Evidently, this result implies that if we can determine a suitable bound for $||e_i^{\top}A(I - QQ^{\top})||^2$ then we automatically get a proper bound for the element-wise approximations of Algorithm 1. If *A* has a fast decaying spectrum and *Q* captures the dominant eigenspace of *A* we can expect that our approximations are very accurate, even for small *l*. For the general case, however, the following Lemma 3 as well as the optimality of the JL lemma [31] already hint that this is not possible (see also Appendix II, Limitations of low-rank projections).

Lemma 3. Let $A \in \mathbb{R}^{n \times d}$. For $1 \le k < d$, it holds that $\|e_i^{\top}(A - A_k)\|_2^2 \le \sigma_{k+1}^2(A) \le \frac{\|A_k\|_F^2}{k}$.

Proof. Clearly, $\|e_i^{\top}(A - A_k)\|_2^2 \le \max_{\|x\|=1} \|x^{\top}(A - A_k)\|_2^2 = \sigma_{k+1}^2(A)$. For the second part we have that $\sigma_{k+1}^2(A) \le \frac{1}{k} \sum_{i=1}^k \sigma_i^2(A) = \frac{\|A_k\|_F^2}{k}$.

2.1 Projecting rows on randomly chosen subspaces

To proceed further with the analysis, we show some length-preserving properties of the orthogonal projector QQ^{\top} , which is an orthogonal projector on a random subspace as obtained in line 3 of Algorithm 1. Note that Corollary 1 is stated for constant factor approximations. Here we provide a brief proof sketch. For the main result we refer to Lemma 8 in Appendix III.

Corollary 1 (Projection on rowspace($SA^{\top}A$)). (Proof in the Appendix) Let $\delta \in (0, \frac{1}{2})$, $\bar{A}_k = A - A_k$, and S be such that

- (i) $S \sim D$, where D is an $(1/3, \delta)$ -OSE for any fixed k-dimensional subspace;
- (ii) S is a $(1/3, \delta, \mathbf{0})$ -JLT.

If Q is a matrix that forms an orthonormal basis for rowspace($SA^{\top}A$), then, with probability at $2n \rightarrow n$. least $1 - 2\delta$, for all $i \in [n]$ simultaneously, it holds that _______ Fix constants.

$$\|e_i^{\top}A(I-QQ^{\top})\|^2 \le \|e_i^{\top}(\bar{A}_k)\|^2 + 2\frac{\sigma_{k+1}^2(A)}{\sigma_k^2(A)}\|e_i^{\top}A_k\|\|e_i^{\top}\bar{A}_k\| \le 3\|e_i^{\top}A\|\|e_i^{\top}\bar{A}_k\|. \qquad \frac{1/2 \to 2 \text{ and } 3/2 \to 3.}{3/2 \to 3.}$$

Fix JLT ↓ *parameter*

Proof sketch. To prove the result it suffices to find a projector within rowspace $(SA^{\top}A)$ with the desired properties. To do this, we consider the matrix $\Pi_k = V_k (SV_k \Sigma_k^2)^{\dagger} SA^{\top}A$, where V_k, Σ_k originate from the SVD of $A_k = U_k \Sigma_k V_k^{\top}$. Clearly, this Π_k is a rank-k matrix within rowspace $(SA^{\top}A)$. After some algebra, the problem reduces to get a bound for the quantities

$(e_i^{\top}AV_k(SV_k\Sigma_k^2)^{\dagger}S\bar{V}_k\bar{\Sigma}_k^2\bar{V}_k^{\top}A^{\top}e_i),$

for all $i \in [n]$. This is achieved by using Cauchy-Schwarz and by applying the OSE and JLT	
properties of \hat{S} .	Adapt proof-
	sketch to the
Having all pieces in-place, we can finally bound the element-wise approximations of Algorithm 1. Theorem 1. (<i>Proof in the Appendix</i>) Let $A \in \mathbb{R}^{n \times d}$ and $n \ge d$. If we use Algorithm 1 with m matrix-vector queries to estimate the Euclidean lengths of the rows of A, then there exists a global constant C such that, as long as	corrected proof (see appendix).

(i) $m \ge l \ge O(\log(n/\delta))$, such that G satisfies Lemma 1 and S forms an $(1/3, \delta, \boldsymbol{n})$ -JLT,	Fix JLT
(ii) $m \ge O(k + \log(1/\delta))$, such that S forms an $(1/3, \delta)$ -OSE for a k-dimensional subspace,	$rac{}{}$ parameter $2n \rightarrow n.$

then it holds that

$$\left| \tilde{x}_{i} - \| e_{i}^{\top} A \|^{2} \right| \leq C \sqrt{\frac{\log(\frac{n}{\delta})}{l}} \| e_{i}^{\top} (A - A_{k}) \| \| e_{i}^{\top} A \| \leq C \sqrt{\frac{\log(\frac{n}{\delta})}{lk}} \| A_{k} \|_{F} \| e_{i}^{\top} A \|,$$

for all $i \in [n]$ with probability at least $1 - 3\delta$.