are using the low-rank estimation to construct the modulation matrix, we can estimate FpMiq by FI
values of the proxy vectors. In particular, considering the outer product in low-rank approximation,
we have Mi “ reshapeprmi

1m
1
2, . . . ,m

i
1m

pcinˆkˆkq

2 sq, where |m2| “ cin ˆ k ˆ k. Then we

1https://github.com/rosinality/stylegan2-pytorch
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Table 2: FSIG (10-shot) results: We report FID scores (Ó) of our proposed adaptation-aware FSIG
and compare with existing FSIG methods. We emphasize that Cat, Dog and Wild target domains are
additional experiments included in this work. (Sec 3.1). Our experiment results show two important
findings: 1) Under setups which assumption of close proximity between source and target domains is
relaxed (Cat, Dog, Wild), SOTA FSIG methods – EWC, CDC, DCL – which consider only source
domain in knowledge preserving perform no better than a baseline fine-tuning method (TGAN).
2) Our proposed adaptation-aware FSIG achieves SOTA performance in all target domains due to
preserving source domain knowledge that is important for few-shot target domain adaptation. We
generate 5,000 images using the adapted generator to evaluate FID on the whole target domain. We
also report the corresponding KID, Intra-LPIPS and standard deviations in Supplementary.

Target Domain Babies [14] Sunglasses [14] MetFaces [36] AFHQ-Cat [5] AFHQ-Dog [5] AFHQ-Wild [5]
TGAN [16] 101.58 55.97 76.81 64.68 151.46 81.30

TGAN+ADA [36] 97.91 53.64 75.82 80.16 162.63 81.55

FreezeD [17] 96.25 46.95 73.33 63.60 157.98 77.18

EWC [18] 79.93 49.41 62.67 74.61 158.78 92.83

CDC [14] 69.13 41.45 65.45 176.21 170.95 135.13

DCL [19] 56.48 37.66 62.35 156.82 171.42 115.93

AdAM (Ours) 48.83 28.03 51.34 58.07 100.91 36.87

use the unweighted average of FI for parameters of m1 and m2, proportional to their occurrence
frequency in calculation of Mi, as an estimate of FpMiq (details in Supplementary):

F̂pMiq “ Fpmi
1q `

1

|m2|

|m2|
ÿ

j“1

Fpmj
2q (3)

After calculating F̂pMiq for all modulation matrices in both generator and discriminator, we use
the t% quantile of these values as a threshold (separately for generator and discriminator) to decide
whether modulation of a kernel is important or unimportant for adaptation to the target domain. If the
modulation of a kernel is determined to be important (during probing), the kernel is modulated using
KML during main adaptation step; otherwise, the kernel is updated using simple fine-tuning during
main adaptation. In all setups, we perform probing for 500 iterations. We remark that in probing only
modulation parameters m1,m2 are trainable, and FI is only computed on them, therefore the probing
is a very lightweight step and can be performed with minimal overhead (details in Supplementary).
The output of probing step are the decisions to apply kernel modulation or simple fine-tuning on
individual kernels. Then, based on these decisions, the main adaptation is performed. The proposed
FSIG scheme is summarized in Algorithm 1.

5 Empirical Studies

5.1 Experiments / Results

Experiment Details. For fair comparison, we strictly follow prior works [16, 17, 18, 14, 19] in
the choice of GAN architecture, source-target adaptation setups and hyper-parameters. We use
StyleGAN-V2 [3] as the GAN architecture and FFHQ as the source domain. Our experiments
include setups with different source-target proximity: Babies/Sunglasses [14], MetFaces [36] and
Cat/Dog/Wild (AFHQ) [5] (See Sec. 3). Adaptation is performed with 256 x 256 resolution and batch
size 4 on a single Tesla V100 GPU. We apply importance probing and modulation on base kernels of
both generator and discriminator. We focus on 10-shot target adaptation setup in the main paper.

Qualitative Results. We show generated images with our proposed AdAM along Baseline [16, 17]
and SOTA FSIG methods [18, 14, 19] for two target domains, Babies and Cat with different degrees
of proximity to FFHQ, before and after adaptation. The results are shown in Figure 4 top and
bottom, respectively. By preserving source domain knowledge that is important for target domain,
our proposed adaptation-aware FSIG method can generate substantially high quality images with
high diversity for both Babies and Cat domains. We also include FID [44] and Intra-LPIPS [14]
(for measuring diversity) to quantitatively show that our proposed method outperforms SOTA FSIG
methods [18, 14, 19]. We show more generated samples in Supplementary.
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Figure 4: Qualitative and quantitative comparison of 10-shot image generation with different FSIG
methods. Images of each column are from the same noise input. Left: 10 real target images for
few-shot adaptation. Middle, Right: For target domain with close proximity (e.g.Babies, top),
our method can generate high quality images with more refined details and diversity knowledge,
achieving best FID and Intra-LPIPS socre. For target domain which is distant (e.g., Cat, bottom),
TGAN/FreezeD overfit to the 10-shot samples and others fail. In contrast, our method preserves
meaningful semantic features at different levels (e.g., posture and color) from source, achieving a
good trade off between quality and diversity. In particular, our Intra-LPIPS approaches that of EWC,
while our generated images have much better quality qualitatively and quantitatively.

Quantitative Results. We show complete FID (Ó) scores in Table 2. Our proposed AdAM for FSIG
achieves SOTA results across all target domains of varying proximity to the source (FFHQ). We
emphasize that it is achieved by preserving source domain knowledge that is important for target
domain adaptation (Sec 4). We also report Intra-LPIPS (Ò) as an indicator of diversity, as Figure 4.

5.2 Analysis

Ablation study of Importance Probing. The goal of importance probing (denoted as “IP”) is to
identify kernels that are important for few-shot target adaptation as shown in Figure 5 (Top). To
justify the effectiveness of our design choice, we perform an ablation study that discards the IP stage
and regard all kernels as equally important for target adaptation. Therefore, we simply modulate all
kernels without any knowledge selection. As one can observe from Figure 5 (Bottom), knowledge
selection plays a vital role in adaptation performance. Specifically, the significance of knowledge
preservation is more evident when the target domains are distant from the source domain.
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Target Domain Babies Sunglasses MetFaces AFHQ-Cat AFHQ-Dog AFHQ-Wild
AdAM (w/o probing) 54.46 33.66 60.43 82.41 160.87 81.24

AdAM (Ours) 48.83 28.03 51.34 58.07 100.91 36.87

Figure 5: (Top Left) Our proposed IP identifies and preserves source kernels important (high FI) for
target adaptation. (Bottom) FID score on different datasets. We validate the effectiveness of IP by
modulating all kernels without IP. On the other hand, if we fine-tune all parameters without IP and
modulation (TGAN), it suffers mode collapse (Table 2 and Figure 4). (Top Right) We evaluate the
performance of different number of shots (10, 25, 50, 100, 200) on Babies and AFHQ-Cat. We show
that our method consistently outperforms other FSIG methods in all setups. In Supplementary, we
also show the generated images given different number of shots on more target domains.

Number of target samples (shots). The number of target domain training samples is an important
factor that can impact the FSIG performance. In general, more target domain samples can allow
better estimation of target distribution. We study the efficacy of our proposed method under different
number of target domain samples. The results are shown in Figure 5, and we show that our proposed
adaptation-aware FSIG method consistently outperforms existing methods in all setups.

6 Discussion

Conclusion. Focusing on FSIG, we make two contributions. First, we revisit current SOTA methods
and their experiments. We discover that SOTA methods perform poorly in setups when source and
target domains are more distant, as existing methods only consider source domain/task for knowledge
preservation. Second, we propose a new FSIG method which is target/adaptation-aware (AdAM).
Our proposed method outperforms previous work across all setups of different source-target domain
proximity. We include extended experiments and analysis in Supplementary.

Broader Impact. Our work makes contribution to generation of synthetic data in applications where
sample collection is challenging, e.g., photos of rare animal species. This is an important contribution
to many data-centric applications. Furthermore, transfer learning of generative models using a few
data sample enables data and computation-efficient model development. Our work has positive
impact on environmental sustainability and reduction of greenhouse gas emission. While our work
targets generative applications with limited-data, it parallely raises concerns regarding such methods
being used for malicious purposes. Given the recent success of forensic detectors [49, 50, 51, 52], we
conduct a simple study using Color-Robust forensic detector proposed in [49] on our Babies and Cat
datasets. We observe that the model achieves 99.8% and 99.9% average precision (AP) respectively
showing that AdAM samples can be successfully detected. We also remark that our work presents
opportunities for improving knowledge transfer methods [53, 54, 55, 56] in a broader context.

Limitations. While our experiments are extensive compared to previous works, in practical applica-
tions, there are many possible target domains which cannot be included in our experiments. However,
as our method is target/adaptation aware, we believe our method can generalize better than existing
SOTA which are target-agnostic.
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