
A Appendix

A.1 Limitation

Potential negative societal impacts. Accurate MTS forecasting benefits the application of intelligent
systems. Since such systems contain many distributed sensors and produce a large amount of time-
series data, predicting the systematic trend is crucial for controlling the system. However, suppose
the algorithm is used for financial crimes or other illegal activities. In that case, it will have a bad
influence on society. Fortunately, we can address such problems with privacy-preserving methods
to improve data safety. Then, we can restrict the negative impacts since the data access is limited.
Besides, the privacy-preserving approach also lowers the risk of personal data leakage.

A.2 Time Complexity Analysis

(a) The time complexity to varaible number. (b) The time complexity to sequence length.

Figure 5: The efficiency of different methods on the synthetic datasets. The results demonstrate that
TPGNN is efficient in processing MTS data.

Suppose that the MTS data has N variables, the input sequence length is T , the feature dimension is
De, and the polynomial order is K. The TPGNN is composed of self-attention and TPG module, and
it is known that self-attention has a time complexity as follows:

O(NT 2De +NTD2
e) (11)

As the for TPG module, the time complexity for constructing the initial adjacency matrix is O(N2),
and the time complexity of Equation (7) is O(KT (ND2

e +N2De)). As a result, The overall time
complexity of TPGNN isO(KTN2De+KTND2

e+NT 2De). Since theK,DE is small in practice,
the efficiency of TPGNN is mainly decided by N and T .

In Figure 5, we investigate the efficiency of several SOTA methods on the synthetic datasets. The
results show that TPGNN has competitive efficiency with MTGNN/Graph Wavenet, though these
methods do not contain self-attention modules.

A.3 Data

We summarize the primary information of benchmark datasets in Table 1. All the six datasets come
from the real-world application, we list the details as follows. All the data follow the MIT license.

A.3.1 Single-step forecasting

• Traffic: the traffic dataset from the California Department of Transportation contains road
occupancy rates measured by 862 sensors in San Francisco Bay area freeways during 2015
and 2016.

• Solar-Energy: the solar-energy dataset from the National Renewable Energy Laboratory
contains the solar power output collected from 137 PV plants in Alabama State in 2007.

• Electricity: the electricity dataset from the UCI Machine Learning Repository contains
electricity consumption for 321 clients from 2012 to 2014.
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Figure 6: The first ten time-series data of the synthetic results, we show the intial 200 time steps. We
observe that the increases of the Nw introduce complex behaviors in the MTS data.

• Exchange-Rate: the exchange-rate dataset contains the daily exchange rates of eight foreign
countries, including Australia, British, Canada, Switzerland, China, Japan, New Zealand,
and Singapore, ranging from 1990 to 2016.

The input sequence length is 168 and the output sequence length is 1. Models are trained to predict
the target future step (horizon) 3, 6, 12, and 24.

A.3.2 Multi-step forecasting

• PEMS-D7: 44-day traffic data collected by 228 sensors in the California state highway
system during the weekdays from May through June in 2012.

• PEMS-BAY: 6-month traffic data collected by 325 sensors in the Bay Area of California
from January 1st through May 31th in 2017.

For the two traffic datasets, we forecast the subsequent 12 steps by observing a sequence of length 12
and evaluate the model performance at 3, 6, 12 steps.

A.3.3 Synthetic data with the NPR model

For clarification, we illustrate the synthetic algorithm for generating the MTS data in this section, the
pseudo-code of our algorithm is showed in Algorithm 1. We firstly generate a ranomd orthogonal
matrix P ∈ RN×N by decomposing a random matrix with SVD decomposition. Then, we define
Nw constant matrices with random positive eigenvalues. Moreover, we sparsify the results to the
given sparisty threshold to remove unnecessary connections. We then generate the required dynamic
dependence MTS data with an NRW model, illustrated in lines 12 to 20 of the pseudo-code.

We further show some examples of the synthetic results in Figure 6, it illustrates that the dependence
complexity increases with the Nw. In the evaluation, we set σ = 0.01, T = 2400, Tp = 120, and
δ = 0.05.

A.4 Baselines

There are several state-of-the-art baseline methods, we summarize them as follows.
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Algorithm 1 Generating MTS data with the NPR model

Require: Total length T of the MTS data, number of variables N , number of constant matrices Nw.
Require: Length of the cycle Tp, stand deviation of the random walk σ, matrix sparsity δ.
Ensure: Synthetic MTS data X ∈ RT×N

1: Generate a random orthogonal matrix P ∈ RN×N ;
2: for i = 1→ Nw do
3: Σi = diag(|N (0, 1)|, . . . , |N (0, 1)|)
4: Gi = PTΣiP, α = 0

5: Gi[Gi < α] = 0

6: while sparsity of Gi > δ do
7: α = α+ 0.02

8: Gi[Gi < α] = 0

9: end while
10: Gi = Symmetric normalized Laplacian of Gi

11: end for
12: X = 0 ∈ RT×N

13: Tl = T/Tp
14: for t = 1→ T do
15: if t-1% Tp=0 then
16: initialize x ∈ RN randomly from {−1,−0.5, 0.5, 1}
17: else
18: x = N (G(t−1%Tp)/Tl

X[t− 1], σ)

19: end if
20: X[t] = x

21: end for

A.4.1 Single-step forecasting

• VAR-MLP: A model utilizes both of the multilayer perception (MLP) and auto-regressive
model (VAR) [47].

• GP: Modeling time-series data with non-parametric method and Gaussian processes [10,31].

• RNN-GRU: A model combines the recurrent unit and fully connected GRU.

• LSTNet: A deep neural network, which combines convolutional neural networks and
recurrent neural networks [20].

• TPA-LSTM: A model utilizes convolution layers to extract temporal patterns and captures
time series correlation with attention mechanism [34].

• MTGNN: MTGNN learns a static graph to represent the inter-series correlation and proposes
a novel mix-hop propagation layer to capture the inter-series relation [41].

A.4.2 Multi-step forecasting

• ARIMA: A representative univariate time-series forecasting method based on the Kalman
filter [23].

• FC-LSTM: Long Short-Term Memory Network, which is a recurrent neural network with
fully connected LSTM hidden units [36].

• LSVR: A linear support vector regression (LSVR) model for travel-time predictions [39].

• STGCN: A spatial-temporal graph convolutional network, which incorporates graph convo-
lutions with 1× 1-kernel convolution layers [44].

• DCRNN: A diffusion convolutional recurrent neural network, which utilizes the diffusion
graph convolution layer and reccurent unit [22].
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Table 5: Results for selecting layers of encoder and decoder L and state embedding dimension De.
We find that L = 1, De = 64 is an optimal configuration.
L 1 2 4 1 2 4 1 2 4
De MAE MAPE(%) RMSE
16 2.15/2.76/3.29 2.14/2.73/3.23 2.15/2.75/3.25 5.06/6.86/8.52 5.08/6.88/8.48 5.08/6.90/8.49 4.10/5.55/6.75 4.09/5.51/6.61 4.12/5.57/6.972
32 2.11/2.72/3.26 2.12/2.70/3.22 2.14/2.73/3.24 4.99/6.79/8.49 5.00/6.73/8.35 5.04/6.80/8.38 4.07/5.52/6.68 4.07/5.48/6.67 4.08/5.49/6.63
64 2.12/2.73/3.22 2.13/2.73/3.36 2.12/2.71/3.29 5.00/6.74/8.25 5.02/6.76/8.40 4.97/6.73/8.34 4.08/5.45/6.56 4.08/5.49/6.66 4.09/5.52/6.79

• StemGNN: A graph neural network, which combines Graph Fourier Transform (GFT) and
Discrete Fourier Transform (DFT) together to capture inter-series correlations and temporal
dependencies jointly in the spectral domain [4].

• Graph WaveNet: A spatial-temporal graph convolutional network, which learns a static
graph to capture the spatial correlations [42].

• MTGNN: The same model to single-step forecasting, which is trained to predict multiple
steps.

Parameter scale. We further list the model size of SOTA methods to illustrate our method is
lightweight in the model scale. TPGNN: 0.31M, MTGNN: 0.44M, Graph WaveNet: 0.25M,
STGCN:0.33M, StemGNN:1.22M, TPA-LSTM:0.12M, DCRNN:0.37M.

A.5 Metrics

Let Ỹ(t) and Y(t) be the predicted and ground truth signal matrix at step t respectively, N is variable
number. The evaluation metrics we use in the experiments are computed by:

MAE =
1

N
ΣNi=1|Ỹ(t)[i]−Y(t)[i]|

MAPE =
1

N
ΣNi=1|

Ỹ(t)[i]−Y(t)[i]

Y(t)[i]
| × 100%

RMSE =

√
1

N
ΣNi=1(Ỹ(t)[i]−Y(t)[i])2

RRSE =

√
1
NΣNi=1(Ỹ(t)[i]−Y(t)[i])2

std(Y(t)) ∗
√
N/(N − 1)

CORR =
ΣNi=1(Ỹ(t)[i]−mean(Ỹ(t)))(Y(t)[i]−mean(Y(t)))

N std(Ỹ(t)) std(Y(t))

(12)

A.6 Experimental Settings

For the datasets with a prior distance matrix D, we follow the pre-processing method of STGCN [44].
It constructs the adjacency matrix W as follows, and they select the hyperparameters as σ2 = 10, ε =
0.5:

Wij =

{
exp(

−D2
ij

σ2 ), i 6= j and exp(
−D2

ij

σ2 ) ≥ ε;
0, otherwise

(13)

We conduct all experiments under the environment of one Intel(R) Xeon(R) Gold 6254 CPU @
3.10GHz and NVIDIA GeForce RTX 2080Ti GPU. We repeat the experiment 10 times and report
the average of evaluation metrics. In the training stage, we adopt L1 loss and Adam optimizer. The
initial learning rate is 10−3 and it decays by the ratio of 0.3 for every 300 epochs. The layer number
L is 1, the embedding dimension De is 64, the polynomial order K is 2, and the dimension of
variable embedding is 10. The training epoch is 1000, 1500 for single-step and multi-step forecasting,
respectively. The batch size is 50. We use dropout to improve the model robustness to the noisy data.
The rate for dropout is 0.2.
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Table 6: Results for selecting the polynomial order of the TPG module K. We find that K = 2 is an
optimal configuration.

K 1 2 3 4
MAE 2.13/2.75/3.37 2.12/2.72/3.22 2.13/2.84/3.29 2.16/2.88/3.44

MAPE(%) 5.10/6.78/8.53 5.00/6.73/8.22 5.04/6.77/8.26 5.12/6.98/8.57
RMSE 4.11/5.53/6.79 4.05/5.45/6.56 4.06/5.48/6.59 4.19/5.84/6.98

Table 7: Results for selecting the dimension of node (variable) embedding C. We find that C = 10 is
an optimal configuration.

C 5 10 20
MAE 2.12/2.72/3.27 2.12/2.72/3.22 2.14/2.79/3.26

MAPE(%) 5.00/6.75/8.39 5.00/6.73/8.22 5.04/6.81/8.35
RMSE 4.07/5.49/6.71 4.05/5.45/6.56 4.06/5.47/6.63

A.7 Parameter Study

This section investigates the model configuration on the PEMSD7(M) dataset. The first two hyperpa-
rameters are the layer number of encoder and decoder L and the embedding dimension of the matrix
signal De, we conclude the results in Table 5, which indicates that the configuration L = 1, De = 64
is a good setting since it has good performance and efficiency.

Another two crucial hyperparameters are the K and C. The first one decides the polynomial order of
the TPGNN, the second one controls the embedding dimension of the variable embedding. We show
the results in Table 6 and Table 7, which implies the K = 2, C = 10 is the best parameter selection.

A.8 More results for ablation study

This section shows more ablation results on the PEMS-D7 of the different horizons to illustrate that
our designs are indispensable. In Table 8 and Table 9, we find TPGNN outperforms other variants
consistently, which demonstrate the effectiveness of our components. Although w/o normalize
achieves better performance on MAPE, it performs badly in the long-term forecasting.

Table 8: Prediction results for ablation study on the PEMS-D7 dataset over the horizon of 3.
Metrics TPGNN w/o TPG w/o dynamic w/o overview w/o normalize w/o K-matrices
MAE 2.124±0.012 2.168±0.028 2.169±0.035 2.138±0.029 2.132±0.039 2.143±0.033

MAPE(%) 5.003±0.032 5.017±0.077 5.051±0.026 5.057±0.089 5.000±0.067 5.017±0.112
RMSE 4.049±0.027 4.127±0.043 4.106±0.078 4.072±0.101 4.074±0.046 4.077±0.056

Table 9: Prediction results for ablation study on the PEMS-D7 dataset over the horizon of 6.
Metrics TPGNN w/o TPG w/o dynamic w/o overview w/o normalize w/o K-matrices
MAE 2.716±0.021 2.845±0.023 2.823±0.065 2.748±0.057 2.727±0.044 2.748±0.029

MAPE(%) 6.728±0.052 6.998±0.087 6.842±0.034 6.825±0.082 6.714±0.055 6.751±0.119
RMSE 5.452±0.048 5.662±0.067 5.594±0.056 5.492±0.071 5.471±0.046 5.511±0.062

A.9 Theoretical Analysis

Lemma 1 Let F = {A1, . . . ,Ak},Ai ∈ RN×N , be a set of diagbolizable matrices. Then F is a
commuting(AiAj = AjAi,∀1 ≤ i, j ≤ k), if and only if there exists and ivertible S ∈ RN×N such
that S−1AiS,Ai ∈ F is diagonal.

Proof. This is a known result, which indicates that the commutation and simultaneously diagonaliza-
tion are equivalent properties. We briefly conclude the proving process. If F can be diagonalized
by a S, it is trivial to prove that F is commuting due to the diagonal matrices are commutative. We
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inductively prove that F can be diagonalized by a S. If N = 1, then it’s a trivial result. Suppose the
theorem holds for matrices of size N ≤ k − 1, we prove that the theorem is true for N = k. Let
N = k, A ∈ F , and A is diagnolizable with eigenvalues {λ1, . . . , λr} where r ≥ 2 and AB = BA
for each B ∈ F . A is similar to a diagonal matrix, so without loss of generality assume A is
diagonal. Since each B commutes with the diagonal matrix A, each B ∈ F is a block diagnoal
matrix. Since A has at least two distinct entries, each block of each B has size k − 1 or less. By
the block-wise commutation property, together with the inductive hypothesis, all the blocks in all
B ∈ F are simultaneously diagonalizable. Thus there exist fixed matrices T1, T2, . . . , Tr such that
conjugating with each B ∈ F with T = diag(T1, T2, . . . , Tr) gives a block matrix in which the
blocks are diagonal, which is a diagonal matrix.

Lemma 2 Let G,A ∈ RN×N are symmetric matrices. Since they are real symmetric matrices, G,A

can be diagonalized by orthogonal matrices. Let P(A),P(G) are the corresponding orthogonal
matrices, we have P(A)TAP(A) = diag(λ1, . . . , λN ),P(G)TGP(G) = diag(σ1, . . . , σN ). Let
GA = P(A)TGP(A), then we have the following results:

||G− ΣKk=0akA
k||2F = tr((GA − diag(GA))2) + tr((diag(GA)− pK(D))2) (14)

where tr(·) is the trace of matrix, (a0, . . . , aK) is the polynomial coefficients, pK(D) =

ΣKk=0ak diag(λ1, . . . , λN )k is the matrix polynomial of A’s eigenvalues.

Proof. Let E = G− ΣKk=0akA
k, we have the following equations:

E = P(A)P(A)TGP(A)P(A)T −P(A)(ΣKk=0ak diag(λ1, . . . , λN )k)P(A)T

= P(A)(GA − ΣKk=0ak diag(λ1, . . . , λN )k))P(A)T

= P(A)(GA − pK(D))P(A)T
(15)

Moreover, ||G− ΣKk=0akA
k||2F = tr(E2) (E is symmetric). Therefore, we have:

||G− ΣKk=0akA
k||2F = tr((GA − diag(GA) + diag(GA)− pK(D))2)

= tr((GA − diag(GA))2) + 2tr((GA − diag(GA))(diag(GA)− pK(D)))

+ tr((diag(GA)− pK(D))2)

= tr((GA − diag(GA))2) + tr((diag(GA)− pK(D))2)
(16)

Review. Lemma 2 clearly illustrates the approximation ability of a matrix polynomial. The error is
controlled by two terms. The value of the first term depends on whether P(A) is able to diagonalize
G. As for the second term, it corresponds to a least square regression problem.

Theorem 2 Given the setting same as Lemma 2. Let Q = P(A)
T
G, we define a discrepancy matrix

DAG, (DAG)ij = Q2
ij . Let dk is the k-th row vector of DAG, and λmin, λmax be the minimum and

maximum eigenvalues of matrix ΣNk=1dkd
T
k . We then have the following estimation of the frist term

of Equation 16:

(1− λmax)tr(G2) ≤ tr((GA − diag(GA))2) ≤ (1− λmin)tr(G2) (17)

Proof. We first expand the first term of Equation 16.

tr((GA − diag(GA))2) = tr(G2
A + diag(GA)2 − 2diag(GA)GA)

= tr(G2) + tr(diag(GA)2 − 2diag(GA)GA)
(18)

Besides, we observe that:

(diag(GA)GA)ij = (GA)ii(GA)ij (19)

Therefore,
tr(diag(GA)GA) = Σi(diag(GA)GA)ii

= Σi(GA)2ii

= tr(diag(GA)2)

(20)
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Combining the result with Equation 18, we derive the following result:

tr((GA − diag(GA))2) = tr(G2) + tr(diag(GA)2 − 2diag(GA)GA)

= tr(G2) + tr(diag(GA)2)− 2tr(diag(GA)2)

= tr(G2)− tr(diag(GA)2)

(21)

Since GA = P(A)
T
GP(A). Let u1, . . . ,uN are the column vectors of P(A), we have (GA)ij =

uTi Guj . Therefore, we derive the following equation:

tr(diag(GA)2) = ΣNk=1(GA)2kk

= ΣNk=1(uTkGuk)2
(22)

Let Q = P(A)
T
P(G), v1, . . . ,vN are the column vectors of P(G). We then have P(A) =

P(G)QT , and uk = Σms=1Qskvs. Therefore, we derive the following result:

tr(diag(GA)2) = Σmk=1(uTkGuk)2

= Σmk=1((Σms=1Qskv
T
s )G(Σms=1Qskvs))

2
(23)

Because vTs Gvs = σs,v
T
s Gvt = 0, if s 6= t, we have tr(diag(GA)2) = Σmk=1(Σms=1σsQ

2
sk)2.

We then define a discrepancy DAG, (DAG)ij = (Q)2ij . Let dk be the k-th column vector of DAG,
σ = (σ1, σ2, . . . , σN )T is a vector composed of G’s eigenvalues. Therefore, we have the following
equation:

tr(diag(GA)2) = Σmk=1(σTdk)2

= Σmk=1σ
Tdkd

T
k σ

= σT (ΣNk=1dkd
T
k )σ

(24)

Due to ΣNk=1dkd
T
k is a symmetric matrix, according the property of Rayleigh quotient, we know:

λmin ≤
σT (Σmk=1dkd

T
k )σ

σTσ
≤ λmax (25)

Where λmin, λmax are the minimum and maximum eigenvalues of ΣNk=1dkd
T
k . Besides, according

to the property of matrix trace, tr(G2) = tr(P(G)diag(σ1, . . . , σN )2P(G)
T

) = σTσ. Therefore,
we have the following result:

λmintr(G
2) ≤ tr(diag(GA)2) ≤ λmaxtr(G2) (26)

According to Equation 21 and Equation 26, we finish the proof of Theorem 2.

Lemma 3 Given the setting same as Lemma 2, we have the following estimation of the second term
of Equation 16:

0 ≤ tr((diag(GA)−pK(D))2) ≤ tr(diag(GA)2)− 1

N
(tr(GA))2−

tr(DGA)− 1
N tr(D)tr(GA)

tr(D2)− 1
N tr(D)2

(27)

Specifically, if D has N different values and K = N − 1, then the upper bound is zero.

Proof. Since tr((diag(GA) − pK(D))2) = ΣNi=1(GAii − ΣKk=0akλ
k
i )2, it corresponds to a least

square problem. Equation 3 is a known result of least square optimization under K = 1. Due to
K ≥ 1, Equation 3 holds obviously. Besides, if D has N different values, i.e., A has N different
eigenvalues, and K = N − 1. Then the upper bound of tr((diag(GA) − pK(D))2) is zero with
Lagrange interpolation.

Theorem 3 (Formal statement of Theorem 1).Let G = {G(1), . . . ,G(T )},G(t) ∈ RN×N be the
symmetric normalized Laplacian of the optimal structures for time step 1 to T ,A ∈ RN×N is
the initial adjacency of TPGNN. Suppose G is commuting, A and elements of G are symmetric.
Then, there is a P(G) ∈ RN×N such that P(G)

T
G(t)P(G) is diagonal matrix for each t. Let
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P(A)
T
AP(A) be a diagonal matrix, we define DAG the same as Theorem 2, and λmin, λmax are

the minimum and maximum eigenvalues of ΣNk=1dkd
T
k . If A has N different singular values, the

polynomial’s order K = N − 1. Then the approximation error e(1:T ) = 1
T ΣTt=1||W(t) −G(t)||2F

satisfies the following estimation:

(1− λmax)Et||G(t)||2F ≤ e(1:T ) ≤ (1− λmin)Et||G(t)||2F , (28)

where Et||G(t)||2F = 1
T ΣTt=1||G(t)||2F is the average norm of the Laplacians.

Proof. Firstly, G is diagonalizable since its elements are symmetric. According to Lemma 1, we can
find a S ∈ RN×N such that S−1G(t)S is diagonal for each t. Therefore, we can find an othogonal
matrix P(G) such that P(G)

T
G(t)P(G) is diagonal using Gram-Schmidt orthogonalization. We

now consider each ||W(t) −G(t)||2F . According to Theorem 2 and Lemma 3, we have the following
estimation:

(1− λmax)||G(t)||2F ≤ ||W(t) −G(t)||2F ≤ (1− λmin)||G(t)||2F (29)

We thus prove the Theorem 3 with the Equation 29.
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