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Abstract

A classical result of Johnson and Lindenstrauss states that a set of n high dimen-
sional data points can be projected down to O(log n/ε2) dimensions such that the
square of their pairwise distances is preserved up to a small distortion ε ∈ (0, 1).
It has been proved that the JL lemma is optimal for the general case, therefore,
improvements can only be explored for special cases. This work aims to improve
the ε−2 dependency based on techniques inspired by the Hutch++ Algorithm [34],
which reduces ε−2 to ε−1 for the related problem of implicit matrix trace estimation.
We first present an algorithm to estimate the Euclidean lengths of the rows of a
matrix. We prove for it element-wise probabilistic bounds that are at least as good
as standard JL approximations in the worst-case, but are asymptotically better
for matrices with decaying spectrum. Moreover, for any matrix, regardless of its
spectrum, the algorithm achieves ε-accuracy for the total, Frobenius norm-wise
relative error using only O(ε−1) queries. This is a quadratic improvement over the
norm-wise error of standard JL approximations. We also show how these results
can be extended to estimate (i) the Euclidean distances between data points and (ii)
the statistical leverage scores of tall-and-skinny data matrices, which are ubiquitous
for many applications, with analogous theoretical improvements. Proof-of-concept
numerical experiments are presented to validate the theoretical analysis.

1 Introduction

The Johnson-Lindenstrauss (JL) lemma [29] is a fundamental concept in dimensionality reduction
and data science. Given a set of n high dimensional data points X = {x1, ..., xn}, where each
xi ∈ Rd, the goal is to find a projection f : Rd → Rk that maps the vectors to a much smaller
dimension k � d such that the geometry of the original set is approximately preserved. Specifically,
the projection should preserve the pairwise distances up to a small distortion ε ∈ (0, 1), that is

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2, (1)

for all i, j ∈ [n]. If f satisfies this property, then it is called an ε-isometry. Johnson and Lindenstrauss
proved that, given ε, such an f can be found in randomized polynomial time and that the projected
dimension is no larger than O(log n/ε2). In the last decades the JL lemma has made an impact in
many areas, including Graph Algorithms [6, 42], Machine Learning [5, 11, 16, 24], Numerical Linear
Algebra [14, 33, 40, 44] and Optimization [20, 22, 38].

In the existing literature, a common approach to approximate the metric is to first find a map
that preserves Euclidean lengths instead of distances. The approximate isometry property is then
achieved by applying this map to all the pairwise difference vectors, since the Euclidean distance
between x and y is equal to the length of x − y; cf. [18, 29]. In this work we follow the same
methodology. We first study the problem of approximating the Euclidean lengths of the rows of an
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arbitrary matrix A ∈ Rn×d in the so-called matrix-vector query model. In this model, the matrix A
might not be explicitly available, but we have access to a linear operator that computes the product
Ax, for an arbitrary vector x. For non-symmetric and rectangular matrices we assume that we can
compute both Ax and A>x. This model is particularly useful when dealing with matrix functions,
i.e. when A = f(B) is implicitly defined as a function of another matrix B. Two applications
arise from network science. For a graph G, let A be its adjacency matrix, B its edge-incidence
matrix, W the diagonal matrix containing non-negative edge weights and L = B>WB its Laplacian.
The exponential function of the adjacency matrix, eβA, provides information about node centrality
measures [10, 23], while the diagonal entries of BL†B are the so-called “effective resistances” of the
edges [33, 36, 42], which can be used to identify important edges. Another example, which is detailed
in Section 4, is for computing the leverage scores of a matrix, which can be found in the diagonal of
the orthogonal projector H = A(A>A)†A>. In all of these applications, explicitly evaluating the
corresponding matrix functions has typically cubic complexity, which can be prohibitively expensive.
However, after some algebra, the quantities of interest can be expressed as the Euclidean lengths of
the rows of a matrix function in the matrix-vector query model. One can therefore use techniques
related to the JL lemma to derive fast approximations. To this end, we first recall the concept of
Johnson-Lindenstrauss transforms, as defined in [40].
Definition 1 (Johnson-Lindenstrauss transform [40]). A random matrix S ∈ Rr×d forms a Johnson-
Lindenstrauss transform with parameters ε, δ ∈ (0, 1/2) and positive integer n, or (ε, δ, n)-JLT
for short, if with probability at least 1 − δ, for any fixed set V ⊆ Rd with n elements it holds that
(1− ε)‖v‖2 ≤ ‖Sv‖2 ≤ (1 + ε)‖v‖2 for all v ∈ V .

It is known that Gaussian matrices can provide JLTs; c.f. [5, 29].
Lemma 1 (Gaussian random projections [5, 29]). Let G ∈ Rr×d with i.i.d. elements from
N (0, 1/

√
r) and ε ∈ (0, 1/2). For a fixed x ∈ Rd it holds that

Pr
[∣∣‖x‖2 − ‖Gx‖2∣∣ ≤ ε‖x‖2] ≥ 1− 2 exp

(
− r(ε

2−ε3)
4

)
.

For a set X ⊂ Rd of n vectors and for δ ∈ (0, 1/2), as long as r ≥ 4 log(2n/δ)
ε2−ε3 , then G forms an

(ε, δ, n)-JLT.

The dimension r of G depends on 1/ε2, which can quickly become very large if a high accuracy is
needed. Consequently, if r is very large, then it is also very expensive to compute the product GA.
There is therefore no advantage in taking an approximate solution over computing the true solution.
Here, we would like to improve this dependency on ε. To achieve this, we will also use a powerful
generalization of JLT, the so-called of Oblivious Subspace Embeddings [40], which extend the JLT
definition for an entire subspace, instead of a finite set. We use the definitions from [44].
Definition 2 (Oblivious Subspace Embedding [44]). Let D be a distribution on r × n matrices S,
where r is a function of n, d and ε, δ ∈ (0, 1/2). We call S an (ε, δ) Oblivious Subspace Embedding,
or (ε, δ)-OSE if for any fixed n× d matrix A, S ∼ D is a (1± ε) l2-Subspace Embedding for A with
probability at least 1− δ, that is, for all x ∈ Rd it holds that

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.

Notation. By default, the Householder notation is used, denoting matrices with capital letters,
vectors with small letters, and scalars with Greek letters. [n] is the set {1, 2, ..., n}, where n ∈ N. In
is the identity matrix of size n×n and ei its i-th column. Ai,j is the element ofA in row i and column
j. Ak denotes the best rank-k approximation of A in the 2-norm. ‖A‖F is the Frobenius norm of A,
while the 2-norm is assumed for both matrices and vectors when the norm subscript is omitted. A> is
the transpose of A and A† is the pseudoinverse. P[α] ∈ [0, 1] denotes the probability of an event α to
occur. N (µ, σ) is the normal distribution with mean value µ and standard deviation σ. σi(A) denotes
the i-th largest singular value of A. nnz(A) is the number of nonzeros A. Õ(k) := O(k logc(k)) for
some constant c. We refer to matrices with i.i.d. elements from N (0, 1) as Gaussian matrices. In the
complexity analysis, ω denotes the fast matrix multiplication exponent, where 2 ≤ ω < 2.37286 [4].

Why Gaussians? In this work we focus on Gaussian random projections. Other constructions
satisfying the (ε, δ, n)-JLT definition exist in the literature, such as randomized Fourier/Hadamard
[2, 3, 43] or sparse [1, 15, 17, 30, 32, 35] transforms. When the input matrix is explicitly available,
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such constructions are faster to apply than Gaussian random projections. However, as already
mentioned, this is not the case in the matrix-vector query model. Consider the following simple
example. Assume that we are interested to compute the Euclidean row norms of the matrix A2, where
A ∈ Rn×n is a dense input matrix. As already detailed, these norms can be approximated by the
Euclidean row norms of the matrix Ã = A2S, where S is an (ε, δ, n)-JLT matrix with r columns. If
S is a Gaussian matrix, then Ã can be evaluated in two steps, i.e. by computing B = AS and then
Ã = AB, with a total complexity of O(n2rω−2). On the other hand, if S is a CountSketch [15, 35],
then the matrix B = AS can be evaluated in O(n2), which is faster than O(n2rω−2). However, since
B is dense and it has no special structure, then the second step Ã = AB still requires O(n2rω−2)
operations. The total complexity is therefore still dominated by the O(n2rω−2) term. It is also known
that Gaussian matrices require asymptotically less columns r than the aforementioned fast transforms
to satisfy the (ε, δ, n)-JLT definition. This means that Gaussian matrices can in fact be the fastest
option, since r is minimized. Nevertheless, all results of this work are derived as structural results,
i.e. they do not necessarily require Gaussian matrices. Any matrix satisfying the properties that
are detailed in the proofs can be used instead. All aforementioned fast transforms are for example
excellent candidates.

Contributions. In Algorithm 1, we present the main algorithm of this work to approximate the
Euclidean row norms of a matrix A ∈ Rn×d, which is inspired by the Hutch++ algorithm [34].
Following [34], this algorithm is called “Adaptive,” since it needs to make two passes over the input
matrix A. The main contributions are the following:

1. The proposed algorithms require asymptotically less matrix-vector queries to achieve the
same accuracy as standard JL random projections for matrices with decaying spectrum, that
is, spectral decay properties are reflected in the approximation bounds. To the best of our
knowledge, this is the first work to provably reduce the number of required matrix-vector
queries for Euclidean length approximations.

2. For any matrix, regardless of its spectrum, the proposed algorithms require a number of
matrix-vector queries that depends on 1/ε to achieve ε-accuracy for the total, Frobenius
norm-wise error, as opposed to 1/ε2 for standard JL.

3. For the worst-case inputs, that is, for matrices with flat spectrum, the approximated values
are at least as good as standard JL.

4. The techniques can be directly applied to and give similar improvements for the related
problems of approximate pairwise Euclidean distances and approximate leverage scores.

Algorithm 1 Adaptive Euclidean Norm Estimation

Input: Matrix A ∈ Rn×d, n ≥ d, positive integer m < d.
Output: x̃i ≈ ‖e>i A‖2.

# Step 1: Low-rank approximation
1: Construct two random matrices S,G ∈ Rd×m with i.i.d. elements from N (0, 1). . O(dm)
2: Compute B = A>(AS). . O(TMM(A,m))
3: Compute an orthonormal basis Q ∈ Rd×m for range(B) (e.g., via QR). . O(dm2)

# Step 2: Project and compute row norms
4: Compute Ã = AQ and C = AG. . O(TMM(A,m))

5: Compute ∆̃ = A(I −QQ>)G = C − Ã(Q>G). . O(nm2)

6: return x̃i = ‖e>i Ã‖2 + ‖e>i ∆̃‖2, for all i ∈ [n]. . O(nm)

In Table 1 we summarize the approximation guarantees of the proposed Algorithms 1, 2, and 3 for
the aforementioned problems. We also compare it to the corresponding bounds of existing JL-based
approximations to highlight the achieved improvements. For the precise statements we refer to the
corresponding sections.

Regarding the complexity of Algorithm 1, by TMM(A,m) we denote the complexity of computing
the product AB, where B is a dense matrix with m columns. For example, if A is just a dense
matrix, TMM(A,m) = O(ndmω−2), by leveraging fast matrix multiplication [4]. Another example
is when A is implicitly available as a function of a given sparse matrix C, e.g. if A = C3 then
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Table 1: Comparison between the approximation bounds that are achieved in this work versus standard
JL random projections for the three different problems considered here. In all cases, the number of
matrix-vector queries m that are performed is the same. It is proportional to ε−2 (up to logarithmic
factors on n, δ), where ε ∈ (0, 1/2) is the accuracy and δ ∈ (0, 1/2) the success probability. Here,
k is an integer such that m = Ω(k/δ) and Āk = A − Ak. M is a matrix such that its rows define
pairwise distance vectors between the rows of A. The θi’s are the leverage scores of the input matrix.

Element-wise Frobenius norm-wise

This work JL This work JL ref.

Row norms ε
∥∥e>i A∥∥∥∥e>i Āk∥∥ ε‖e>i A‖2 ε2‖A‖2F ε‖A‖2F Thms. 1 & 2

Distances ε
∥∥e>i M∥∥∥∥e>i M̄k

∥∥ ε‖e>i M‖2 ε2‖M‖2F ε‖M‖2F Thm. 5

Leverage scores εθi εθi ε2d εd Thm. 3

TMM(A,m) = 3× TMM(C,m) = O(nnz(C)m). The results are stated for general TMM(A,m), but
they will be specialized, where applicable, for the targeted applications.

Related work. A related topic is stochastic matrix trace estimation [7, 27, 28, 34, 37, 39]. Intu-
itively, a set of data points can be seen as the columns of a matrix. In various applications the trace of
such a matrix contains useful information like triangle counts in graphs [6]. Hutchinson [27] proposed
a randomized algorithm to rapidly approximate the trace of such a matrix, which uses similar ideas to
JL: it projects the rows of the matrix onto a low-dimensional subspace so that the trace can be quickly
computed. Avron and Toledo showed that the dimension of that subspace needs to be proportional
to ε−2 in order to guarantee a worst-case ε-approximation for the trace [7]. This dependence on ε
matches the requirements for the ε-isometry of JL. The ε−2 overhead can be prohibitive when ε is
small, i.e. in applications where high accuracy is needed. Recently, in their seminal work, Meyer,
Musco, Musco, and Woodruff [34] proved a remarkable result: their Hutch++ algorithm is the first to
obtain ε-accuracy for stochastic trace estimation while requiring only 1/ε matrix-vector queries. For
the related problem of estimating the diagonal elements of a matrix, which was also recently studied
in depth [9, 26], Baston and Nakatsukasa [9] achieved ε-accuracy for the total, norm-wise error of
the entire diagonal using O(1/ε) matrix-vector queries, but not for each individual diagonal element,
which should not be possible due to the optimality of the JL lemma [31]. It is worth noting that the
squared row norms of a matrix A can be found in the diagonal of AA>, therefore, our work is closely
related. Our results for the total norm-wise error, however (see e.g. Theorem 2), are tighter than
simply using [9] on AA>, since we are exploiting the special structure of AA>. From a Fine-Grained
complexity perspective, estimating row norms can be easily reduced to diagonal estimation, but the
opposite reduction is not straightforward, therefore, one can argue that diagonal estimation is harder,
which justifies our tighter bounds.

Outline. The analysis of Algorithm 1 is given in Section 2. In Sections 3 and 4 we show two
important applications of the main results, namely for the estimation of the pairwise Euclidean
distances between a set of data points and for the estimation of the statistical leverage scores of a
tall-and-skinny data matrix. In Section 5 we present indicative experiments to validate the theoretical
analysis, before finally giving concluding remarks and future directions in Section 6.

2 Analysis of Algorithm 1

In this section we provide the analysis of Algorithm 1. Preliminary results and long proofs which
were omitted from the main text and can be found in the Appendix. We state the following general
result for the element-wise bounds of Algorithm 1.
Lemma 2. (Proof in the Appendix) Let A ∈ Rn×d. If we use Algorithm 1 with m matrix-vector
queries to estimate the Euclidean lengths of the rows e>i A, i ∈ [n], then as long as m ≥ l ≥
32 log(4n/δ) it holds that∣∣x̃i − ‖e>i A‖2∣∣ ≤√ 8 log( 2n

δ )

l ‖e>i A(I −QQ>)‖2, for all i ∈ [n],

with probability at least 1− δ for all i ∈ [n] simultaneously.
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Evidently, this result implies that if we can determine a suitable bound for ‖e>i A(I −QQ>)‖2 then
we automatically get a proper bound for the element-wise approximations of Algorithm 1. If A
has a fast decaying spectrum and Q captures the dominant eigenspace of A we can expect that our
approximations are very accurate, even for small l. For the general case, however, the following
Lemma 3 as well as the optimality of the JL lemma [31] already hint that this is not possible (see also
Appendix II, Limitations of low-rank projections).

Lemma 3. Let A ∈ Rn×d. For 1 ≤ k < d, it holds that ‖e>i (A−Ak)‖22 ≤ σ2
k+1(A) ≤ ‖Ak‖

2
F

k .

Proof. Clearly, ‖e>i (A−Ak)‖22 ≤ max‖x‖=1 ‖x>(A−Ak)‖22 = σ2
k+1(A). For the second part we

have that σ2
k+1(A) ≤ 1

k

∑k
i=1 σ

2
i (A) =

‖Ak‖2F
k .

2.1 Projecting rows on randomly chosen subspaces

To proceed further with the analysis, we show some length-preserving properties of the orthogonal
projector QQ>, which is an orthogonal projector on a random subspace as obtained in line 3 of
Algorithm 1. Note that Corollary 1 is stated for constant factor approximations. Here we provide a
brief proof sketch. For the main result we refer to Lemma 8 in Appendix III.

Corollary 1 (Projection on rowspace(SA>A)). (Proof in the Appendix) Let δ ∈ (0, 1
2 ), Āk =

A−Ak, and S be such that

(i) S ∼ D, where D is an (1/3, δ)-OSE for any fixed k-dimensional subspace;

(ii) S is a (1/3, δ, 2n)-JLT.

If Q is a matrix that forms an orthonormal basis for rowspace(SA>A), then, with probability at
least 1− 2δ, for all i ∈ [n] simultaneously, it holds that

‖e>i A(I −QQ>)‖2 ≤ ‖e>i (Āk)‖2 + 1
2

σ2
k+1(A)

σ2
k(A)

‖e>i Ak‖‖e>i Āk‖ ≤ 3
2‖e
>
i A‖‖e>i Āk‖.

Proof sketch. To prove the result it suffices to find a projector within rowspace(SA>A) with
the desired properties. To do this, we consider the matrix Πk = Vk(SVkΣ2

k)†SA>A, where
Vk,Σk originate from the SVD of Ak = UkΣkV

>
k . Clearly, this Πk is a rank-k matrix within

rowspace(SA>A). After some algebra, the problem reduces to get a bound for the quantities
|e>i AVkΣ2

kC
−1V >k S

>SV̄kΣ̄2
kV̄
>
k A

>ei|, for all i ∈ [n], where the existence of C−1 is guaranteed
due to the (1/3, δ)-OSE property of S. For each i, this quantity is the absolute value of the inner prod-
uct 〈S(VkC

−1V >k A
>)ei, S(V̄kV̄

>
k A

>)ei〉, which can be written in a simplified form as 〈Sxk, Sx̄k〉.
Therefore, we use an (1/3, δ, 2n)-JLT to bound the inner products between the vectors of the set

V =
{
e>i AVkΣ2

kC
−1V >k |i ∈ [n]

}⋃{
e>i AV̄kΣ̄2

kV̄
>
k |i ∈ [n]

}
.

Having all pieces in-place, we can finally bound the element-wise approximations of Algorithm 1.

Theorem 1. (Proof in the Appendix) Let A ∈ Rn×d and n ≥ d. If we use Algorithm 1 with m
matrix-vector queries to estimate the Euclidean lengths of the rows of A, then there exists a global
constant C such that, as long as

(i) m ≥ l ≥ O(log(n/δ)), such that G satisfies Lemma 1 and S forms an (1/3, δ, 2n)-JLT,

(ii) m ≥ O(k + log(1/δ)), such that S forms an (1/3, δ)-OSE for a k-dimensional subspace,

then it holds that∣∣x̃i − ‖e>i A‖2∣∣ ≤ C√ log(nδ )

l ‖e>i (A−Ak)‖‖e>i A‖ ≤ C
√

log(nδ )

lk ‖Ak‖F ‖e
>
i A‖,

for all i ∈ [n] with probability at least 1− 3δ.
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Discussion. We can investigate the bounds for special matrix cases. We highlight the approximation
power of Algorithm 1 for matrices with decaying spectrum. For matrices with a linear decay it
suffices to take m & O(ε−1

√
log(n/δ)) queries to achieve an almost ε-accuracy. For matrices with

exponential decay we can use as few as m ≥ O(log(1/ε)) matrix-vector queries. For matrices with
no decay, e.g., for orthogonal projector matrices, Lemma 2 already guarantees that Algorithm 1
provides at least as accurate element-wise approximations as standard JL projections. We recall once
more that the JL lemma is optimal in the general case [31], therefore, improvements can only be
derived for special cases, like the ones considered here.

2.2 Frobenius norm bounds

Due to the tightness of Lemma 3, which is crucial for the element-wise bounds, it is highly unlikely
that low-rank projection-based methods can generally achieve better element-wise approximations.
However, if we carefully examine the total, Frobenius norm-wise error, we can in fact obtain a true
ε-relative error approximation. This cannot be done by “simply” adding together all element-wise
bounds, i.e., we must use a different “collective” approach. This result also makes the element-
wise bounds more appealing: even if there remain few outliers that violate the element-wise ε-
approximation, the total error is still very small. We note that this is a quadratic improvement over
the norm-wise error of standard JL projections.
Theorem 2. (Proof in the Appendix) In Algorithm 1, for some absolute constants c, C, if l >
c log(1/δ), it holds that ∣∣∣X̃ − ‖A‖2F ∣∣∣ ≤ C√ log( 1

δ )

lk ‖A‖
2
F ,

where X̃ is the sum of the returned approximations. For l = k = O

(√
log( 1

δ )

ε

)
, where ε ∈ (0, 1/2),

setting m ≥ O(k/δ + log( 1
δ )), it follows that∣∣∣X̃ − ‖A‖2F ∣∣∣ ≤ ε‖A‖2F .

2.3 Complexity

The complexity of Algorithm 1 is as follows. In the first step two matrices S and G must be
generated with d×m random elements each. Hence, O(dm) calls to a random number generator
are required. In the second step, the products A>(AS) and A>(AG) can be both computed in
O(TMM(A,m) + TMM(A>,m)). Next we need to create an orthonormal basis for A>AS which has
size d×m. This can be done with a standard Householder QR or another orthogonal factorization
in O(dm2) [25, Chapter 5]. The complexity of this operation can be improved using fast matrix
multiplication primitives [19]. The product AQ costs O(TMM(A,m)). We then have to compute
Ã(Q>G), which takes O(dm2) or O(dmω−1) to first obtain Q>G and then the same cost to get
Ã(Q>G). Finally, for the last step the squared row norms of 2n vectors, the rows of Ã, and the rows
of ∆̃, are needed. For each row of Ã and ∆̃ the cost of computing the squared Euclidean norm is
O(m), therefore the cost for the last step is O(nm). Summing up, the total cost of Algorithm 1 is
O(dm2 + TMM(A,m) + nm).

3 Euclidean distances

In many applications it is desired to find an approximate isometry for a set of data points. Let
A ∈ Rn×d be a matrix whose rows define these d-dimensional data points. Assume we are interested
to estimate all the

(
n
2

)
distances between the rows of A. Let B be a matrix with size

(
n
2

)
×n and each

row of B is equal to the vector (ei − ej)> for some i, j ∈ [n].1 Each row (ei − ej)> of B, when
multiplied with A, gives the difference vector e>i A − e>j A. Therefore, to estimate the Euclidean
distances between the rows of A, it is sufficient to estimate the Euclidean lengths of the rows of the
matrix BA. In Algorithm 2 we describe this procedure for a general “incidence matrix” B, e.g., when
one wants to estimate only a subset of the pairwise distances. Since B has in general more rows than
A, the matrix multiplications must be computed in the correct order to minimize their complexity.

1Note that B is nothing more than the edge incidence matrix of a complete graph.
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Algorithm 2 Adaptive Euclidean Distance Estimation

Input: Data matrix A ∈ Rt×d, t ≥ d, incidence matrix B ∈ Rn×t, positive integer m < d.
Output: Approximate pairwise distances x̃i ≈ ‖e>i BA‖2, i ∈ [n].

# Step 1: Low-rank approximation
1: Construct two random matrices S,G ∈ Rd×m with i.i.d. elements from N (0, 1). . O(dm)

2: Compute the product S̃ = A>(B>(B(AS))). . O(TMM(A,m) + TMM(A>,m) + nm)

3: Compute an orthonormal basis Q ∈ Rd×m for range(S̃) (e.g., via QR). . O(dm2)
# Step 2: Project and compute row norms

4: Compute Ã = AQ and C = AG. . O(TMM(A,m))

5: Compute ∆̃ = A(I −QQ>)G = C − Ã(Q>G). . O(tm2)

6: return x̃i = ‖(e>i B)Ã‖2 + ‖(e>i B)∆̃‖2, for all i ∈ [n]. . O(nm)

Bounds. Approximation bounds can be directly derived from Theorems 1 and 2, replacing A with
BA. For completeness, they can be found in Theorem 5 in the Appendix.

Complexity. The complexity of Algorithm 2 is as follows. O(dm) operations are needed to
generate G and S. The product S̃ = A>B>BAS is evaluated in three steps. We first com-
pute AS in O(TMM(A,m)), then B(AS) and B>(BAS) in O(nm), and finally A>(B>BAS) in
O(TMM(A>,m)). The intermediate products can be calculated in batches to save memory. The
QR factorization of S̃ requires O(dm2). The products Ã = AQ and C = AG both require
O(TMM(A,m)), whereas the product Q>G can be performed in O(dm2). Accordingly, the product
Ã(Q>G) needs O(tm2) and C − Ã(Q>G) O(tm). In the last step each row norm costs O(m)
operations, resulting in O(nm).2 The total complexity of Algorithm 2 is therefore

O
(
TMM(A,m) + TMM(A>,m) + nm+ dm2 + tdm

)
.

4 Statistical leverage scores

We next consider the problem of approximating the leverage scores of a tall-and-skinny matrix. The
leverage scores of the rows of A can be found in the diagonal of the orthogonal projector matrix
P = AA† = UU>, where U is any orthonormal basis for range(A). Specifically, the leverage score
θi of the i-th row of A is equal to all the following quantities

θi = ‖e>i AA†‖2 = e>i AA
†ei = eiUU

>ei = ‖e>i U‖2.

It is known that the leverage scores of a n×dmatrixAwith rank(A) = r ≤ d sum to r:
∑n
i=1 θi = r.

Leverage scores are important in outlier detection, graph sparsification, and numerical linear algebra.
We consider the general case where U is not explicitly available, and we only have access to A.

To simplify the analysis, we assume that the matrix A has full column rank. The true rank r of A
(or the numerical rank, if A is approximately low-rank) as well as a corresponding set of r linearly
independent columns of A can be computed in O(nnz(A) + d4/(ε2δ)), with provable approximation
guarantees for the leverage scores of the selected column subset. See sections 4 and 5 of [41] for
details and [8, 12, 13] for related algorithms and lower bounds.

To use Algorithm 1 to estimate leverage scores, we first need a linear operator that computes AA†v,
for an arbitrary vector v. Since evaluating (A>A) in order to compute its pseudoinverse and ultimately
the orthogonal projector AA† = A(A>A)†A> is expensive, we opt for a fast approximate operator.
For this we can use standard techniques from the literature. One of the first approximation algorithms
for tall-and-skinny leverage scores was proposed in [21]. In [41] it was shown that this algorithm is
only efficient for dense matrices, or more specifically for matrices with at least ω(log n) nonzeros per
row. GivenA ∈ Rn×d with n� d and ω(log n) nonzeros per row, the idea consists of approximating
the leverage scores of the rows of A with the squared Euclidean row norms of the matrix

A(Π1A)†Π2.

2Some intermediate steps can be slightly improved using fast matrix multiplication.
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Here, Π1 is a subspace embedding for range(A) and Π2 is an ε-JLT. It can be proved that (Π1A)†

is in fact an approximate “orthogonalizer” for A, a property that we can leverage in our algorithm.
Specifically, we apply Algorithm 1 to approximate the Euclidean row norms of A(Π1A)†, instead of
multiplying with Π2. This procedure is described in Algorithm 3.

Algorithm 3 Adaptive Leverage Scores Estimation

Input: A ∈ Rn×d, with n� d and ω(log n) nonzeros per row, positive integer m < d.
Output: Approximate leverage scores θ̃i ≈ ‖e>i AA†‖2, i ∈ [n].

# Step 1: Construct approximate pseudoinverse operator
1: Construct Π1, an (ε1, δ)-OSE for range(A).
2: Compute R from a QR factorization of Π1A, i.e. Π1A = QR and use R−1 as a substitute for

(Π1A)†.
# Step 2: Low-rank approximation

3: Construct two random matrices S,G ∈ Rd×m with i.i.d. elements from N (0, 1). . O(dm)

4: Compute the product S̃ = R−T (A>(A(R−1S))). . O(TMM(A,m))

5: Compute an orthonormal basis Q ∈ Rd×m for range(S̃) (e.g., via QR). . O(dm2)
# Step 3: Project and compute row norms

6: Compute Ã = A(R−1Q) and C = A(R−1G). . O(TMM(A,m))

7: Compute ∆̃ = A(I −QQ>)G = C − Ã(Q>G). . O(dm2)

8: return Alg3(A, i) = θ̃i = ‖(e>i B)Ã‖2 + ‖(e>i B)∆̃‖2, for all i ∈ [n]. . O(nm)

The following theorem gives approximation bounds for the leverage scores returned by Algorithm 3.

Theorem 3. Let A ∈ Rn×d, θi = ‖e>i AA†‖2 and θ̃i the values returned by Algorithm 3. The
following hold:

|θ̃i − θi| ≤ (ε1 +
√
ε2)θi, and

∣∣∣∣∣
n∑
i=1

θ̃i − d

∣∣∣∣∣ ≤ (ε1 + ε2)d.

Proof. Let θ̂i = ‖e>i A(Π1A)†‖2, so that

|θ̃i − θi| = |θ̃i − θ̂i + θ̂i − θi| ≤ |θ̃i − θ̂i|+ |θ̂i − θi|.

From [21, Lemma 9] it follows that |θ̂i − θi| ≤ ε1
1−ε1 θi. Subsequently, θ̂i ≤ (1 + ε1

1−ε1 )θi = 1
1−ε1 θi.

From Theorem 1 we recall that for appropriate m, l, k,

|θ̂i − θ̃i| ≤
√
ε2θ̂i ≤ (

√
ε2

1−ε1 )θi.

Combining all these observations we find that

|θ̃i − θi| ≤ |θ̃i − θ̂i|+ |θ̂i − θi| ≤
ε1 +

√
ε2

1− ε1
θi ≤ 2(ε1 +

√
ε2)θi.

Rescaling ε1 and ε2 gives the element-wise bounds. For the Frobenius norm bounds we can use
similar arguments in combination with Theorem 2.

Complexity and choice of ε1, ε2. The complexity of Algorithm 3 can be split into two parts: (i)
the complexity of obtaining an ε1-approximate orthonormal basis for A, and (ii) the complexity of
estimating the row norms of this basis. The complexity of the former has been heavily studied in the
literature and depends on the choice of the subspace embedding. For very tall-and-skinny matrices, an
efficient construction is to use a combination of a CountSketch [15, 35], a Subsampled Randomized
Hadamard Transform (SRHT) [43] and a Gaussian subspace embedding; see e.g. [15]. This provides
a sketch Π1A with dimension O(d/ε2)× d in T (Π1A) time. Computing the QR factorization of the
sketch requires O(d3/ε2) to obtain R. Since R is upper triangular, the computation of R−1G and
R−1Q both take O(d2m). The products A(R−1Q) and A(R−1G) cost O(TMM(A,m)) each. The
last step takes O(nm). The total complexity is

O(T (Π1A) + d3/ε21 + TMM(A,m) + nm).
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To achieve ε-accuracy in the Frobenius norm, it suffices to use m = O(
√

log(n/δ)/ε2). With
ε1 = ε2 = ε, the total complexity becomes

O(T (Π1A) + d3/ε2 + TMM(A,
√

log(n/δ)/ε) + n
√

log(n/δ)/ε).

If, instead, we use standard JL projections to estimate the row norms of AR−1, the total complexity is
O(T (Π1A) + d3/ε2 + TMM(A, log(n/δ)/ε2) + n log(n/δ)/ε2),

to achieve the same Frobenius norm-wise accuracy. For any matrix which is “tall-enough” such that
the O(TMM(A, log(n/δ)/ε2)) factor dominates the complexity, Algorithm 3 achieves a quadratic
improvement over standard estimators.

5 Numerical experiments

Algorithm 1 was implemented in Python using NumPy. We conducted experiments to verify the
approximation guarantees and the convergence improvements against standard Gaussian random
projections. Following [34], we generated synthetic matrices with decay in the spectrum. Specifically,
d × d matrices A, with d = 5000, were created as follows. We drew a random orthogonal d × d
matrix Q. We then fixed a diagonal d× d matrix Λ which defines the eigenvalues of the matrix. Each
element Λi,i, i ∈ [d] is set to i−c for a given c ≥ 0. The larger the c, the faster the spectral decay.
We finally constructed the symmetric A = QΛQ> which were used in the numerical experiments.
Following [34], we applied four different decay factors, specifically c = {0.5, 1, 1.5, 2}.
The approximation errors of standard JL projections versus Algorithm 1 are compared in Figure 1.
We plot the approximation errors of both methods as the number of samples increases. We plot two
types of errors, the maximum element-wise and the Frobenius norm-wise errors

max
i∈[d]

|x̃i − ‖e>i A‖2|
‖e>i A‖2

and

∣∣∣X̃ − ‖A‖2F ∣∣∣
‖A‖2F

,

where x̃i are the approximated row norms and X̃ is their sum returned by either Algorithm 1 or
standard JL projections. The exact same number of matrix vector queries is used in both methods.
Standard JL projections involve only one random matrix G, which is multiplies A from the right. G
has size d×m, m being the number of samples. In Algorithm 1, on the other hand, A is multiplied
four times with a matrix from the right. Therefore, we set G,S, and Q in Algorithm 1 to have size
d×m/4, so that both algorithms are tested with the same number of matrix-vector products. In each
plot we illustrate the mean error over 10 independent runs and the standard deviation. Standard JL
approximations perform marginally better than Algorithm 1 only for the element-wise errors and only
for the matrix with very slow decay. In all other cases, Algorithm 1 performs significantly better.

6 Conclusion

We proposed an adaptive algorithm to estimate the Euclidean row norms of a matrixA. This algorithm
improves standard Johnson-Lindenstrauss estimators in the following aspects: (i) Quadratically less
matrix-vector queries are required to achieve the same Frobenius norm-wise accuracy for all matrices;
(ii) Asymptotically less matrix-vector queries are needed to achieve the same element-wise accuracy
for matrices with decaying spectrum; (iii) At least as accurate element-wise approximations as
standard JL are achieved for worst-case input matrices, that is, for matrices with flat spectrum. We
also showed how these results can be applied to other important problems, specifically to estimate
Euclidean distances between data points, which is related to the fundamental concept of approximate
isometries that has many applications in data science, as well as for statistical leverage scores
estimations, which are ubiquitous quantities not only in data science and statistics, but also in
numerical linear algebra and spectral graph theory.

As future work, several directions can be envisioned. Most prominently, it would be interesting to
determine whether the studied techniques can be used to improve Oblivious Subspace Embeddings
[40, 44]. Such improvements would have an immediate impact in many problems in NLA, e.g. least
squares regression, low-rank approximations and column subset selection. Two other relevant topics
concern (a) the possibility to derive lower bounds similar to [34] for Euclidean row norms estimation
and (b) to make the algorithms non-adaptive, like the non-adaptive versions of Hutch++ [28, 34]
which are based on results from [14], or the Nyström++ of [37].
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(a) Very slow eigenvalue decay (c = 0.5) (b) Slow eigenvalue decay (c = 1.0)

(c) Moderate eigenvalue decay (c = 1.5) (d) Fast eigenvalue decay (c = 2.0)

Figure 1: Comparison between the element-wise (dashed curves with “×” marker) and norm-wise (solid curves
with “star” marker) relative errors of Algorithm 1 (blue) and standard Gaussian random projections (red) versus
number of matrix-vector multiplication queries (x-axis) ran on random matrices with power law spectra. The
mean relative error of the approximation averaged over 10 independent runs is plotted. The upper and lower
bounds around each curve represent the standard deviation. As expected, for matrices with a very slow decay
standard JL projections perform marginally better with respect to the element-wise errors, but Algorithm 1
performs significantly better for all other cases.
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