
Evidently, this result implies that if we can determine a suitable bound for ∥e⊤i A(I −QQ⊤)∥2 then
we automatically get a proper bound for the element-wise approximations of Algorithm 1. If A
has a fast decaying spectrum and Q captures the dominant eigenspace of A we can expect that our
approximations are very accurate, even for small l. For the general case, however, the following
Lemma 3 as well as the optimality of the JL lemma [31] already hint that this is not possible (see also
Appendix II, Limitations of low-rank projections).

Lemma 3. Let A ∈ Rn×d. For 1 ≤ k < d, it holds that ∥e⊤i (A−Ak)∥22 ≤ σ2
k+1(A) ≤ ∥Ak∥2

F

k .

Proof. Clearly, ∥e⊤i (A−Ak)∥22 ≤ max∥x∥=1 ∥x⊤(A−Ak)∥22 = σ2
k+1(A). For the second part we

have that σ2
k+1(A) ≤ 1

k

∑k
i=1 σ

2
i (A) =

∥Ak∥2
F

k .

2.1 Projecting rows on randomly chosen subspaces

To proceed further with the analysis, we show some length-preserving properties of the orthogonal
projector QQ⊤, which is an orthogonal projector on a random subspace as obtained in line 3 of
Algorithm 1. Note that Corollary 1 is stated for constant factor approximations. Here we provide a
brief proof sketch. For the main result we refer to Lemma 8 in Appendix III.

Corollary 1 (Projection on rowspace(SA⊤A)). (Proof in the Appendix) Let δ ∈ (0, 1
2 ), Āk =

A−Ak, and S be such that

(i) S ∼ D, where D is an (1/3, δ)-OSE for any fixed k-dimensional subspace;

(ii) S is a (1/3, δ, n)-JLT. Fix JLT
parameter
2n → n.If Q is a matrix that forms an orthonormal basis for rowspace(SA⊤A), then, with probability at

least 1− 2δ, for all i ∈ [n] simultaneously, it holds that
Fix constants,
1/2 → 2 and
3/2 → 3.

∥e⊤i A(I −QQ⊤)∥2 ≤ ∥e⊤i (Āk)∥2 + 2
σ2
k+1(A)

σ2
k(A)

∥e⊤i Ak∥∥e⊤i Āk∥ ≤ 3∥e⊤i A∥∥e⊤i Āk∥.

Proof sketch. To prove the result it suffices to find a projector within rowspace(SA⊤A) with the
desired properties. To do this, we consider the matrix Πk = Vk(SVkΣ

2
k)

†SA⊤A, where Vk,Σk origi-
nate from the SVD of Ak = UkΣkV

⊤
k . Clearly, this Πk is a rank-k matrix within rowspace(SA⊤A).

After some algebra, the problem reduces to get a bound for the quantities

|e⊤i AVk(SVkΣ
2
k)

†SV̄kΣ̄
2
kV̄

⊤
k A⊤ei|,

for all i ∈ [n]. This is achieved by using Cauchy-Schwarz and by applying the OSE and JLT
properties of S. Adapt proof-

sketch to the
corrected
proof (see
appendix).

Having all pieces in-place, we can finally bound the element-wise approximations of Algorithm 1.

Theorem 1. (Proof in the Appendix) Let A ∈ Rn×d and n ≥ d. If we use Algorithm 1 with m
matrix-vector queries to estimate the Euclidean lengths of the rows of A, then there exists a global
constant C such that, as long as

(i) m ≥ l ≥ O(log(n/δ)), such that G satisfies Lemma 1 and S forms an (1/3, δ, n)-JLT, Fix JLT
parameter
2n → n.(ii) m ≥ O(k + log(1/δ)), such that S forms an (1/3, δ)-OSE for a k-dimensional subspace,

then it holds that∣∣x̃i − ∥e⊤i A∥2
∣∣ ≤ C

√
log(n

δ )

l ∥e⊤i (A−Ak)∥∥e⊤i A∥ ≤ C

√
log(n

δ )

lk ∥Ak∥F ∥e⊤i A∥,

for all i ∈ [n] with probability at least 1− 3δ.
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