
Supplementary Materials of Theoretically Provable Spiking
Neural Networks (Appendix)

In this Appendix, we provide the supplementary materials for our work “Theoretically Provable
Spiking Neural Networks", constructed according to the corresponding sections therein. Before that,
we review the useful notations as follows.

Let [N ] = {1, 2, . . . , N} be an integer set for N ∈ N+, and | · |# denotes the number of elements
in a collection, e.g., |[N ]|# = N . Let i =

√
−1 be the imaginary unit, and x ≼ 0 means that every

element xi ≤ 0 for any i. Let the sphere S(r) and globe B(r) be S(r) = {x | ∥x∥ = r} and
B(r) = {x | ∥x∥ ≤ r} for any r ∈ R, respectively. Given a function g(n), we denote by h1(n) =
Θ(g(n)) if there exist positive constants c1, c2 and n0 such that c1g(n) ≤ h1(n) ≤ c2g(n) for every
n ≥ n0; h2(n) = O(g(n)) if there exist positive constants c and n0 such that h2(n) ≤ cg(n) for
every n ≥ n0; h3(n) = Ω(g(n)) if there exist positive constants c and n0 such that h3(n) ≥ cg(n)
for every n ≥ n0; h4(n) = o(g(n)) if there exists positive constant n0 such that h4(n) < cg(n) for
every c > 0 and n ≥ n0.

Let C(K,R) be the set of all scalar functions f : K → R continuous on K ⊂ Rn. Given α =
(α1, α2, . . . , αm)⊤ ∈ Nm, we define

Dαf(x) =
∂α1

∂xα1

∂α2

∂xα2
. . .

∂αm

∂xαm
f(x) ,

where x = (x1, x2, . . . , xn) ∈ K. Further, we define

Cl(K,R) = {f | f ∈ C(K,R) and Drf ∈ C(K,R), for r ∈ [l]} .

For 1 ≤ p < ∞, we define

Lp(K,R) =

{
f

∣∣∣∣∣ f ∈ C(K,R) and ∥f∥p,K ≜
(∫

K

|f(x)|p dx
)1/p

< ∞

}
.

This work considers the Sobolev space W l,p
µ (K,R), defined as the collection of all functions f ∈

Cl(K,R) and Drf ∈ Lp(K,R) for all |α| ∈ [l], that is,

∥Dαf∥p,K =

(∫
K

|Dαf(x)|p dx
)1/p

< ∞ .

This paper employs En to denote the n × n unit matrix and det(·) to indicate the determinant
operation on the matrix. Two n-by-n matrices A and B are called similar, denoted as A ∼ B, if
there exists an invertible n × n matrix P such that B = P−1AP. The general linear group over
field F, denoted as GL(n,F), is the set of n × n invertible matrices with entries in F. Especially,
we define that a special linear group SL(n,F) is the subgroup of GL(n,F) and consists of matrices
with determinant 1. For any field F, the n× n orthogonal matrices form the following subgroup

O(n,F) = {P ∈ GL(n,F) | P⊤P = PP⊤ = En}
of the general linear group GL(n,F). Similarly, we have the special orthogonal group, denoted as
SO(n,F), which consists of all orthogonal matrices of determinant 1 and is a normal subgroup of
O(n,F). This group is also called the rotation group, generalizing that linearly transforms geome-
tries while holding the surface orientation.

Let ϕ2(x) be the density function of some probability measure µ, which satisfies∫
x∈Rm

ϕ2(x) dx =

∫
x∈B

1 dx = 1 ,

where B is an abbreviation of the unit ball B(1). For continuous functions f, g, we have the following
equalities under Fourier transform

∥f̂ϕ− ĝϕ∥L2(µ) = ∥fϕ− gϕ∥L2(µ) ,

and
f̂ϕ = f̂ ∗ ϕ̂, for the convolution operator ∗ .
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A Full Proof for Theorem 1

For convenience, we abbreviate f(·, t) as f(·) in this proof. For r ∈ [l], we have

Drf(x) =

∫
Rm

D̂rf(y) exp
(
2π iy⊤x

)
dy

=

∫
Rm

D̂rf(βy) exp
(
2πβ iy⊤x

)
d(βy)

=

∫
Rm

(2πβ iy)rf̂(βy) exp
(
2πβ iy⊤x

)
|β|m dy

=

∫
Rm

[
yr|β|mf̂(βy)

] [
(2πβ i)r exp

(
2πβ iy⊤x

)]
dy

=

∫
Rm

yr|β|mf̂(βy)

f̂e(β)

[
D̂rfe(β) exp

(
2πβ iy⊤x

)]
dy

=

∫
Rm

yr|β|mf̂(βy)

f̂e(β)

[∫
R
Drfe(α) exp (−2π iβα) dα

]
exp

(
2πβ iy⊤x

)
dy ,

(7)

where α, β ∈ R, and the above equations hold from the Fourier transforms and some of their prop-
erties. By taking the real part of Eq. (7), we have

Drf(x) =

∫
Rm

∫
R
yrDrfe(α)K(α, β,y) dα dy , (8)

where

K(α, β,y) =
|β|mf̂(βy) exp

[
2πβ i(y⊤x− α)

]
f̂e(β)

.

In this proof, we set

α = y⊤x+ ~, y = Wi,[m], ~ =
∑
j∈[n]

− 1

τm
exp

(
−s− t′

τm

)
Vi,jsj(t

′) ,

and the k-th element of vector x equals to a temporal-weighted average of Ik(t) at time interval
[t′, t]

xk =

∫ t

t′
exp

(
−s− t′

τm

)
Ik(s) ds.

Thus, we have

K(α, β,y) =
|β|mf̂(βy) exp (2πβ~ i)

f̂e(β)
≜ Kβ(~,y) and sup

x∈K
|x| ≤ Cx .

Based on Eq. (8), we can construct a family of approximation functions of the form

fκ(x) =

∫
B1

∫
B2

fe(y
⊤x+ ~)Kβ(~,y) d~ dy , (9)

where B1 = {x | x ≼ κ} and B2 = {x | x ≼ (Cxm+ 1)κ}. Thus, we have

Drfκ(x) =

∫
B1

∫
B2

yrDrfe(y
⊤x+ ~)Kβ(~,y) d~ dy . (10)

It suffices to prove that Drfκ → Drf uniformly on K, as κ → ∞. Now

Drfκ(x)−Drf(x) =

∫
Rm/B1

∫
R
yrDrfe(y

⊤x+ ~)Kβ(~,y) d~ dy

+

∫
B1

∫
R/B2

yrDrfe(y
⊤x+ ~)Kβ(~,y) d~ dy

≜ R1 +R2 .
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For R1, one has

|R1| =

∣∣∣∣∣
∫
Rm/B1

∫
R
yrDrfe(y

⊤x+ ~)Kβ(~,y) d~ dy

∣∣∣∣∣
≤
∫
Rm/B1

|yr|
∣∣∣∣∫

R
Drfe(y

⊤x+ ~)Kβ(~,y) d~
∣∣∣∣ dy

≤
∫
Rm/B1

|yr|
∣∣∣∣∫

R
Drfe(y

⊤x+ ~) d~
∣∣∣∣
∣∣∣∣∣ |β|mf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∥∥Drfe(y

⊤x+ ~)
∥∥
1,R

∫
Rm/B1

∣∣∣∣∣ |β|myrf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∥∥Drfe(y

⊤x+ ~)
∥∥
1,R

∫
R/B̃1

∣∣∣∣∣ |βy|rf̂(βy)f̂e(β)|β|r

∣∣∣∣∣ d(βy)
≤

∥∥Drfe(y
⊤x+ ~)

∥∥
1,R∣∣∣f̂e(β)|β|r∣∣∣
∫
R/B̃1

∣∣∣yrf̂(y)
∣∣∣ dy ,

where B̃1 = {βx | βx ≼ βκ}. For R2, one has

|R2| =

∣∣∣∣∣
∫
B1

∫
R/B2

yrDrfe(y
⊤x+ ~)Kβ(~,y) d~ dy

∣∣∣∣∣
≤
∫
B1

∣∣∣∣∣
∫
R/B2

Drfe(y
⊤x+ ~) d~

∣∣∣∣∣
∣∣∣∣∣ |β|myrf̂(βy)

f̂e(β)

∣∣∣∣∣ dy
≤
∫
R/B̃2

|Drfe(µ)| dµ ·
∫
B̃1

∣∣∣∣∣ |βy|rf̂(βy)f̂e(β)|β|r

∣∣∣∣∣ d(βy)
≤
∫
R/B̃2

|Drfe(µ)| dµ
∥Drfe(µ)∥1,B̃1∣∣∣f̂e(β)|β|r∣∣∣ ,

where µ = y⊤x+ ~ and B̃2 = {x | x ≼ κ} since |µ| ≥ κ. Summing up the inequalities above, we
have

sup
x∈K

|Drfκ(x)−Drf(x)| ≤ C1
κ + C2

κ∣∣∣f̂e(β)|β|r∣∣∣
with

C1
κ =

∥∥Drfe(y
⊤x+ ~)

∥∥
1,R

∫
R/B̃1

∣∣∣yrf̂(y)
∣∣∣ dy and C2

κ = ∥Drfe(µ)∥1,B̃1

∫
R/B̃2

|Drfe(µ)| dµ ,

which tends to 0 as κ → ∞.

Given κ, it suffices to construct a series of approximations to fκ in Eq. (9). Formally, we define

f̃n
κ (x) =

∑
µ∈U

β̃fe(ỹ
⊤x+ ~̃) ,

where 
µ = (µ1, µ2, . . . , µm)⊤ with µi ∈ [−n, n] ∩ Z for i ∈ [m],

β̃ = (Cxm+ 1)(κ/n)m+1Kβ(~̃, ỹ) ,
ỹ = µκ/n ,

~̃ = µ∗(Cxm+ 1)κ/n with µ∗ ∈ [−n, n] ∩ Z .

It is observed that f̃n
κ belongs to the set of IFR functions, and

Drf̃n
κ (x) =

∑
µ∈U

(Cxm+ 1)(κ/n)m+1 ỹrDrfe(ỹ
⊤x+ ~̃) Kβ(~̃, ỹ) . (11)
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Next, we are going to prove that Drf̃n
κ → Drfκ uniformly on K, as n → ∞. For simplicity, we

define the following function

Gβ(x,y, ~) = yrDrfe(y
⊤x+ ~)Kβ(~,y) .

Thus, Eq. (10) and Eq. (11) become

Drfκ(x) =
∑
µ∈U

∫
B3

Gβ(x,y, ~) d~ dy

and
Drf̃n

κ (x) =
∑
µ∈U

∫
B3

Gβ(x, ỹ, ~̃) d~ dy

respectively, where ∪µ∈UB3 = {(x0, x1, . . . , xm) | x0 ∈ B2, (x1, . . . , xm)⊤ ∈ B1} ⊂ Rm+1.
Hence, one has

sup
(ℏ,y),(ℏ̃,ỹ)∈B3

∣∣∣Gβ(x,y, ~)−Gβ(x, ỹ, ~̃)
∣∣∣ < ∞ .

Let
Cn

κ (δ) ≜ sup
(ℏ,y),(ℏ̃,ỹ)∈B3

|(ℏ,y)−(ℏ̃,ỹ)|≤δm+1

∣∣∣Gβ(x,y, ~)−Gβ(x, ỹ, ~̃)
∣∣∣ .

Thus, we have∣∣∣Drf̃n
κ (x)−Drfκ(x)

∣∣∣ ≤ ∑
µ∈U

∫
B3

∣∣∣Gβ(x,y, ~)−Gβ(x, ỹ, ~̃)
∣∣∣ d~ dy

≤
∑
µ∈U

∫
B3

Cn
κ (κ/n) d~ dy

≤ Cn
κ (κ/n)

∑
µ∈U

∫
B3

d~ dy

≤ Cn
κ (κ/n) (2n)

m+1 (Cxm+ 1)(κ/n)m+1,

where the last inequality holds from∫
B3

d~ dy = (Cxm+ 1)(κ/n)m+1 and |U|# = (2n)m+1.

Further, we can obtain

sup
x∈K

∣∣∣Drf̃n
κ (x)−Drfκ(x)

∣∣∣ ≤ (Cxm+ 1)(2κ)m+1 Cn
κ (κ/n) ,

which tends to 0 as n → ∞.

Finally, we finish the proof by taking double limits n → ∞ before κ → ∞. □
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B Full Proof for Theorem 2

There are two proof methods for Theorem 2, one based on the rotation group action and one based
on the Fourier transformation, which are detailed in this and the following sections, respectively.

This proof idea can be summarized as follows. It is observed that the IFR function comprises
the radius and phase since V is a symmetric matrix. Thus, there exist some linear connections
(including rotation transformations) such that the combination of these spiking neurons is invariant
to rotations. In other words, the IFR function led by scSNNs with one-hidden layer can easily
and well approximate some radial functions, see Lemma 1, since the radial function is invariant to
rotations, and is dependent on the input norm.

B.1 Proof of Lemma 1

Let f ′ : Rm → R be a radial function with f ′(x) = ∥x∥. According to Theorem 1, for any δ > 0,
i ∈ [n], and m ≥ 1, there exists some time t such that

sup
x∈Rd

∣∣∣f ′(x)− |fi(x, t)|
∣∣∣ ≤ δ/2 , (12)

where fi denotes the IFR function of the i-th hidden spiking neuron, defined by Eq. (4). Further, we
define a new function g′ : R → R as follows.

g′(s) =

n′∑
i=1

α′
ife(s) ,

where α′
i, a

′
i ∈ R. For Lipschitz continuous function r

√
· and from [42, Lemma 1], we have

sup
s∈[rk,Rk]

∣∣g( k
√
s)− g′(s)

∣∣ ≤ δ/2 , (13)

where n′ ≤ C ′L(Rk − rk)/( k
√
rδ) for some constant C ′ > 0 and integer k ≥ 2. Further, we have

|g′(s)− f(x, t)| ≤ |g′(s)− f ′(x)|+ |f ′(x)− f(x, t)| , (14)
where

f ′(x) =

n′∑
i=1

w′
i |fi(x, t))| ,

in which {w′
i} denotes another collection of weighted parameters that corresponds to f(·, t) =∑

i∈[n] wifi(·, t). The first term of Eq. (14) can be bounded by δ/4 from [42, Lemma 1] for any
s ∈ [rk, Rk]. The second term is at most δ/4 when n ≥ n′ from Eq. (12). This follows that

|g′(s)− f(x, t)| ≤ δ/2 . (15)
Combining with Eqs. (13) and (15), we have

|g(∥x∥)− f(x, t)| ≤
∣∣g( k

√
s)− g′(s)

∣∣+ |g′(s)− f(x, t)| ≤ δ ,

where x ∈ Rm and s ∈ [rk, Rk]. We finally obtain

n ≤ Cs(R
k − rk)Lm/( k

√
rδ) ,

provided n ≤ mn′ and C ′ ≤ Cs. Finally, we can complete the proof by setting k = 2 in the above
upper bound. □

B.2 Proof of Lemma 2

Let r = C2
√
m, R = 2C2

√
m, and m ≥ 1, then we have r ≥ 1, which satisfies the condition

of [42, Lemma 1]. Invoke Lemma 1 to construct the concerned spiking neural networks and define
δ′ ≤ δ/d. Then for any L-Lipschitz radial function g : Rm → R supported on S∆, we have

sup
x∈Rm

|g(x)− f(x, t)| ≤ δ′ ,

where the width of the hidden layer is bounded by

n ≤ Cs(C2)
3/2mL

δ
(m)3/4 ≤ Cs(C2)

3/2L

δ
(m)7/4 .

This completes the proof. □
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B.3 Proof of Lemma 3

Define a branch function

hi(x) =

{
max{I{∥x∥ ∈ Ωi}, NDi}, if Bi = 1,

0 , if Bi = 0,

with

Di = min

{∣∣∣∣∥x∥ − (1 + i− 1

N

)
C2

√
m

∣∣∣∣ , ∣∣∣∣∥x∥ − (1 + i

N

)
C2

√
m

∣∣∣∣} .

Let

h(x) =

N∑
i=1

ϵihi(x) ,

Bi = 1, Ωi’s are disjoint intervals, hi(x) is an N -Lipschitz function. Thus, h is also an N -Lipschitz
function. So we have∫

Rm

(
h(x)−

N∑
i=1

ϵigi(x)

)2

ϕ2(x) dx =

∫
Rm

N∑
i=1

ϵ2i (hi(x)− gi(x))
2
ϕ2(x) dx

=

N∑
i=1

∫
Rm

(hi(x)− gi(x))
2
ϕ2(x) dx

≤ (3/(C2)
2
√
m) ,

where the last inequality holds from [10, Lemma 22]. This completes the proof. □
Based on the lemmas above, we can finish the proof of Theorem 2.

Finishing the Proof of Theorem 2. Let g(x) =
∑N

i=1 ϵigi(x) be defined by Eq. (5) and N ≥
4C

5/2
2 m2. According to Lemma 3, there exists a Lipschitz function h with range [−1,+1] such that

∥h(x)− g(x)∥L2(µ)
≤

√
3

C2(m)1/4
.

Based on Lemmas 1 and 2, any Lipschitz radial function supported on S∆ can be approximated by
an IFR function f(x, t) led by scSNNs of one-hidden layer with width at most C3Cs(m)15/4, where
C3 is a constant relative to C2 and δ. This means that there exists some time t such that

sup
x∈Rm

|h(x)− f(x, t)| ≤ δ .

Thus, we have
∥h(x)− f(x, t)∥L2(µ) ≤ δ .

Hence, the range of f(·, t) is in [−1− δ,+1 + δ] ⊆ [−2,+2]. Provided the radial function, defined
by Eq. (5), we have

∥g(x)− f(x, t)∥L2(µ) ≤ ∥g(x)− h(x)∥L2(µ) + ∥h(x)− f(x, t)∥L2(µ) ≤
√
3

C2(m)1/4
+ δ .

This implies that given constants m > C2 > 0 and C3 > 0, for any δ > 0 and ϵi ∈ {−1,+1}
(i ∈ [N ]), there exists some time t, such that the target radial function g can be approximated by an
IFR function f(x, t) led by scSNNs of one-hidden layer with range in [−2,+2] and width at most
C3Cs(m)15/4, that is,

∥g(x)− f(x, t)∥L2(µ) ≤
√
3

C2(m)1/4
+ δ < δ1 .

This completes the proof. □
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C Another Proof for Theorem 2

The another proof idea can be summarized as follows. Given any permutation operation on the input
channels, there are some permutation operations on the self-connection and final connection weights
such that the output of SNNs are invariant. In other words, the IFR function led by scSNNs with
one-hidden layer admits the rotation transformations. Therefore, it suffices to show that before final
weighted aggregation, the component IFR functions of hidden spiking neurons can approximate any
L-Lipschitz radial function, similar to the proof line of Lemma 1, and then find a special radial
function that can be well approximated by these IFR functions within the polynomial parameter
complexity, similar to the proof line of Lemma 3.

Lemma 5 Let fe and f(x, t) be an l-finite function and the IFR function led by scSNNs with one-
hidden layer, respectively. For any δ > 0 and A ∈ SO(m,R), there exists some time t such that

|f(Ax, t)− ∥x∥| < δ .

Lemma 6 Let fe be an l-finite function, g : R → R is a scalar function, and f(x, t) is the IFR
function led by scSNNs with one-hidden layer, where x ∈ S(r) and S(r) is a sphere supported with
density ϕ2 for 0 < r < ∞. For any δ > 0, if there exists some time t ∈ R such that it holds

|f(x, t)− g(∥x∥)| < δ if and only if |f(Ax, t)− g(∥x∥)| < δ ,

for any A ∈ SO(m,R).

Lemma 7 Define a radial function g′ : R → R with the form of

g′(∥x∥) def
=

N∑
i=1

ϵi I{∥x∥ ∈ Ωi} ,

where N is a polynomial function of m, ϵ = (ϵ1, . . . , ϵN ) ∈ {−1,+1}N , and Ωi’s are disjoint
intervals of width O(1/N) on values in the range Θ(

√
m). For C2, C3 > 0 with d > C2, any δ > 0,

and any choice of ϵi ∈ {−1,+1} (i ∈ [N ]), there exist some time t and A ∈ SO(m,R) such that

|g′(∥x∥)− f(Ax, t)| ≤
√
3

C2(m)1/4
+ δ ,

where f(x, t) indicates the IFR function led by scSNNs of one-hidden layer with range in [−2,+2]
and at most C3Cs(m)15/4 hidden spiking neurons.

Finishing the Proof of Theorem 2. The rest proof is a straightforward combination of Lemmas 5, 6
and 7. Define a radial function g′ : R → R with the form of

g′(∥x∥) def
=

N∑
i=1

ϵi I{∥x∥ ∈ Ωi} ,

where N is a polynomial function of m, ϵ = (ϵ1, . . . , ϵN ) ∈ {−1,+1}N , and Ωi’s are disjoint
intervals of width O(1/N) on values in the range Θ(

√
m). Obviously, g′ is equivalent to another

radial function defined in Eq. (5) as follows

g(x) =

N∑
i=1

ϵigi(x) with gi(x) = I{∥x∥ ∈ Ωi} ,

provided x ∈ S(r). From Lemma 7, it is observed that provided the concerned radial function g(x)
with a collection of choices ϵ, there exist some time t and n ∈ O(C3Cs(m)15/4) such that g(x) can
be approximated a IFR function f(x, t) led by one-hidden-layer scSNNs of with range in [−2,+2]
and at most n hidden spiking neurons, such that

|g′(∥x∥)− f(Ax, t)| ≤
√
3

C2(m)1/4
+ δ .

Let A ∈ SO(m,R). If ∥x∥ ∈ Ωi ⊆ S(r) for 0 < r < ∞, then it holds ∥Ax∥ ∈ Ωi ⊆ S(r) and
g′(∥x∥) = g′(∥Ax∥). According to Lemma 6, we have

∥g(x)− f(x, t)∥L2(µ)
= |g′(∥x∥)− f(x, t)| = |g′(∥x∥)− f(Ax, t)| ≤

√
3

C2(m)1/4
+ δ ,

without any incremental change in the parameter complexity. This completes the proof. □
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D Full Proof for Theorem 3

We begin this proof with an investigation that acting SVD on the matrix G. Let G = P ΛG Q⊤,
where P ∈ Rm×m and Q ∈ Rn×n are two unitary matrices, ΛG ∈ Rm×n is a diagonal matrix.
Thus, we have

∥Ex [Vf(x, t)]−Gλ∥2 =
∥∥∥QṼ Ex [f(x, t)]−PΛGλ

∥∥∥
2

∥∥Q⊤∥∥
2
≤ 2

∥∥∥Ṽ Ex [f(x, t)]−ΛGλ
∥∥∥
2
.

(16)
If the matrix G is degenerate, then ΛG contains some null diagonal elements. Then there must exists
a non-degenerate sub-matrix Gsub of G such that Inequality (6) degenerates to one about Gsub in a
lower dimensional space within at most constant time cost. Thus, we only care about the case that
G is a non-degenerate matrix. When m ≤ n, the vector ΛGλ becomes a constant vector, denoted
as λ̃, whose elements consist of λ1, . . . , λm and n−m zeros.

Notice that the n×n-dimensional matrix Ṽ is symmetric and non-degenerate, since V is a symmet-
ric and non-degenerate matrix and Q ∈ O(n). Thus, we have Ṽ = Ũ ΛU Ũ⊤, where Ũ ∈ O(n)
and ΛU = diag{ρ1, . . . , ρn} in which ρk ̸= 0 for any k ∈ [n]. Then we have the following lemma.

Lemma 8 (Lemma 4 as aforementioned) Given U =
√
ΛU Ũ⊤, λ̃ ∈ Rn, and ϵ > 0, when

t ≥ Ω
(√

n ∥ΛG∥2

ϵ ∥U∥2

)
, it holds ∥Uf̃(λ̃, t) − λ̃∥ ≤ ϵ, where the modified IFR function f̃(λ̃, t) is led

by a scSNN without connection matrix W and fed up to the constant spike sequence λ̃ at every
timestamp.

This lemma is a straightforward derivation of [8, Theorem 1] due to the following two facts. (1) For
any 0 < γ ≤ min{ρk, k ∈ [n]}, the matrix U meets the regular conditions of [8, Definition 1]. (2)
The optimal solution of Uz = λ̃ becomes z∗ = U−1λ̃. Hence, we omit the detailed proof of this
lemma.

Finally, it suffices to prove that the concerned IFR function f(x, t) can approximate f̃(λ̃, t∗) within
time interval [0, T ] where t∗ ≤ T and T ≥ Ω(

√
n ∥G∥2

ϵ
√

∥V∥2

). Since fe is the linear function defined by

Eq. (3). The approximation above can be converted into another one between

ui(t) =

∫ t

t′
exp

(
s− t′

τm

)( ∑
j∈[n]

Vijsj(t) +
∑
k∈[m]

Wikxk(t)

)
ds

and

ũi(t
∗) =

∫ t∗

t′′
exp

(
s− t′

τm

)
λ̃i(s) ds .

Since

E [ui(t)] =

∫ t

t′
exp

(
s− t′

τm

)( ∑
j∈[n]

VijE [sj(t)] +
∑
k∈[m]

WikE [xk(t)]

)
ds

=

∫ t

t′
exp

(
s− t′

τm

)( ∑
j∈[n]

VijE [sj(t)] +
∑
k∈[m]

Wikλk(t)

)
ds ,

we have

∥E [u(T )]− ũ(t∗)∥ ≤ ϵ,
∥∥∥Ũ E [u(T )]− ũ(t∗)

∥∥∥ ≤ ϵ, and ∥U E [u(T )]− ũ(t∗)∥ ≤ ϵ .

Thus, we have ∥∥∥U E [f(x, T )]− f̃(x, t∗)
∥∥∥ ≤ ϵ .

We finally complete the proof according to ∥G∥2 = ∥ΛG∥2 and
√
∥V∥2 = ∥U∥2. □
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