Evidently, this result implies that if we can determine a suitable bound for $\left\|e_{i}^{\top} A\left(I-Q Q^{\top}\right)\right\|^{2}$ then we automatically get a proper bound for the element-wise approximations of Algorithm 1. If A has a fast decaying spectrum and Q captures the dominant eigenspace of A we can expect that our approximations are very accurate, even for small l. For the general case, however, the following Lemma 3 as well as the optimality of the JL lemma [31] already hint that this is not possible (see also Appendix II, Limitations of low-rank projections).
Lemma 3. Let $A \in \mathbb{R}^{n \times d}$. For $1 \leq k<d$, it holds that $\left\|e_{i}^{\top}\left(A-A_{k}\right)\right\|_{2}^{2} \leq \sigma_{k+1}^{2}(A) \leq \frac{\left\|A_{k}\right\|_{F}^{2}}{k}$.

Proof. Clearly, $\left\|e_{i}^{\top}\left(A-A_{k}\right)\right\|_{2}^{2} \leq \max _{\|x\|=1}\left\|x^{\top}\left(A-A_{k}\right)\right\|_{2}^{2}=\sigma_{k+1}^{2}(A)$. For the second part we have that $\sigma_{k+1}^{2}(A) \leq \frac{1}{k} \sum_{i=1}^{k} \sigma_{i}^{2}(A)=\frac{\left\|A_{k}\right\|_{F}^{2}}{k}$.

2.1 Projecting rows on randomly chosen subspaces

To proceed further with the analysis, we show some length-preserving properties of the orthogonal projector $Q Q^{\top}$, which is an orthogonal projector on a random subspace as obtained in line 3 of Algorithm 1. Note that Corollary 1 is stated for constant factor approximations. Here we provide a brief proof sketch. For the main result we refer to Lemma 8 in Appendix III.
Corollary 1 (Projection on rowspace $\left(S A^{\top} A\right)$). (Proof in the Appendix) Let $\delta \in\left(0, \frac{1}{2}\right), \bar{A}_{k}=$ $A-A_{k}$, and S be such that
(i) $S \sim \mathcal{D}$, where \mathcal{D} is an $(1 / 3, \delta)$-OSE for any fixed k-dimensional subspace;
(ii) S is a $(1 / 3, \delta, \boldsymbol{n})$-JLT. \qquad Fix JLT parameter $2 n \rightarrow n$.
If Q is a matrix that forms an orthonormal basis for rowspace $\left(S A^{\top} A\right)$, then, with probability at least $1-2 \delta$, for all $i \in[n]$ simultaneously, it holds that

$$
\left\|e_{i}^{\top} A\left(I-Q Q^{\top}\right)\right\|^{2} \leq\left\|e_{i}^{\top}\left(\bar{A}_{k}\right)\right\|^{2}+2 \frac{\sigma_{k+1}^{2}(A)}{\sigma_{k}^{2}(A)}\left\|e_{i}^{\top} A_{k}\right\|\left\|e_{i}^{\top} \bar{A}_{k}\right\| \leq 3\left\|e_{i}^{\top} A\right\|\left\|e_{i}^{\top} \bar{A}_{k}\right\|
$$

Fix constants,
$1 / 2 \rightarrow 2$ and $3 / 2 \rightarrow 3$.

Proof sketch. To prove the result it suffices to find a projector within rowspace $\left(S A^{\top} A\right)$ with the desired properties. To do this, we consider the matrix $\Pi_{k}=V_{k}\left(S V_{k} \Sigma_{k}^{2}\right)^{\dagger} S A^{\top} A$, where V_{k}, Σ_{k} originate from the SVD of $A_{k}=U_{k} \Sigma_{k} V_{k}^{\top}$. Clearly, this Π_{k} is a rank- k matrix within rowspace $\left(S A^{\top} A\right.$). After some algebra, the problem reduces to get a bound for the quantities

$$
\left|e_{i}^{\top} A V_{k}\left(S V_{k} \Sigma_{k}^{2}\right)^{\dagger} S \bar{V}_{k} \bar{\Sigma}_{k}^{2} \bar{V}_{k}^{\top} A^{\top} e_{i}\right|
$$

for all $i \in[n]$. This is achieved by using Cauchy-Schwarz and by applying the OSE and JLT properties of S.

Having all pieces in-place, we can finally bound the element-wise approximations of Algorithm 1.
Theorem 1. (Proof in the Appendix) Let $A \in \mathbb{R}^{n \times d}$ and $n \geq d$. If we use Algorithm 1 with m matrix-vector queries to estimate the Euclidean lengths of the rows of A, then there exists a global constant C such that, as long as
(i) $m \geq l \geq O(\log (n / \delta))$, such that G satisfies Lemma 1 and S forms an $(1 / 3, \delta, \boldsymbol{n})$-JLT, \qquad Fix JLT
parameter
$2 n \rightarrow n$.
then it holds that

$$
\left|\tilde{x}_{i}-\left\|e_{i}^{\top} A\right\|^{2}\right| \leq C \sqrt{\frac{\log \left(\frac{n}{\delta}\right)}{l}}\left\|e_{i}^{\top}\left(A-A_{k}\right)\right\|\left\|e_{i}^{\top} A\right\| \leq C \sqrt{\frac{\log \left(\frac{n}{\delta}\right)}{l k}}\left\|A_{k}\right\|_{F}\left\|e_{i}^{\top} A\right\|,
$$

for all $i \in[n]$ with probability at least $1-3 \delta$.

